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Abstract

GivenA = A + E € C™*", where rankA) < min(m, n), andb = b + ¢, we investigate the following problems:
(a) the construction of approximate minimum norm solutions of the least squares problgmmins||, and
(b) the computation of approximations of the column (row) subspact ®¥e propose an algorithm for solving
these problems based on conjugate gradient iterations followed by regularization in the generated Krylov subspace.
Regularization is introduced for estimating r@ak and implemented using the generalized cross-validation
technique. We report the outcome of numerical experiments, showing that the new algorithm yields results with
accuracy comparable to that of the SVD, but at a lower computational cost.
0 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Rank-deficient problems appear in a number of areas such as biology, physics, and engineering. They
involve systems of linear equations in which the coefficient matrix has a cluster of small singular values
and there (hopefully) exists a well-determined gap in the singular value spectrum [18, p. 2]. A basic
assumption is that the coefficient matrix is often regarded as the result of perturbs@etty rank-
deficient matrix, i.e.,

A=A+ EeCm™, (1.1)

where bothA and E are unknown,E contains random noise, and rddl = r << min(m, n) is also
unknown. In applications such as signal processinig, an ideal covariance matrix (positive semidefinite
Hermitian), and the available data matdxapproximately satisfies the low-rank-plus-shift structure

Z%A—I—)/I, y >0, (1.2)
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where] is the identity matrix ang is the noise variance [27]. This same property is also encountered
in information retrieval when the cross product of term-document matrices is formed [28]. Many other
problems involving rank-deficient matrices are also encountered in modal analysis and time domain
analysis of nuclear magnetic resonance (NMR) signals, see [2,11,25,26)].

Henceforth, unless otherwise statddwill always denote a rank-deficient matrix @ *"; its column
subspacér (A) will be denoted byS and its row subspacR(A*) by §’. The conjugate transpose af
is denoted byA*. We will always assume that the nonzero singular values afe simple.

AssumingA = A + E andb = b + ¢ as input data, we shall be concerned with: (a) the construction of
approximate minimum norm solutions of the unperturbed least squares (LS) problem

min|Ax — bll,, AeC™" (m>n), beC", (1.3)

and (b) the computation of approximations of the column (row) subspade lof the sequel these will
be referred to as problems P1 and P2, respectively.

An important issue regarding P1 and P2 is that their solutions strongly depend on a correct estimation
of the rank of the unperturbed matrix from the available data. This estimation is problem dependent and
becomes very difficult at high noise levels. However, a number of schemes to circumvent this drawback
are available, most of which may be found in system identification and signal processing; see, for
instance, the numerous references in [7] and [24]. The inconvenience of these schemes is that they requir:
either doing full eigenvalue (singular value) decompositions, which is computationally demanding, or
the presence of a well distinct gap in the singular spectrum. Cheaper alternatives to the SVD are the
so-called rank-revealing (RR) decompositions. These, however, also require a large gap in the singular
spectrum [12], [18, p. 46]. For applications of RR-based techniques in NMR, see [11,26].

In this work, a method for solving problems P1 and P2 is introduced, which is designed to avoid
the SVD as well as to address the rank estimation problem, even in those cases where the singular
spectrum presents no clear gap. The CGLS-GCV algorithm presented herein relies on a combination
of the conjugate-gradient (CG) method for LS problems (CGLS) [5, p. 289] with regularization in
the generated Krylov subspace. Specifically, we perform a few CGLS iterations and then construct a
small least squares problem by projecting the original one onto the generated Krylov subspace. Solutions
to P1 and P2 emerge after solving this small problem using regularization, by truncating the SVD of the
resulting matrix. Regularization is introduced to estimate ¢anland implemented using the generalized
cross-validation (GCV) technique of Golub, Craven, and Wahba [13]. Methods of this kind, sometimes
called hybrid methods [18, Section 6.6], were first introduced in [21], in 1981. Since then, several hybrid
methods have been successfully applied to solve large-scale ill-conditioned problems. However, no works
are known to the author that illustrate the use of these methods in solving exactly rank-deficient problems
from noisy data.

In this work, we show by way of numerical experiments that the proposed algorithm handles the rank
detection problem relatively well, without requiring the presence of a distinct gap in the singular spectrum
of the data matrix. Additionally, the algorithm is shown to yield solutions to P1 and P2 with accuracy
comparable to that of the SVD, but at a lower computational cost. The application we have in mind is
harmonic retrieval.

The rest of the paper is organized as follows. Section 2 reviews the basic philosophy of GCV for
solving discrete ill-posed problems via truncation of the singular spectrum of the data matrix, including
a discussion that motivates the use of GCV on rank-deficient problems. The proposed method as well as
a stopping criterion for CGLS in harmonic retrieval are described in Section 3. Finally, in Section 4, the
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results of numerical experiments are presented which illustrate the efficiency of CGLS-GCYV for solving
difficult rank-deficient problems taken from the NMR field. Furthermore, a numerical comparison is

provided which shows the superiority of our algorithm in terms of computational cost and accuracy over
those obtained by RR algorithms.

2. Review of GCV for TSVD

We first consider LS problems of the form

minHAx—l; AeC™" (m>=n), beC™, (2.4)

2
where the right hand sideis affected by errorsh = b + ¢ (¢ stands for random noise), ardis of full
rank but free of errors. Let the SVD df be

A=UZV* =) oju;v

Jj’

(2.5)
j=1

whereos; >0, j =1,...,n, with u; andv; being the left and right singular vectors af Then the

solutionxs to the LS problem (2.4), using the available datés given by

" uthb
J
XLs = —7U;.
LS Z o Vj
j=1 7/
When the coefficient matrixA arises from discretization of ill-posed problems, bethand the
coefficientsu’b decay gradually (sometimes rapidly) to zero. In this case, it is clear that the solution
x.s will be dominated by the errors, since, for indicﬁwhereujb ~ 0, the coefficients

u*bh  utb ute ute
J — J + J J

oj o o 0j
become arbitrarily large due to the small singular values. This difficulty can be circumvented by using
the truncated SVD (TSVD) method, which consists of constructing approximate solutions of the form
k *7
u*b
xk=Z+Uj, (26)
j=1
where theruncation (regularizatior) parameterk depends on the noise leveland has to be chosen so
that the noise contribution is damped out.
There exist different ways of choosing the regularization parameter [18]. Here we employ the GCV
technique, which suggests choosing as regularization parameter thekintdak minimizes the GCV
function

IA x; —blI3

Glh)y=—+_"12
® tr(I — AA})2

k=12,..., (2.7)
wherex; is a TSVD sqution,A,I is the pseudo inverse of the closest rankpproximation ofAd, and

tr(A) denotes the trace of. This choice has the advantage that no a priori information on the noise level
is required, and it works well in practice.
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In order to better understand how GCV works, the GCV function is rewritten in terms of the SVD of
A asin|[6]:

" b2
G(k):( 1 )(Zme, |)’ k12 28)
n—=k n—=k

We now make the crucial observation that random noise vectors tend to have a constant projection along
all singular vectors:;. From this, because we deal with a discrete ill-posed problem, there exists a
integerk, such that

|uib| = |ub + uie| ~ |u%e| ~ constant  forj > k.. (2.9)

Thus, forj > k., the right factor in (2.8) behaves approximately as a constant that serves as a variance
estimate for the random vecter As a consequence, far> k., G(k) starts increasing because of the
“weight” 1/(n — k), and the GCV function is not minimized fdr in this range. On the other hand,
when 1< k < k., large coefficient$u*fl§| enter into the variance estimate and the minimum of the GCV
function is not achieved in this interval. The GCV function should thus be minimizee-at..

To end our review of GCV, notice that, if (2.9) holds, then the variance estimate based on the last
n — k, coefficients should not depart so much from other variance estimates based on coefﬁ;:lhnts
with j running fromk, + 1 to 71, wheren < n. This suggests that, if we define an alternative GCV
function G (k) by simply replacing: with 7 in (2.8), this GCV function should also be minimized at
k = k... FunctionG (k) can be useful when some of the last coefficients are inaccurately computed; it will
be referred to as eestrictedGCV function. For further details regarding the GCV, see [6].

We shall now discuss the use of GCV in the context of rank-deficient problems. Recall that our
interest is to construct approximate solutions for problems P1 and P2 fromidata + E € C"*",
b=b+¢eC", whereA is rank-deficient with rankd) < min(m, n). For our discussion, we shall need
to analyze the SVD-based solution to P1. Uehave an SVD given by

n

A=UZV*=) 5;i;d;, (2.10)

and assume that=rank(A) is available. An approximation of the exact solution to RL= Ab, is
then given by

T ith
~ j ~
Xsvp = E —V; .
SVD . 3 Vj, (2.11)
=1/
whereasS = spafiiy, ..., i, } is an approximate solution to P2. Notice that these solutions are of

theoretical interest only. In practice, the SVD has to be substituted for a less computationally demanding
technique and- has to be estimated during the computation. The algorithm we propose addresses
the rank-estimation problem by minimizing an appropriate GCV function to be described later. The
motivation to use GCV comes from the observation that it is possible to find practical applications
in which the coefficientszj.‘l; behave as in (2.9) foj > r. This is an important observation since,
according to the review above, the associated GCV function should be minimiZzed=at. That is,

GCV should satisfactorily estimate ra@a). As an example, ifA is as in (1.2) (which often happens

in signal processing), and the unperturbed veétties in S, then ﬁjl? ~uib +uje = uje for j>r,
because in this case the singular vectors are almost preserved anst- for j > r. Hence, since the
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(crucial) condition (2.9) is met fok > r, the associated GCV function should estimate (ank The
caseb ¢ S can be worked out in a similar fashion if one chooses an auxiliary “right hand side” having
strong components afi. One could choose, for instande= Aey, wheree; is the first canonical vector

of R". When (1.2) is not a good model for, difficulties appear. But, ib has stronger components in
the approximate subspaSethan in its orthogonal complemecﬁtL we can expeaf (k) to be minimized
at k = r. Another alternative, which we exploit later, is to minimize a GCV function that analyzes the
components ofi *b on right singular vectors. Details are postponed to Section 3.

The preceding discussion suggests we perform an analysis of the behavior of the coeﬁij’cﬁents
which is done in the sequel. Some definitions and one lemma will be needed. The distance between
subspacess; and S, of the same dimension is defined bySd, S,) = sin(6,), where6; is the largest
canonical angle betweesy andS;; see [5, p. 18] for details. We also define

cos® = diag(cog6y), ..., cog6,)), sin® = diag(sin(64), .. ., sin(,)), (2.12)

with the canonical angles ordered so that 6, > --- > 6,.

Lemma 1. Assume LhatA:, A given in (11 have SVD’s A = [U1U7] diag(X1, X»)[V1V>]* and
= [U Uyl diag( X1, X5)[V1Vo]*, where Uy, U1, Vi and V; all have r columns. Assume also that
2|E|l2 < o,(A). Then there exists a matrik € C™~")*" such that the columns &f, U,, defined by

U= (Us+ UsP) (1 + P*P) 2, (2.13)

-1/2

Uy = (Uy — Ur P¥)(I + P P) (2.14)

spariR(Uy) andR(Us), respectively.

Proof. Following Wedin [20], it is immediate to see that the conditidrE?, < o,(A) implies that the
sine of the largest canonical angle betwée(U,) andR(ﬁl) is smaller than one. Thus the cosines of
the canonical angles between these subspaces, which are given as the singular \la{uéﬁ oannot
be zero. The same result applles to the singular valuész*difz On the other hand, notice that, for all
nonzeroP € Cm—")xr, U Ul = I,, and therefore the columns of, are orthonormal. We thus need to
exhibit a matrixP such thalUl defined by (2.13) satlsflels2 U, = 0. Since this amounts to determining
a matrix P such that

U;UsP = —UjUs, (2.15)

existence ofP follows becaus@z*Uz is non singular. Relation (2.14) is immediate

Existence of P satisfying (2.13) was first proven by Stewart [22] in the framework of invariant
subspaces. He obtained sucl® dy solving a nonlinear equation via successive approximations, under
appropriate conditions. A recast of Stewart’s results can be found in [14, Section 8.6]. There the existence
of P is ensured provided that| & < o.(A). Here we show the existence #f by merely imposing
acuteness betweéR(U,) andR(ﬁl), which in a sense simplifies the analysis of Stewart.

We are ready to describe the Fourier coefficients wfith respect to bases 0)1([71) andR(ﬁz).
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Theorem 1. AssuméJ, U, as in Lemmal, andb = b + ¢, with b in R(A). Then there exists a unitary
matrix U' = [U;Uj] such that the columns &f; spanR(U,), those ofU; spanR(U,), and

cos(O,)u’'b + ii'}e, 1<j<r,
ﬁ’j*l; =] - Sin(Qj,,)u‘;*_rb + ﬁ’j*s, r+1<j<2r, (2.16)
uje, 2r+1<j<m,

whereit’ is the jth column ofU’, thed;’s are the canonical angles betwesnand S, and{u’},_, is a
basis ofR(U,).

Proof. Let the singular value decomposition Bfin Lemma 1 be
P=®AT =[0, @, [ﬂ ™, 2.17)

where®; contains the first columns of® and A contains the singular values &fin decreasing order.
It then follows that(/ + P*P)~Y/2 = T cos®T*, where co® is defined in (2.12), and the singular
values of P are the tangents of the canonical angles (see, e.g., Stewart [22]). Reptawiitly its SVD

in (2.13), and taking the above observations into account, (2.13) can be rewritten as

U; = U3 cos® + U’ sin®, (2.18)

where we set] = 0.7, Ui = UiT, andU; = U>®;. Now defineu’; = Uje;, wheree; is the jth

canonical vector irR™, and note thaﬁ’j*E = u'/'b + u'’e. Computing the products’*b in (2.18), we
see that (2.16) holds for =1,...,r, sinceU;b = 0. Proceeding as before, we see that (2.14) can be
rewritten as

Uy=[U; U3, (2.19)

where Uy = Up®, U{ = —U; sin® + U2 cosO, and Uy = Up®,. Defining i, ; = Use;, for j =1,
...,m —r, the remaining inequalities in (2.16) follow from the fact thgth =0. O

Notice that, althoughi; differs from ﬁ/j, the residual norn1|rk||§ = || Ax; — B||§ can be computed
using the coeﬁicientﬂ/j*l; instead oszjfE, because this residual norm does not depend on the chosen
basis. Notice also that, ifE||, is small enough compared with (A), then the coefficientsf’j*l;, for
J > r, must be much smaller than those corresponding 40,1< r, since siti¢;) ~ 0, in which case
the GCV function should be minimized &t=r. We can thus conclude that GCV should perform
satisfactorily in detecting rarikd) when| E|> < o,(A). The unclear gap case, which probably happens
when| E |, =~ 0,(A), is difficult to analyze, so we shall resort to numerical simulation.

3. Proposed method

We start by reviewing a version of the Conjugate Gradient method for the LS problefidAmin b||
that avoids explicit computation of the cross-prodd¢td. It can be described as follows:
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Algorithm CGLS. Given an initial guess©, set
e r®—=p_ AxO,
o pO =50 _ g*,0
e o =IIs?l3,

efork=0,1,2,...
g® = Ap®,
a = w/lg®I?
XD = x® 4 gy p®),
r&D — 0 g ®),
s(k+1) — A*r(k“),
Virr = lIs®3,
Bx = Vix1/Vi
pUtD — D) g ®)

End of algorithm.

The convergence properties of Algorithm CGLS are well-known and may be derived from the
observation that theth iterate x®, can be defined as the unique solution of the problem

min||Ax — bl constrained ta € K;(A*A, A*b), (3.20)

where K, (A*A, A*b) = sparfA*b, (A*A)A*b, ..., (A*A)*"1A*b} is the Krylov subspace associated

with the normal equations. CGLS is interesting because it captures the components of the solution
associated with the largest singular values in the early iterates [5, Section 7.4]. Apart from this, for
the significant case where the coefficient matrix is exactly rank-deficient, CGLS converges in at most
iterations, where =rank(A) [5, Section 7.4], [19]. This is stated in the following theorem.

Theorem 2. Let x® k > 0 be the sequence of CGLS iterates related to the LS problenjiAx — b|].
Then, provided©@ e R(A*), e.g.,x© =0, the sequence® converges to the minimum norm solution
x" = A™h, and convergence occurs in at mestteps, where = rank(A).

We emphasize that, although exactly rank-deficient problems rarely occur in practice, there are
circumstances where the statement of the theorem is approximately satisfied in the sense that convergenc
is reached in approximatelysteps. Such is the case, for example, when the data matrix satisfies the low-
rank-plus-shift structure (see, Golub and Van Loan [14, p. 530]). Another instance is when the singular
spectrum ofA presents a well-defined gap betwegnanda, ., [18]. For these cases, both the iterate
norm and the residual norm stagnate at some stage of the iterations and convenient stopping criteria, sucl
as the L-curve criterion, are available; see Hansen [18] for details.

The case where the gap is unclear is more difficult to analyze since one is not able to assess the
accuracy of the CGLS iterates® step by step. As a consequence, it becomes difficult to stop the
algorithm so as to construct satisfactory approximate solutions. Thus the algorithm we propose shall
exchange (at a first stage) the problem of constructing satisfactory approximate solutions to P1 using
CGLS alone for that of capturing underlying information associated with the singular values of interest.
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This can be explained as follows. Recall that the residual vegtbrs: A*(Ax® — b) are orthogonal.
Let §® be the residual vecta¥® normalized to unit length and define

Ty =SyA*AS, e C*,  whereS, = [§©@...5¢D]. (3.21)

The matrix7} is tridiagonal Hermitian and its entries are easy to compute during the CGLS procedure,
see, e.g., [14, p. 528]. Furthermore, it is closely connected with the Lanczos tridiagonalization procedure
of A*A, so its spectrum concentrates information concerning the largest singular valueslof
connection with CGLS, provided that® = 0, it is easy to see from (3.20) that the CGLS iterdfe can

be computed as

xO =5 T e, p=]A%| P =[1,0,...,0" eR*. (3.22)

Let 7, = W, AW, be the SVD ofT}, with A, = diag(z\”, 73°, ..., 7)) and ¥ = [y v .. 4],

The eigenvalues”, calledRitz valuesapproximate extreme eigenvaluesAfA, whereas the vectors

S:kl/f[(k), calledRitz vectorsapproximate the corresponding eigenvectors, see, e.g., [18, Section 6.4]. In
terms of the SVD, (3.22) becomes

k 1/f(k)* o0
20 =S At e =3 P A Gy b, (3.23)
i=1 G
Thus as more of the required singular values are captured, the information of interest is better contained
in x® . There exists, however, the inconvenience that unwanted information due to small Ritz values is
also included inc™®. Therefore, criteria to filter out the contributions of small Ritz values are needed. We
address this issue by using the GCV technique.

Algorithm CGLS-GCV combinegp steps of CGLS with GCV applied to the projected problem

2, (3.24)

min|| 7,x — pej
and then uses the minimizer of the related GCV function as a rank estimate for solving problems P1
and P2. Numbep is a parameter to be estimated according to criteria which depend on the application
under study. Behind CGLS-GCV are some facts which we now discuss shortly. First, notice that the
related GCV function becomes

1 P (p)*e(P) 2

G, p)= Zz_z+1|,01/fl 1 | , £=1,...,p—1 (3.25)
p—4t p—4t

Hence all information required to compu&(¢, p) is obtained from the first row o¥,. If p is large

enough so that all wanted singular values are (fi,), Ritz vectors associated with thelargest Ritz

values become right singular vectors, and the remaining Ritz vectors become vec§ors iere S’
denotes the subspace spanned by right singular vectors associated wilrtiest singular values of.
Using the notation of (2.10), this means that

v;, 1<i<r,

Spul = 3.26
Vi {wiespar{ﬁl,...,ﬁ,}{ r+1<i<p. (3.26)

SincepSiel” = A*b implies that|py”*e\”’| = |(S,¥?)*(A*b)|, the GCV functionG (¢, p) actually
evaluates the components 4fb on Ritz vectors.
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We thus conclude that if the singular values of interest are i(T,) and if A*b has components
that do not vary much along Ritz vectors associated with unwanted Ritz values, in accordance with what
we deduced in Section 2 regarding the application of GCV to rank-deficient problems, we may expect
G (¢, p) to be minimized at = r. Two observations concerning numerical issues related to CGLS must
be made. The first is that numerical difficulties may arise due to the fact that in inexact arithmetic the
residual vectors; lose orthogonality. The cure is to use selective or complete reorthogonalization, but
extra work is needed. Notice, however, that, if only a few of the largest singular values are required,
the extra work spent with reorthogonalization is not substantial [10,27]. The second observation is that,
although CGLS avoids explicit computations of cross-prodﬁc’tg, squaring the condition number of
A cannot be avoided. This may result in a loss of accuracy in the smaller singular values. Fortunately, the
squaring effect is not that serious when larger singular values are required, see, e.g., [5, p. 81].

We now formally describe our algorithm.

Algorithm CGLS-GCV.
1. Settingi® = 0, performp steps of CGLS and construct the tridiagonal maﬁ,ims in (3.21).
2. Compute the SVD of,, 7, = ¥, 4, %, and minimize the related GCV functia@(¢, p).
3. Choose the minimizdr* of the GCV function as the rank of the unperturbed matrix, i.e., set
r =k*, and partitiony,, = [V1¥>], A =diag(Ay, Ap) with ¥ € C™" and A, € C™.
4. Set
° R(S’VE}M) as an approximate solution to P2, and
o ¥ = S,¥ A1 Bre; as an approximate solution to P1.
End of Algorithm.

Some comments on attributes or limitations of CGLS-GCV are appropriate. In fact, notice that in
the absence of noise, because of Theorem 2, CGLS alone solves P1 in exidetitions, in which
case the GCV technique is not required. Solving P2 is also immediate in this case: it is sufficient to
take S = sparfs©, ..., sV}, wheres® = A*(b — Ax®). Another situation where CGLS-GCV is
guaranteed to efficiently solve P1 and P2 is when the data matrix approximately satisfies the low-rank-
plus-shift structure (1.2), since in this case, CGLS “almost converges”raftimps [14, p. 530], and, as
discussed in Section 2, GCV should correctly estimate (ankHowever, very little can be said about
the behavior of CGLS-GCYV for generdl, as the convergence behavior of CGLS depends on the way
the singular values are distributed. That is, slow convergence may occur under certain circumstances.
Despite this, since CGLS tends to quickly pick out the components of the solution associated with the
largest singular values, even in the unclear gap case [9], extremely slow convergence should not happer
in our context.

A brief comment concerning the decision of when to stop CGLS is in order. This decision is
problem dependent and very difficult to implement for general rank-deficient problems. But, if sufficient
information on the problem under analysis (or its solution) is available, convenient stopping rules can
be developed, see, e.g., [15]. Concerning CGLS-GCV, notice that there are two obvious circumstances
under which the algorithm may vyield inaccurate solutions. The first, when the wanted Ritz pairs are not
captured, and the second, when GCYV fails in estimating(t&nkrhe former can happen because CGLS
was stopped too soon, and the cure would be to exploit prior knowledge in order to stop CGLS adequately.
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The latter is difficult to predict as the minimizer of the GCV function depends on the compone?ﬂé of
on Ritz vectors, and because these components depend on the amount and nature of noise in the data.

3.1. A stopping criterion for CGLS in harmonic retrieval

We shall now discuss how to adequately stop the CGLS iterations in the framework of harmonic
retrieval. Matrices in this area are usually structured (e.g., Hankel or Toeplitz), with entries that are
samples of multi exponential signals. Problem P1 is referred to lasear prediction problemthe
solution to P2, the row subspa@&(A*), is known assignal subspaceandr = rank(A) represents the
number of frequency components of the solutions. Recall that the goal here is not to construct reasonable
approximate solutions to P1 using CGLS, but rather to stop CGLS at some iteration where, at least to our
purpose, the underlying signal information associated with the largest singular valiiés cdiptured.

For our description we link again the CGLS algorithm wit® = 0 and the Lanczos tridiagonalization
procedure applied tal* A with starting vectorA *b, and observe that the Lanczos procedure tends to
capture the largest singular values in their natural order in few iterations, as long as the starting vector
has strong components along the associated singular vectors [18, Section 6.3].

Our proposal relies on two facts. The first is that in harmonic retrieval, under conditions that are
often met in practice, namelyE|> < o,(A) and [|b]|2 < |le|l2 (which means that the noise does not
dominate the signal), our starting vectarb is usually rich enough in signal information (i.e., the
strongest componentéi*(A*IS)| are associated with< r).

The second fact is that ragk) can be estimated during the CGLS procedure. This can be explained
as follows. Note that ever§® computed during the CGLS procedure may be analyzed for its frequency
content: typically, thes&® contain more and more high frequency components as iterations proceed,
diverging quickly after the components associated with large singular values have been found. In practice,
this can be seen by examining the number of frequency peaks in the Fourier speciftinfalr data free
of noise, the author’s experience is that the numlEpeaks corresponding to the frequency components
of the solutionx ' is detected very early and remains unmodified until convergence is obtained. This can
be seen in Fig. 1(f)—(e), where we display the behavior of the CGLS iterates for a linear prediction
problem from magnetic resonance spectroscopy.

The only observed effect of CGLS iterates in the frequency domain is an alteration of the height
and width of these peaks but not of their number or position. We believe that this behavior is because all
successive ®) belong to the -dimensional signal subspa® A*). On the other hand, the behavior of the
CGLS iterates dramatically changes when noise is present in the data: if, at early iterations, the number
of meaningful frequency peaks is nearly identical to that observed in the noise free case, it suddenly
increases considerably when the noise starts contaminating the computed iterate (see Fig. 1(c)—(f)).
Numerical examples in harmonic retrieval and image reconstruction illustrating this phenomenon can
be seen in [4,16]. We thus conclude that rathkmay be estimated by counting meaningful peaks of the
Fourier spectrum of som&*® of the very first iterations.

Based on these two facts and assuming that an estimate farraiskavailable, we propose to stop
CGLS afterp steps, where is slightly larger than twice the estimate for radl. This choice ofp agrees
with common numerical experience of some authors, see, e.g., [10,27], who concluded that, in general,
2 x r Lanczos iterations are sufficient to construct good approximations to lHrgest singular values
of perturbations of rank- Toeplitz matrices. As for the estimate of rgAk, we propose to compute
the Fourier spectrum of the second CGLS iterate and then to choose as rank estimate the number o
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Fig. 1. Behavior of CGLS iterates in frequency domain from MRS (signal parameters are in Table 1, next section). Iterates using
perturbed data: (=1, (b)k=1:2, (c)k=3:6, (d)k =7:10. Iterates using clean data: > 3: 6, (f) k = 7: 10.
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dominant peaks of that spectrum. The choice of the second iterate to estimaté)raniotivated by

the observation that, depending on the amount of noise on the data, irrelevant small peaks start to appea
from the third or fourth iteration on. Obviously, there may exist many ways to decide whether a peak
is dominant or not. Our choice has been to accept frequency peaks as dominant when they level off a
predetermined threshold value. To determine the threshold value in practice, the relative maximums of
the corresponding spectrum should be computed to locate the frequency peaks. Once this is done, the
threshold value can be chosen as a fraction of the maximum peak. Numerous numerical experiments in
modal parameter identification and MRS have shown that a threshold value egueionumpeak/3

yields good results.

4. Numerical experiments

An example from magnetic resonance spectroscopy (MR®&}his section we illustrate the performance
of CGLS-GCV on the solution of problems P1 and P2 arising in harmonic retrieval. In applications
like this, the data matrixA has Hankel structure and its entries are definediby= ﬁiﬂ_l, where
hy = hy + &, are samples of a perturbed signal. Problem P1 consists of computing approximations
to a backward prediction problem njjdx — b||, where A and b contain samples of pure signa},
with b = [ho, ..., h,,_1]". Problem P2 addresses the computation of approximations of the subspace
R(A*). For details on applications in MRS, see [8]. Our implementation of CGLS-GCV relies on
slight modifications of functionggls (with complete reorthogonalization) argtv from the Matlab
regularization tools by Hansen [17]. For comparison, we also solve P1 and PJuwrsing andlulv_a,
two low-rank-revealing (LRR) algorithms from the Matlab templates by Fierro et al. [12]. In the latter
case rankd) was provided a priori.

The signalr;, comes from arn vivo 1P spectrum measured in a human brain and given as

11

he=Y cjePre® ekl = /1, k=0,1,...,511 (4.27)
j=1
Table 1
Exact parameter values for the MRS signal
Peak; c;j &; (degrees) o w; /2w (Hz)
1 75 135 50 —86
2 150 135 50 —70
3 75 135 50 —54
4 150 135 50 152
5 150 135 50 168
6 150 135 50 292
7 150 135 50 308
8 150 135 25 360
9 1400 135 285 440
10 60 135 25 490
11 500 135 200 530
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where Ar = 0.000333 andp; = &;r/180. The other parameters are given in Table 1. The unperturbed
matrix A is therefore of rank 11. Because the signal includes closely spaced components; t@)kA!
in the time domain, which are displayed as closely overlapping thin peaks in the frequency domain
(see Fig. 2), the signal is very sensitive to noise [1,3]; in practice it represents a difficult test case for
identification algorithms [23]. Solutions to either P1 or P2 are often used to estimate the signal parameters
from noisy data.

In order to investigate the performance of GCLS-CGV we used a méatiborder 128x 128, a vector
b = [ho, h1,...,h127]", and ran 100 random realizations (with the seed value of the random generator
set to zero) using Gaussian noise with standard deviation on both real and imaginary parts equal to 15.

10 10
251 . . . . . 25% . . . . .
ok @ ] ol () ]
1.5 b 151 b
1+ 1 1+ 1
0.5 q 0.5 q
0 L L L L L 0 L L L L L
-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
Frequency (arbitrary scale) Frequency (arbitrary scale)

Fig. 2. Fourier spectrum of MRS signals: (a) clean data; (b) perturbed data.

Table 2
Singular values of data matrices of dimensior=n = 128
j oj x 1073 5; %1073 &; %1073 5; %1073 6; %1073
1 8.553584 8.576484 8.576484 8.590613 8.590613
2 6.743550 6.777738 6.777738 6.727226 6.727226
3 5.804921 5.776895 5.776895 5.756752 5.756752
4 5.120707 5.152361 5.152361 5.184471 5.184471
5 4.734389 4775110 4.775110 4.718573 4.718573
6 2.443993 2.355343 2.355343 2.491402 2.491402
7 1.678095 1.726428 1.726428 1.679051 1.679051
8 1.521250 1.593807 1.593807 1.509216 1.509216
9 1.412832 1.448948 1.448948 1.439113 1.439113
10 0.980690 0.789505 0.789505 0.811810 0.811810
11 0.714847 0.578135 0.578135 0.682790 0.682790
12 0.000000 0.536610 0.536610 0.613084 0.613084
13 0.000000 0.481352 0.481353 0.484427 0.484046
14 0.000000 0.424903 0.415401 0.471570 0.468845

15 0.000000 0.415245 0.380197 0.453056 0.439401
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Singular values ofi andA are denoted by, andé; respectively. Approximations @f; from T, in (3.21)
are denoted by; and were obtained using =20 CGLS iterations. The standard deviation value was
chosen in such a way that the singular spectrum giresents no distinct gap betweén andéi,, as
illustrated in Table 2 (columns 3 and 4) for a typical run.

The rank detection task was done using a restricted GCV funcBiof, p) employing only
18 coefficients. Results of the experiment displayed in Fig. 3 show a failure rate of 3%. Failures occurred
because the random noise produced, in each “bad run,” a rather “favorable” gap bé&tyaeds 3, that
induced the GCV function to be minimized/at= 12. This is illustrated in columns 5 and 6 of Table 2,
which contain the first 15 singular valués and their approximations;, for the first “bad run.” We
also tried a GCV function using all 20 coefficients. The results obtained resembled those of the restricted
case, see Fig. 4, but the failure rate increased to 5%.

12 T T T T T T *

Bad Runs: *

Good Runs: o

> G3000D GO0BIB0 ¢

Minimizer of restricted GCV function

L L . . L L \ L L
10 20 30 40 50 60 70 80 90 100
Runs

Fig. 3. Performance of CGLS-GCV in detecting raslk(

GCYV function, minimum at 11 GCV function, minimum at 11
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Fig. 4. Behavior of GCV function: (a) unrestricted case; (b) restricted case.
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;stISIt?; on accuracy of solutions to P1 and P2 obtained by three different methods
Accuracy results to P1 Accuracy results to P2
llxexacT — Xsvpll 0.074206 ds’, §/SVD) 0.118338
lxexacT — Xgevll 0.074206 ds’, g’GCV) 0.118338
lxexacT — XLRRI 0.074316 as’, §/LRR) 0.118931

0.5

0.4

0.3f

0.2

02 . 1 . 1 L .
0 20 40 60 80 100 120 140
Time (arbitrary scale)

Fig. 5. Real part of exact solution to P1 (solid line). Real part of approximate solution to P1 constructed by CGLS-GCV method
(dash-dotted line).

The approximate solution to P1 constructed by CGLS-GCV is depicted in Fig. 5. Approximate
solutions to P1 using LRR algorithms as well as the SVDiofiere also constructed. They are denoted
by Xscv, XLrr, @ndXsyp, respectively, and their accuracy measured by comparing them with the exact
solutionxexact. Results displayed in Table 3 show that GCLS-GCV yields better results than the tested
LRR algorithms (both LRR algorithms produced similar results).

Approximate solutions to problem P2 using CGLS-GCV, LRR decompositions, and the SMD of
are denoted by, S/ rr, andS%,p, respectively. Results on the accuracy of the computed approximate
solutions to both P1 and P2, are presented in Table 3.

In order to compare the computational costs of the various algorithms considered when solving P2, we
compute the ratio of the flops needed by SVD to that required by LRR and CGLS-GCV. Results of the
computations presented in Table 4 reveal that CGLS-GCYV is faster than both techniques SVD and LRR.
In particular, it is seen that CGLS-GCV is approximately 4 times faster than the tested LRR algorithms,
and that this ratio can increase with the dimension of the data matrix.

Finally, to investigate the performance of CGLS-GCV as a function of the parameter repeatedly
applied the algorithm to the same problem, using different values. dfhe rank detection task was
addressed using a GCV function based on all coefficientsifl8, and 18 coefficients jf > 20. Results
shown in Table 5 are eloguent. The quality of the approximate solutions to P1 and P2 were satisfactory
only for p > 18. Carrying out the analysis of the GCV function based op albefficients forp > 20, we
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Table 4
Ratio of Flops counts (in MATLAB) needed to solve P2
Dimension 128 256
Flopssyp
FIopS np 6.654339 12.976454
Flopsyp
Flopsacy 26.533674 59.407042
Table 5
Performance of GCLS-GCYV in detecting radR(for several values op
p Failure rate (%) p Failure rate (%)
14 8 20 3
16 5 22 2
18 5 24 2

obtained results that did not resemble so much those results obtained with 18 coefficients. For instance,
for the casep = 22, the failure rate increased to 25%.

5. Conclusions

In this work we presented an algorithm for solving two important rank-deficient problems appearing
frequently in practical applications and illustrated its performance by means of numerical experiments
involving rank-deficient problems arising in harmonic retrieval. The algorithm’s main attribute is the
satisfactory detection of the rank of the matrix associated to the unperturbed problem, even if the singular
spectrum of the data matrix presents no clear gap. Rank detection was accomplished by minimizing a
GCV function related to a smajh x p projected LS problem, withp easy to estimate (in harmonic
retrieval), and the algorithm was successful in almost all numerical experiments. However, more research
is needed to investigate the influencepodn the minimizer of the GCV function. Similarly, the influence
of p on the convergence of Ritz values to desired eigenvalues needs to be investigated. Apart from this,
although the algorithm was shown to significantly outperform both the SVD-based and two RR-based
approaches, we are aware that more experience on the behavior of the algorithm is needed when applies
to rank-deficient problems arising from other areas. Further, we emphasize that a more efficient variant
of GCLS-GCV can be obtained when the data matrix has some structure such as Hankel or Toeplitz;
the same comment applies to RR algorithms. This is always possible since matrix—vector products can
be efficiently carried out by using the Fast Fourier Transform technique. A LRR-based algorithm where
this is done is reported in [26]. There the data matrix is Toeplitz of ordern28%36 and the dimension
of the wanted subspace is 10. Under these conditions, the LRR algorithm was about 56 times faster
than the SVD. This no longer outperforms the results of CGLS-GCV using conventional matrix—vector
products, as shown in Table 4. Even more experience with other LRR algorithms is needed. Other hybrid
methods obtained by substituting CGLS by iterative methods such as LSQR or GMRS should be tested
to solve rank-deficient problems. This is the subject of ongoing work.
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