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CGLS-GCV: a hybrid algorithm for low-rank-deficient problem
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Abstract

GivenÃ = A+E ∈ Cm×n, where rank(A) � min(m,n), andb̃ = b + ε, we investigate the following problem
(a) the construction of approximate minimum norm solutions of the least squares problem min‖Ax − b‖, and
(b) the computation of approximations of the column (row) subspace ofA. We propose an algorithm for solvin
these problems based on conjugate gradient iterations followed by regularization in the generated Krylov s
Regularization is introduced for estimating rank(A) and implemented using the generalized cross-valida
technique. We report the outcome of numerical experiments, showing that the new algorithm yields resu
accuracy comparable to that of the SVD, but at a lower computational cost.
 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords:Rank-deficient problems; Iterative methods; Signal reconstruction

1. Introduction

Rank-deficient problems appear in a number of areas such as biology, physics, and engineerin
involve systems of linear equations in which the coefficient matrix has a cluster of small singular
and there (hopefully) exists a well-determined gap in the singular value spectrum [18, p. 2]. A
assumption is that the coefficient matrix is often regarded as the result of perturbing anexactlyrank-
deficient matrix, i.e.,

Ã = A + E ∈ C
m×n, (1.1)

where bothA and E are unknown,E contains random noise, and rank(A) = r � min(m,n) is also
unknown. In applications such as signal processing,A is an ideal covariance matrix (positive semidefin
Hermitian), and the available data matrix̃A approximately satisfies the low-rank-plus-shift structure

Ã ≈ A + γ I, γ > 0, (1.2)
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whereI is the identity matrix andγ is the noise variance [27]. This same property is also encountered
in information retrieval when the cross product of term-document matrices is formed [28]. Many other
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problems involving rank-deficient matrices are also encountered in modal analysis and time
analysis of nuclear magnetic resonance (NMR) signals, see [2,11,25,26].

Henceforth, unless otherwise stated,A will always denote a rank-deficient matrix inCm×n; its column
subspaceR(A) will be denoted byS and its row subspaceR(A∗) by S ′. The conjugate transpose ofA

is denoted byA∗. We will always assume that the nonzero singular values ofA are simple.
AssumingÃ = A+E andb̃ = b + ε as input data, we shall be concerned with: (a) the constructio

approximate minimum norm solutions of the unperturbed least squares (LS) problem

min‖Ax − b‖2, A ∈ C
m×n (m � n), b ∈ C

m, (1.3)

and (b) the computation of approximations of the column (row) subspace ofA. In the sequel these wi
be referred to as problems P1 and P2, respectively.

An important issue regarding P1 and P2 is that their solutions strongly depend on a correct est
of the rank of the unperturbed matrix from the available data. This estimation is problem depend
becomes very difficult at high noise levels. However, a number of schemes to circumvent this dra
are available, most of which may be found in system identification and signal processing; s
instance, the numerous references in [7] and [24]. The inconvenience of these schemes is that the
either doing full eigenvalue (singular value) decompositions, which is computationally demand
the presence of a well distinct gap in the singular spectrum. Cheaper alternatives to the SVD
so-called rank-revealing (RR) decompositions. These, however, also require a large gap in the
spectrum [12], [18, p. 46]. For applications of RR-based techniques in NMR, see [11,26].

In this work, a method for solving problems P1 and P2 is introduced, which is designed to
the SVD as well as to address the rank estimation problem, even in those cases where the
spectrum presents no clear gap. The CGLS-GCV algorithm presented herein relies on a com
of the conjugate-gradient (CG) method for LS problems (CGLS) [5, p. 289] with regularizati
the generated Krylov subspace. Specifically, we perform a few CGLS iterations and then con
small least squares problem by projecting the original one onto the generated Krylov subspace. S
to P1 and P2 emerge after solving this small problem using regularization, by truncating the SVD
resulting matrix. Regularization is introduced to estimate rank(A) and implemented using the generaliz
cross-validation (GCV) technique of Golub, Craven, and Wahba [13]. Methods of this kind, som
called hybrid methods [18, Section 6.6], were first introduced in [21], in 1981. Since then, several
methods have been successfully applied to solve large-scale ill-conditioned problems. However, n
are known to the author that illustrate the use of these methods in solving exactly rank-deficient pr
from noisy data.

In this work, we show by way of numerical experiments that the proposed algorithm handles th
detection problem relatively well, without requiring the presence of a distinct gap in the singular sp
of the data matrix. Additionally, the algorithm is shown to yield solutions to P1 and P2 with acc
comparable to that of the SVD, but at a lower computational cost. The application we have in m
harmonic retrieval.

The rest of the paper is organized as follows. Section 2 reviews the basic philosophy of G
solving discrete ill-posed problems via truncation of the singular spectrum of the data matrix, inc
a discussion that motivates the use of GCV on rank-deficient problems. The proposed method a
a stopping criterion for CGLS in harmonic retrieval are described in Section 3. Finally, in Section
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results of numerical experiments are presented which illustrate the efficiency of CGLS-GCV for solving
difficult rank-deficient problems taken from the NMR field. Furthermore, a numerical comparison is
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provided which shows the superiority of our algorithm in terms of computational cost and accurac
those obtained by RR algorithms.

2. Review of GCV for TSVD

We first consider LS problems of the form

min
∥∥Ax − b̃

∥∥
2, A ∈ C

m×n (m � n), b̃ ∈ C
m, (2.4)

where the right hand sideb is affected by errors:̃b = b + ε (ε stands for random noise), andA is of full
rank but free of errors. Let the SVD ofA be

A = UΣV ∗ =
n∑

j=1

σjujv
∗
j , (2.5)

whereσj > 0, j = 1, . . . , n, with uj and vj being the left and right singular vectors ofA. Then the
solutionxLS to the LS problem (2.4), using the available datab̃, is given by

xLS =
n∑

j=1

u∗
j b̃

σj

vj .

When the coefficient matrixA arises from discretization of ill-posed problems, bothσj and the
coefficientsu∗

jb decay gradually (sometimes rapidly) to zero. In this case, it is clear that the so
xLS will be dominated by the errors, since, for indicesj whereu∗

jb ≈ 0, the coefficients

u∗
j b̃

σj

= u∗
j b

σj

+ u∗
j ε

σj

≈ u∗
j ε

σj

,

become arbitrarily large due to the small singular values. This difficulty can be circumvented by
the truncated SVD (TSVD) method, which consists of constructing approximate solutions of the f

xk =
k∑

j=1

u∗
j b̃

σj

vj , (2.6)

where thetruncation(regularization) parameterk depends on the noise levelε, and has to be chosen
that the noise contribution is damped out.

There exist different ways of choosing the regularization parameter [18]. Here we employ the
technique, which suggests choosing as regularization parameter the indexk that minimizes the GCV
function

G(k) = ‖Axk − b̃‖2
2

tr(I − AA
†
k)

2
, k = 1,2, . . . , (2.7)

wherexk is a TSVD solution,A†
k is the pseudo inverse of the closest rank-k approximation ofA, and

tr(A) denotes the trace ofA. This choice has the advantage that no a priori information on the noise
is required, and it works well in practice.
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In order to better understand how GCV works, the GCV function is rewritten in terms of the SVD of
A as in [6]:
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G(k) =
(

1

n − k

)(∑n
j=k+1 |u∗

j b̃|2
n − k

)
, k = 1,2, . . . . (2.8)

We now make the crucial observation that random noise vectors tend to have a constant projectio
all singular vectorsuj . From this, because we deal with a discrete ill-posed problem, there ex
integerk∗ such that∣∣u∗

j b̃
∣∣ = ∣∣u∗

jb + u∗
j ε

∣∣ ≈ ∣∣u∗
j ε

∣∣ ≈ constant forj > k∗. (2.9)

Thus, forj > k∗, the right factor in (2.8) behaves approximately as a constant that serves as a v
estimate for the random vectorε. As a consequence, fork > k∗, G(k) starts increasing because of t
“weight” 1/(n − k), and the GCV function is not minimized fork in this range. On the other han
when 1� k < k∗, large coefficients|u∗

j b̃| enter into the variance estimate and the minimum of the G
function is not achieved in this interval. The GCV function should thus be minimized atk = k∗.

To end our review of GCV, notice that, if (2.9) holds, then the variance estimate based on t
n − k∗ coefficients should not depart so much from other variance estimates based on coefficien|u∗

j b̃|,
with j running fromk∗ + 1 to n̂, where n̂ � n. This suggests that, if we define an alternative G
function Ĝ(k) by simply replacingn with n̂ in (2.8), this GCV function should also be minimized
k = k∗. FunctionĜ(k) can be useful when some of the last coefficients are inaccurately computed;
be referred to as arestrictedGCV function. For further details regarding the GCV, see [6].

We shall now discuss the use of GCV in the context of rank-deficient problems. Recall th
interest is to construct approximate solutions for problems P1 and P2 from dataÃ = A + E ∈ C

m×n,
b̃ = b + ε ∈ C

m, whereA is rank-deficient with rank(A) � min(m,n). For our discussion, we shall nee
to analyze the SVD-based solution to P1. LetÃ have an SVD given by

Ã = ŨΣ̃Ṽ ∗ =
n∑

j=1

σ̃j ũj ṽ
∗
j , (2.10)

and assume thatr = rank(A) is available. An approximation of the exact solution to P1,x† = A†b, is
then given by

x̃SVD =
r∑

j=1

ũ∗
j b̃

σ̃j

ṽj , (2.11)

whereasS̃ = span{ũ1, . . . , ũr} is an approximate solution to P2. Notice that these solutions a
theoretical interest only. In practice, the SVD has to be substituted for a less computationally dem
technique andr has to be estimated during the computation. The algorithm we propose add
the rank-estimation problem by minimizing an appropriate GCV function to be described late
motivation to use GCV comes from the observation that it is possible to find practical applic
in which the coefficientsũ∗

j b̃ behave as in (2.9) forj > r . This is an important observation sinc
according to the review above, the associated GCV function should be minimized atk∗ = r . That is,
GCV should satisfactorily estimate rank(A). As an example, if̃A is as in (1.2) (which often happen
in signal processing), and the unperturbed vectorb lies in S , then ũ∗

j b̃ ≈ u∗
j b + u∗

j ε ≈ u∗
j ε for j > r ,

because in this case the singular vectors are almost preserved anduj ∈ S⊥ for j > r . Hence, since the
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(crucial) condition (2.9) is met fork > r , the associated GCV function should estimate rank(A). The
caseb /∈ S can be worked out in a similar fashion if one chooses an auxiliary “right hand side” having
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n. When (1.2) is not a good model for̃A, difficulties appear. But, if̃b has stronger components
the approximate subspacẽS than in its orthogonal complement̃S⊥, we can expectG(k) to be minimized
at k = r . Another alternative, which we exploit later, is to minimize a GCV function that analyze
components of̃A∗b̃ on right singular vectors. Details are postponed to Section 3.

The preceding discussion suggests we perform an analysis of the behavior of the coefficienũ∗
j b̃,

which is done in the sequel. Some definitions and one lemma will be needed. The distance b
subspacesS1 andS2 of the same dimension is defined by d(S1,S2) = sin(θ1), whereθ1 is the largest
canonical angle betweenS1 andS2; see [5, p. 18] for details. We also define

cosΘ = diag
(
cos(θ1), . . . ,cos(θr)

)
, sinΘ = diag

(
sin(θ1), . . . ,sin(θr)

)
, (2.12)

with the canonical angles ordered so thatθ1 � θ2 � · · · � θr .

Lemma 1. Assume thatÃ, A given in (1.1) have SVD’s: A = [U1U2] diag(Σ1,Σ2)[V1V2]∗ and
Ã = [Ũ1Ũ2]diag(Σ̃1, Σ̃2)[Ṽ1Ṽ2]∗, where U1, Ũ1, V1 and Ṽ1 all have r columns. Assume also th
2‖E‖2 < σr(A). Then there exists a matrixP ∈ C

(m−r)×r such that the columns of̂U1, Û2, defined by

Û1 = (U1 + U2P)
(
I + P ∗P

)−1/2
, (2.13)

Û2 = (
U2 − U1P

∗)(I + PP ∗)−1/2
, (2.14)

spanR(Ũ1) andR(Ũ2), respectively.

Proof. Following Wedin [20], it is immediate to see that the condition 2‖E‖2 < σr(A) implies that the
sine of the largest canonical angle betweenR(U1) andR(Ũ1) is smaller than one. Thus the cosines
the canonical angles between these subspaces, which are given as the singular values ofŨ ∗

1 U1, cannot
be zero. The same result applies to the singular values ofŨ ∗

2 U2. On the other hand, notice that, for a
nonzeroP ∈ C

(m−r)×r , Û ∗
1 Û1 = Ir , and therefore the columns of̂U1 are orthonormal. We thus need

exhibit a matrixP such that̂U1 defined by (2.13) satisfies̃U ∗
2 Û1 = 0. Since this amounts to determinin

a matrixP such that

Ũ ∗
2 U2P = −Ũ ∗

2 U1, (2.15)

existence ofP follows becausẽU ∗
2 U2 is non singular. Relation (2.14) is immediate.✷

Existence ofP satisfying (2.13) was first proven by Stewart [22] in the framework of invar
subspaces. He obtained such aP by solving a nonlinear equation via successive approximations, u
appropriate conditions. A recast of Stewart’s results can be found in [14, Section 8.6]. There the ex
of P is ensured provided that 4‖E‖F < σr(A). Here we show the existence ofP by merely imposing
acuteness betweenR(U1) andR(Ũ1), which in a sense simplifies the analysis of Stewart.

We are ready to describe the Fourier coefficients ofb̃ with respect to bases ofR(Ũ1) andR(Ũ2).
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Theorem 1. AssumẽU1, Ũ2 as in Lemma1, and b̃ = b + ε, with b in R(A). Then there exists a unitary
matrix Ũ ′ = [Ũ ′Ũ ′ ] such that the columns of̃U ′ spanR(Ũ1), those of̃U ′ spanR(Ũ2), and

r.
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ũ′ ∗
j b̃ =




cos(θj )u
s∗
j b + ũ′ ∗

j ε, 1 � j � r,

−sin(θj−r )u
s∗
j−rb + ũ′ ∗

j ε, r + 1 � j � 2r,

ũ′ ∗
j ε, 2r + 1� j � m,

(2.16)

whereũ′
j is thej th column ofŨ ′, theθj ’s are the canonical angles betweenS and S̃ , and{us

j }rj=1 is a
basis ofR(U1).

Proof. Let the singular value decomposition ofP in Lemma 1 be

P = ΦΛ̆Υ ∗ = [Φ1 Φ2]
[
Λ

0

]
Υ ∗, (2.17)

whereΦ1 contains the firstr columns ofΦ andΛ contains the singular values ofP in decreasing orde
It then follows that(I + P ∗P)−1/2 = Υ cosΘΥ ∗, where cosΘ is defined in (2.12), and the singul
values ofP are the tangents of the canonical angles (see, e.g., Stewart [22]). ReplacingP with its SVD
in (2.13), and taking the above observations into account, (2.13) can be rewritten as

Ũ ′
1 = Us

1 cosΘ + Uo
a sinΘ, (2.18)

where we set̃U ′
1 = Û1Υ , Us

1 = U1Υ , andUo
a = U2Φ1. Now defineus

j = Us
1ej , whereej is the j th

canonical vector inRm, and note that̃u′ ∗
j b̃ = ũ′ ∗

j b + ũ′ ∗
j ε. Computing the products̃u′ ∗

j b in (2.18), we
see that (2.16) holds forj = 1, . . . , r , sinceU ∗

2b = 0. Proceeding as before, we see that (2.14) ca
rewritten as

Ũ ′
2 = [

Uo
1 Uo

2

]
, (2.19)

whereU ′
2 = Û2Φ, Uo

1 = −Us
1 sinΘ + Uo

a cosΘ , andUo
2 = Û2Φ2. Defining ũ′

r+j = Ũ ′
2ej , for j = 1,

. . . ,m − r , the remaining inequalities in (2.16) follow from the fact thatU ∗
2b = 0. ✷

Notice that, although̃uj differs from ũ′
j , the residual norm‖rk‖2

2 = ‖Axk − b̃‖2
2 can be computed

using the coefficients̃u′ ∗
j b̃ instead ofũ∗

j b̃, because this residual norm does not depend on the ch

basis. Notice also that, if‖E‖2 is small enough compared withσr(A), then the coefficients̃u′ ∗
j b̃, for

j > r , must be much smaller than those corresponding to 1� j � r , since sin(θj ) ≈ 0, in which case
the GCV function should be minimized atk = r . We can thus conclude that GCV should perfo
satisfactorily in detecting rank(A) when‖E‖2 � σr(A). The unclear gap case, which probably happ
when‖E‖2 ≈ σr(A), is difficult to analyze, so we shall resort to numerical simulation.

3. Proposed method

We start by reviewing a version of the Conjugate Gradient method for the LS problem min‖Ax − b‖
that avoids explicit computation of the cross-productA∗A. It can be described as follows:
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Algorithm CGLS. Given an initial guessx(0), set
• r(0) = b − Ax(0),

the
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• p(0) = s(0) = A∗r(0),
• γ0 = ‖s(0)‖2

2,
• for k = 0,1,2, . . .

q(k) = Ap(k),

αk = γk/‖q(k)‖2,

x(k+1) = x(k) + αkp
(k),

r(k+1) = r(k) − αkq
(k),

s(k+1) = A∗r(k+1),

γk+1 = ‖s(k+1)‖2
2,

βk = γk+1/γk,

p(k+1) = s(k+1) + βkp
(k).

End of algorithm.

The convergence properties of Algorithm CGLS are well-known and may be derived from
observation that thekth iterate,x(k), can be defined as the unique solution of the problem

min‖Ax − b‖2 constrained tox ∈Kk

(
A∗A,A∗b

)
, (3.20)

whereKk(A
∗A,A∗b) = span{A∗b, (A∗A)A∗b, . . . , (A∗A)k−1A∗b} is the Krylov subspace associat

with the normal equations. CGLS is interesting because it captures the components of the
associated with the largest singular values in the early iterates [5, Section 7.4]. Apart from th
the significant case where the coefficient matrix is exactly rank-deficient, CGLS converges in atr
iterations, wherer = rank(A) [5, Section 7.4], [19]. This is stated in the following theorem.

Theorem 2. Let x(k) k � 0 be the sequence of CGLS iterates related to the LS problemmin‖Ax − b‖.
Then, providedx(0) ∈ R(A∗), e.g.,x(0) = 0, the sequencex(k) converges to the minimum norm soluti
x† = A†b, and convergence occurs in at mostr steps, wherer = rank(A).

We emphasize that, although exactly rank-deficient problems rarely occur in practice, the
circumstances where the statement of the theorem is approximately satisfied in the sense that con
is reached in approximatelyr steps. Such is the case, for example, when the data matrix satisfies th
rank-plus-shift structure (see, Golub and Van Loan [14, p. 530]). Another instance is when the s
spectrum ofÃ presents a well-defined gap betweenσ̃r and σ̃r+1 [18]. For these cases, both the itera
norm and the residual norm stagnate at some stage of the iterations and convenient stopping crite
as the L-curve criterion, are available; see Hansen [18] for details.

The case where the gap is unclear is more difficult to analyze since one is not able to ass
accuracy of the CGLS iteratesx(k) step by step. As a consequence, it becomes difficult to stop
algorithm so as to construct satisfactory approximate solutions. Thus the algorithm we propos
exchange (at a first stage) the problem of constructing satisfactory approximate solutions to P
CGLS alone for that of capturing underlying information associated with the singular values of in
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This can be explained as follows. Recall that the residual vectorss̃(k) = Ã∗(Ãx̃(k) − b̃) are orthogonal.
Let ŝ(k) be the residual vector̃s(k) normalized to unit length and define
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ication
at the
T̃k = S̃ ∗
k Ã∗ÃS̃k ∈ C

k×k, whereS̃k = [
ŝ (0) . . . ŝ (k−1)

]
. (3.21)

The matrixT̃k is tridiagonal Hermitian and its entries are easy to compute during the CGLS proc
see, e.g., [14, p. 528]. Furthermore, it is closely connected with the Lanczos tridiagonalization pro
of Ã∗Ã, so its spectrum concentrates information concerning the largest singular values ofÃ. In
connection with CGLS, provided thatx(0) = 0, it is easy to see from (3.20) that the CGLS iteratex(k) can
be computed as

x(k) = S̃kT̃
−1
k ρe

(k)

1 , ρ = ‖A∗b‖2, e
(k)

1 = [1,0, . . . ,0]T ∈ R
k. (3.22)

Let T̃k = ΨkΛkΨ
∗
k be the SVD ofT̃k , with Λk = diag(τ (k)

1 , τ
(k)

2 , . . . , τ
(k)
k ) andΨk = [ψ(k)

1 ψ
(k)

2 · · ·ψ(k)
k ].

The eigenvaluesτ (k)
i , calledRitz values, approximate extreme eigenvalues ofÃ∗Ã, whereas the vector

S̃kψ
(k)
i , calledRitz vectors, approximate the corresponding eigenvectors, see, e.g., [18, Section 6

terms of the SVD, (3.22) becomes

x(k) = S̃kΨkΛ
−1
k Ψ ∗

k ρe
(k)
1 =

k∑
i=1

ρψ
(k)∗
i e

(k)

1

τ
(k)
i

S̃kψ
(k)
i . (3.23)

Thus as more of the required singular values are captured, the information of interest is better co
in x(k). There exists, however, the inconvenience that unwanted information due to small Ritz va
also included inx(k). Therefore, criteria to filter out the contributions of small Ritz values are needed
address this issue by using the GCV technique.

Algorithm CGLS-GCV combinesp steps of CGLS with GCV applied to the projected problem

min
∥∥T̃px − ρe

(p)

1

∥∥
2, (3.24)

and then uses the minimizer of the related GCV function as a rank estimate for solving proble
and P2. Numberp is a parameter to be estimated according to criteria which depend on the appl
under study. Behind CGLS-GCV are some facts which we now discuss shortly. First, notice th
related GCV function becomes

G(1,p) =
(

1

p − 1

)∑p

i=1+1 |ρψ
(p)∗
i e

(p)

1 |2
p − 1

, 1 = 1, . . . , p − 1. (3.25)

Hence all information required to computeG(1,p) is obtained from the first row ofΨp. If p is large
enough so that all wanted singular values are inλ(T̃p), Ritz vectors associated with ther largest Ritz

values become right singular vectors, and the remaining Ritz vectors become vectors inS̃ ′⊥. Here S̃ ′
denotes the subspace spanned by right singular vectors associated with ther largest singular values of̃A.
Using the notation of (2.10), this means that

S̃pψ
p

i =
{
ṽi , 1� i � r,

w̃i ∈ span{ṽ1, . . . , ṽr}⊥, r + 1� i � p.
(3.26)

SinceρS̃ke
(p)

1 = Ã∗b̃ implies that|ρψ
(p)∗
i e

(p)

1 | = |(S̃pψ
p

i )∗(Ã∗b̃)|, the GCV functionG(1,p) actually
evaluates the components of̃A∗b̃ on Ritz vectors.
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We thus conclude that if ther singular values of interest are inλ(T̃p) and if Ã∗b̃ has components
that do not vary much along Ritz vectors associated with unwanted Ritz values, in accordance with what

expect
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we deduced in Section 2 regarding the application of GCV to rank-deficient problems, we may
G(1,p) to be minimized at1 = r . Two observations concerning numerical issues related to CGLS
be made. The first is that numerical difficulties may arise due to the fact that in inexact arithme
residual vectors̃sk lose orthogonality. The cure is to use selective or complete reorthogonalizatio
extra work is needed. Notice, however, that, if only a few of the largest singular values are re
the extra work spent with reorthogonalization is not substantial [10,27]. The second observation
although CGLS avoids explicit computations of cross-productsÃ∗Ã, squaring the condition number
Ã cannot be avoided. This may result in a loss of accuracy in the smaller singular values. Fortuna
squaring effect is not that serious when larger singular values are required, see, e.g., [5, p. 81].

We now formally describe our algorithm.

Algorithm CGLS-GCV.
1. Settingx̃0 = 0, performp steps of CGLS and construct the tridiagonal matrixT̃p as in (3.21).
2. Compute the SVD of̃Tp, T̃p = ΨpΛpΨ

∗
p , and minimize the related GCV functionG(1,p).

3. Choose the minimizerk∗ of the GCV function as the rank of the unperturbed matrix, i.e., set
r = k∗, and partitionΨp = [Ψ1Ψ2], Λ = diag(Λ1,Λ2) with Ψ1 ∈ C

n×r andΛ1 ∈ C
r×r .

4. Set
• R(S̃pΨ1) as an approximate solution to P2, and
• x̃ = S̃pΨ1Λ

−1
1 Ψ ∗

1 β1e1 as an approximate solution to P1.
End of Algorithm.

Some comments on attributes or limitations of CGLS-GCV are appropriate. In fact, notice t
the absence of noise, because of Theorem 2, CGLS alone solves P1 in exactlyr iterations, in which
case the GCV technique is not required. Solving P2 is also immediate in this case: it is suffic
take S = span{s(0), . . . , s(r−1)}, wheres(k) = A∗(b − Ax(k)). Another situation where CGLS-GCV
guaranteed to efficiently solve P1 and P2 is when the data matrix approximately satisfies the lo
plus-shift structure (1.2), since in this case, CGLS “almost converges” afterr steps [14, p. 530], and, a
discussed in Section 2, GCV should correctly estimate rank(A). However, very little can be said abo
the behavior of CGLS-GCV for generalA, as the convergence behavior of CGLS depends on the
the singular values are distributed. That is, slow convergence may occur under certain circum
Despite this, since CGLS tends to quickly pick out the components of the solution associated w
largest singular values, even in the unclear gap case [9], extremely slow convergence should no
in our context.

A brief comment concerning the decision of when to stop CGLS is in order. This decisi
problem dependent and very difficult to implement for general rank-deficient problems. But, if suf
information on the problem under analysis (or its solution) is available, convenient stopping rul
be developed, see, e.g., [15]. Concerning CGLS-GCV, notice that there are two obvious circum
under which the algorithm may yield inaccurate solutions. The first, when the wanted Ritz pairs
captured, and the second, when GCV fails in estimating rank(A). The former can happen because CG
was stopped too soon, and the cure would be to exploit prior knowledge in order to stop CGLS ade
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The latter is difficult to predict as the minimizer of the GCV function depends on the components ofÃ∗b̃
on Ritz vectors, and because these components depend on the amount and nature of noise in the data.
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3.1. A stopping criterion for CGLS in harmonic retrieval

We shall now discuss how to adequately stop the CGLS iterations in the framework of har
retrieval. Matrices in this area are usually structured (e.g., Hankel or Toeplitz), with entries th
samples of multi exponential signals. Problem P1 is referred to as alinear prediction problem, the
solution to P2, the row subspaceR(A∗), is known assignal subspace, andr = rank(A) represents the
number of frequency components of the solutions. Recall that the goal here is not to construct rea
approximate solutions to P1 using CGLS, but rather to stop CGLS at some iteration where, at lea
purpose, the underlying signal information associated with the largest singular values ofÃ is captured.

For our description we link again the CGLS algorithm withx(0) = 0 and the Lanczos tridiagonalizatio
procedure applied tõA∗Ã with starting vectorÃ∗b̃, and observe that the Lanczos procedure tend
capture the largest singular values in their natural order in few iterations, as long as the starting
has strong components along the associated singular vectors [18, Section 6.3].

Our proposal relies on two facts. The first is that in harmonic retrieval, under conditions th
often met in practice, namely‖E‖2 < σr(A) and ‖b‖2 < ‖e‖2 (which means that the noise does n
dominate the signal), our starting vector̃A∗b̃ is usually rich enough in signal information (i.e., t
strongest components|ṽ ∗

i (Ã
∗b̃)| are associated withi � r).

The second fact is that rank(A) can be estimated during the CGLS procedure. This can be expl
as follows. Note that everỹx(k) computed during the CGLS procedure may be analyzed for its frequ
content: typically, thesẽx(k) contain more and more high frequency components as iterations pro
diverging quickly after the components associated with large singular values have been found. In p
this can be seen by examining the number of frequency peaks in the Fourier spectrum ofx̃(k). For data free
of noise, the author’s experience is that the numberr of peaks corresponding to the frequency compon
of the solutionx† is detected very early and remains unmodified until convergence is obtained. Th
be seen in Fig. 1(f)–(e), where we display the behavior of the CGLS iterates for a linear pre
problem from magnetic resonance spectroscopy.

The only observed effect of CGLS iterates in the frequency domain is an alteration of the
and width of these peaks but not of their number or position. We believe that this behavior is bec
successivex(k) belong to ther-dimensional signal subspaceR(A∗). On the other hand, the behavior of t
CGLS iterates dramatically changes when noise is present in the data: if, at early iterations, the
of meaningful frequency peaks is nearly identical to that observed in the noise free case, it su
increases considerably when the noise starts contaminating the computed iterate (see Fig. 1
Numerical examples in harmonic retrieval and image reconstruction illustrating this phenomen
be seen in [4,16]. We thus conclude that rank(A) may be estimated by counting meaningful peaks of
Fourier spectrum of somẽx(k) of the very first iterations.

Based on these two facts and assuming that an estimate for rank(A) is available, we propose to sto
CGLS afterp steps, wherep is slightly larger than twice the estimate for rank(A). This choice ofp agrees
with common numerical experience of some authors, see, e.g., [10,27], who concluded that, in
2 × r Lanczos iterations are sufficient to construct good approximations to ther largest singular value
of perturbations of rank-r Toeplitz matrices. As for the estimate of rank(A), we propose to comput
the Fourier spectrum of the second CGLS iterate and then to choose as rank estimate the nu
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tes using
Fig. 1. Behavior of CGLS iterates in frequency domain from MRS (signal parameters are in Table 1, next section). Itera
perturbed data: (a)k = 1, (b)k = 1 : 2, (c)k = 3 : 6, (d)k = 7 : 10. Iterates using clean data: (e)k = 3 : 6, (f) k = 7 : 10.
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dominant peaks of that spectrum. The choice of the second iterate to estimate rank(A) is motivated by
the observation that, depending on the amount of noise on the data, irrelevant small peaks start to appear
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from the third or fourth iteration on. Obviously, there may exist many ways to decide whether a
is dominant or not. Our choice has been to accept frequency peaks as dominant when they le
predetermined threshold value. To determine the threshold value in practice, the relative maxim
the corresponding spectrum should be computed to locate the frequency peaks. Once this is d
threshold value can be chosen as a fraction of the maximum peak. Numerous numerical experim
modal parameter identification and MRS have shown that a threshold value equal to(maximumpeak)/3
yields good results.

4. Numerical experiments

An example from magnetic resonance spectroscopy (MRS).In this section we illustrate the performan
of CGLS-GCV on the solution of problems P1 and P2 arising in harmonic retrieval. In applica
like this, the data matrix̃A has Hankel structure and its entries are defined byãi,j = h̃i+j−1, where
h̃k = hk + εk are samples of a perturbed signal. Problem P1 consists of computing approxim
to a backward prediction problem min‖Ax − b‖, whereA and b contain samples of pure signalhk,
with b = [h0, . . . , hm−1]T . Problem P2 addresses the computation of approximations of the sub
R(A∗). For details on applications in MRS, see [8]. Our implementation of CGLS-GCV relie
slight modifications of functionscgls (with complete reorthogonalization) andgcv from the Matlab
regularization tools by Hansen [17]. For comparison, we also solve P1 and P2 usinglurv−a andlulv−a,
two low-rank-revealing (LRR) algorithms from the Matlab templates by Fierro et al. [12]. In the
case rank(A) was provided a priori.

The signalhk comes from anin vivo 31P spectrum measured in a human brain and given as

hk =
11∑

j=1

cj e
ıφj e(αj+ıωj )k9t, ı = √−1, k = 0,1, . . . ,511, (4.27)

Table 1
Exact parameter values for the MRS signal

Peakj cj ξj (degrees) αj wj /2π (Hz)

1 75 135 50 −86
2 150 135 50 −70
3 75 135 50 −54
4 150 135 50 152
5 150 135 50 168
6 150 135 50 292
7 150 135 50 308
8 150 135 25 360
9 1400 135 285 440

10 60 135 25 490
11 500 135 200 530
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where9t = 0.000333 andφj = ξjπ/180. The other parameters are given in Table 1. The unperturbed
matrixA is therefore of rank 11. Because the signal includes closely spaced componentszj = e(αj+ıωj )k9t
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in the time domain, which are displayed as closely overlapping thin peaks in the frequency d
(see Fig. 2), the signal is very sensitive to noise [1,3]; in practice it represents a difficult test c
identification algorithms [23]. Solutions to either P1 or P2 are often used to estimate the signal par
from noisy data.

In order to investigate the performance of GCLS-CGV we used a matrixÃ of order 128×128, a vector
b̃ = [h̃0, h̃1, . . . , h̃127]T, and ran 100 random realizations (with the seed value of the random gen
set to zero) using Gaussian noise with standard deviation on both real and imaginary parts equ

Fig. 2. Fourier spectrum of MRS signals: (a) clean data; (b) perturbed data.

Table 2
Singular values of data matrices of dimensionm = n = 128

j σj × 10−3 σ̃j × 10−3 σ̂j × 10−3 σ̃j × 10−3 σ̂j × 10−3

1 8.553584 8.576484 8.576484 8.590613 8.59061
2 6.743550 6.777738 6.777738 6.727226 6.72722
3 5.804921 5.776895 5.776895 5.756752 5.75675
4 5.120707 5.152361 5.152361 5.184471 5.18447
5 4.734389 4.775110 4.775110 4.718573 4.71857
6 2.443993 2.355343 2.355343 2.491402 2.49140
7 1.678095 1.726428 1.726428 1.679051 1.67905
8 1.521250 1.593807 1.593807 1.509216 1.50921
9 1.412832 1.448948 1.448948 1.439113 1.43911

10 0.980690 0.789505 0.789505 0.811810 0.81181
11 0.714847 0.578135 0.578135 0.682790 0.68279
12 0.000000 0.536610 0.536610 0.613084 0.61308
13 0.000000 0.481352 0.481353 0.484427 0.48404
14 0.000000 0.424903 0.415401 0.471570 0.46884
15 0.000000 0.415245 0.380197 0.453056 0.43940
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Singular values ofA andÃ are denoted byσj andσ̃j respectively. Approximations of̃σj from T̃p in (3.21)
are denoted bŷσj and were obtained usingp = 20 CGLS iterations. The standard deviation value was

curred

2,

stricted
chosen in such a way that the singular spectrum ofÃ presents no distinct gap betweenσ̃11 and σ̃12, as
illustrated in Table 2 (columns 3 and 4) for a typical run.

The rank detection task was done using a restricted GCV functionĜ(1,p) employing only
18 coefficients. Results of the experiment displayed in Fig. 3 show a failure rate of 3%. Failures oc
because the random noise produced, in each “bad run,” a rather “favorable” gap betweenσ̃12 andσ̃13, that
induced the GCV function to be minimized atk = 12. This is illustrated in columns 5 and 6 of Table
which contain the first 15 singular valuesσ̃j and their approximationŝσj , for the first “bad run.” We
also tried a GCV function using all 20 coefficients. The results obtained resembled those of the re
case, see Fig. 4, but the failure rate increased to 5%.

Fig. 3. Performance of CGLS-GCV in detecting rank(A).

Fig. 4. Behavior of GCV function: (a) unrestricted case; (b) restricted case.
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Table 3
Results on accuracy of solutions to P1 and P2 obtained by three different methods

method

imate
ted
exact
tested

of
mate

P2, we
of the
d LRR.

rithms,

s

factory
Accuracy results to P1 Accuracy results to P2

‖xEXACT − x̃SVD‖ 0.074206 d(S ′, S̃ ′
SVD) 0.118338

‖xEXACT − x̃GCV‖ 0.074206 d(S ′, S̃ ′
GCV) 0.118338

‖xEXACT − x̃LRR‖ 0.074316 d(S ′, S̃ ′
LRR) 0.118931

Fig. 5. Real part of exact solution to P1 (solid line). Real part of approximate solution to P1 constructed by CGLS-GCV
(dash-dotted line).

The approximate solution to P1 constructed by CGLS-GCV is depicted in Fig. 5. Approx
solutions to P1 using LRR algorithms as well as the SVD ofÃ were also constructed. They are deno
by x̃GCV, x̃LRR, andx̃SVD, respectively, and their accuracy measured by comparing them with the
solutionxEXACT. Results displayed in Table 3 show that GCLS-GCV yields better results than the
LRR algorithms (both LRR algorithms produced similar results).

Approximate solutions to problem P2 using CGLS-GCV, LRR decompositions, and the SVD̃A,
are denoted bỹS ′

GCV, S̃
′
LRR, andS̃ ′

SVD, respectively. Results on the accuracy of the computed approxi
solutions to both P1 and P2, are presented in Table 3.

In order to compare the computational costs of the various algorithms considered when solving
compute the ratio of the flops needed by SVD to that required by LRR and CGLS-GCV. Results
computations presented in Table 4 reveal that CGLS-GCV is faster than both techniques SVD an
In particular, it is seen that CGLS-GCV is approximately 4 times faster than the tested LRR algo
and that this ratio can increase with the dimension of the data matrix.

Finally, to investigate the performance of CGLS-GCV as a function of the parameterp, we repeatedly
applied the algorithm to the same problem, using different values ofp. The rank detection task wa
addressed using a GCV function based on all coefficients ifp � 18, and 18 coefficients ifp � 20. Results
shown in Table 5 are eloquent. The quality of the approximate solutions to P1 and P2 were satis
only for p � 18. Carrying out the analysis of the GCV function based on allp coefficients forp > 20, we
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Table 4
Ratio of Flops counts (in MATLAB) needed to solve P2
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Dimension 128 256
FlopsSVD
FlopsLRR

6.654339 12.976454

FlopsSVD
FlopsGCV

26.533674 59.407042

Table 5
Performance of GCLS-GCV in detecting rank(A) for several values ofp

p Failure rate (%) p Failure rate (%)

14 8 20 3
16 5 22 2
18 5 24 2

obtained results that did not resemble so much those results obtained with 18 coefficients. For i
for the casep = 22, the failure rate increased to 25%.

5. Conclusions

In this work we presented an algorithm for solving two important rank-deficient problems app
frequently in practical applications and illustrated its performance by means of numerical exper
involving rank-deficient problems arising in harmonic retrieval. The algorithm’s main attribute i
satisfactory detection of the rank of the matrix associated to the unperturbed problem, even if the
spectrum of the data matrix presents no clear gap. Rank detection was accomplished by minim
GCV function related to a smallp × p projected LS problem, withp easy to estimate (in harmon
retrieval), and the algorithm was successful in almost all numerical experiments. However, more r
is needed to investigate the influence ofp on the minimizer of the GCV function. Similarly, the influen
of p on the convergence of Ritz values to desired eigenvalues needs to be investigated. Apart fr
although the algorithm was shown to significantly outperform both the SVD-based and two RR
approaches, we are aware that more experience on the behavior of the algorithm is needed whe
to rank-deficient problems arising from other areas. Further, we emphasize that a more efficient
of GCLS-GCV can be obtained when the data matrix has some structure such as Hankel or T
the same comment applies to RR algorithms. This is always possible since matrix–vector produ
be efficiently carried out by using the Fast Fourier Transform technique. A LRR-based algorithm
this is done is reported in [26]. There the data matrix is Toeplitz of order 257× 256 and the dimensio
of the wanted subspace is 10. Under these conditions, the LRR algorithm was about 56 time
than the SVD. This no longer outperforms the results of CGLS-GCV using conventional matrix–
products, as shown in Table 4. Even more experience with other LRR algorithms is needed. Othe
methods obtained by substituting CGLS by iterative methods such as LSQR or GMRS should b
to solve rank-deficient problems. This is the subject of ongoing work.
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