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Abstract

The analysis and solution of wave equations with absorbing boundary conditions by using a related first order hyperbolic system
has become increasingly popular in recent years. At variance with several methods which rely on this transformation, we propose
an alternative method in which such hyperbolic system is not used. The method consists of approximation of spatial derivatives
by the Chebyshev pseudospectral collocation method coupled with integration in time by the Runge-Kutta method. Stability limits
on the timestep for arbitrary speed are calculated and verified numerically. Furthermore, theoretical properties of two methods by
Jackiewicz and Renaut are derived, including, in particular, a result that corrects some conclusions of these authors. Numerical
results that verify the theory and illustrate the effectiveness of the proposed approach are reported.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider some numerical methods for the 1D wave equation

utt = c2uxx, 0 < x < 1, t > 0,

u(x, 0) = f (x), 0 < x < 1,

ut(x, 0) = 0, 0 < x < 1

(1)

together with one-way wave equations as boundary conditions:

ut(0, t) − cux(0, t) = 0, t > 0

ut(1, t) + cux(1, t) = 0, t > 0
. (2)

Boundary conditions like these are introduced to avoid or absorb spurious reflections on the boundary, see, e.g.,
[3,5,9,11,12,15,19].

The pseudospectral collocation approach [1,6,8,10,11,13,16,18] has become an efficient way to generate several
methods for solving time dependent partial differential equations (PDEs) due to its high precision and relatively lower
computational cost compared with finite difference methods. These methods start by approximating spatial derivatives
by the Chebyshev pseudospectral collocation (CPS) method, giving rise to a set of ordinary differential equations
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(ODEs) in which only the first time derivative appears. This set, referred to as semidiscrete system, is then integrated
in time using a great variety of schemes.

As for the initial and boundary problem (1)–(2), a subclass of CPS methods that has been increasingly exploited
in recent years is the one in which the analysis and solution of the problem is done by using a related first order
hyperbolic system of PDEs [4,11,10,15]. Although these methods allow certain degree of flexibility for improvement
of the accuracy because integration in time can be done by using an appropriate method for ODEs, some care is required
when using them as the overall accuracy of computed solutions depends strongly on the chosen method and as the
solution u is calculated from approximations to ut . For this reason, methods that do not use such hyperbolic system of
PDEs and that allow the calculation of u without using any estimate of ut seem desirable. It is the object of the present
paper to propose such a method. Essentially, we transform the PDE into a first order system of ODEs and then integrate
in time by using the fourth-order Runge–Kutta (RK) method. Although the order of accuracy in time can be considered
low when compared with the one of spatial derivatives, this is not a serious difficulty since highly accurate solutions
can be constructed by taking the timestep fairly small while maintaining the storage requirements within reasonable
bounds.

The paper is structured as follows. In Section 2 we reintroduce some methods of Jackiewicz and Renaut [11,10] and
then describe the proposed method. Theoretical properties of all methods are described here, including, in particular,
a result that corrects some conclusions in [11]. Stability of the proposed method as well as the stability limits on the
timestep for arbitrary speed are included in Section 3. In Section 4 we give a numerical example that illustrates the
effectiveness of the proposed approach. The paper ends with some concluding remarks in Section 5.

2. Methods and properties

As commented before, the methods we are interested in, use approximations to first order spatial derivatives calcu-
lated by the Chebyshev pseudospectral collocation method. From here on we use as collocation points the so-called
Chebyshev–Gauss–Lobatto points, numbered from left to right on the interval [0,1], defined by

0 = x0 < x1 < · · · < xn = 1, with xj = 1

2
[1 − cos(jπ/n)], j = 0, . . . , n. (3)

The objective of this section is to review some methods by Jackiewicz and Renaut [10,11], as well as to describe the
proposed method along with underlying properties. To this end, we start by describing some definitions and notation.

Throughout the paper the first order (n + 1) × (n + 1) Chebyshev differentiation matrix associated with these
collocation points is denoted by D. The columns (resp., rows) of D are denoted by dj (resp., lTj ). Let D1, D2, and D3
be matrices defined by

D1 = [d2, . . . , dn], D2 = [l2, . . . , ln]T , E = [d1 0(n+1)×(n−1) − dn+1], (4)

where 0m×n denotes the m × n matrix having all entries equal to zero; when m = n we simply write 0m. Accordingly,
In+1 denotes the identity matrix of order n + 1.

2.1. First order hyperbolic system-based methods

These methods rely on a conversion of the second order partial differential equation to a first order hyperbolic
system of PDEs. With the notation u1(x, t) = ut(x, t), and u2(x, t) = ux(x, t), problem (1)–(2) is converted to the first
order hyperbolic system

{
u1,t = c2u2,x, 0 < x < 1, t > 0,

u2,t = u1,x, 0 < x < 1, t > 0,
(5)
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subject to the initial and boundary conditions

u1(x, 0) = 0, 0 ≤ x ≤ 1,

u2(x, 0) = fx(x), 0 ≤ x ≤ 1,

u1(0, t) − cu2(0, t) = 0, t > 0

u1(1, t) + cu2(1, t) = 0, t > 0

(6)

Approximation of spatial first order derivatives via the differentiation matrix D leads to several first order semidiscrete
systems of ODEs which depend on the way the boundary conditions are incorporated into the model. To simplify
the notation, here and throughout we use u1(xj, t), 0 ≤ j ≤ n, to denote both the exact value and the corresponding
approximation arising from solving the related semidiscrete system; the same comment applies to u2(xj, t) and u(xj, t).
We shall concentrate on two methods by Jackiewicz and Renaut [11,10] which are briefly described as follows.

If the boundary conditions are incorporated by eliminating the variables u2(0, t) and u2(1, t) taking u2(0, t) =
u1(0, t)/c and u2(1, t) = −u1(1, t)/c, the semidiscrete system is⎧⎨

⎩
U1,t = A1U1, t > 0,

U1(0) = [01×n+1 fx(x1), . . . , fx(xn−1)]T
(7)

where

and

U1 = [u1(x0, t), . . . , u1(xn, t), u2(x1, t), . . . , u2(xn−1, t)]
T .

As in [11], MATLAB notation is being used. If, on the other hand, we choose u1(0, t) = cu2(0, t) and u1(1, t) =
−cu1(1, t), the resulting semidiscrete system is{

U2,t = A2U2, t > 0,

U2(0) = [01×(n−1) fx(x0), . . . , fx(xn)]T
(8)

where

and

U2 = [u1(x1, t), . . . , u1(xn−1, t), u2(x0, t), . . . , u2(xn, t)]
T .

We now observe that because time integration of these systems does not give approximations to the solution u, but
rather to u1 and u2, Jackiewicz and Renaut proposed the following two methods to calculate u from u1

Method 1:

1. Step 1: Calculate approximations to u1 by the fourth-order RK method.
2. Step 2: For j = 0, . . . , n and v ≥ 0, calculate

u(xj, tv+3) = u(xj, tv) + �t[β0u1(xj, tv) + β1u1(xj, tv+1) + β2u1(xj, tv+2) + β3u1(xj, tv+3), ] (9)

where β0 = −51/8, β1 = 171/8, β2 = −153/8 and β3 = 57/8.
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The second method proposes integration in time by using a fourth-order diagonally implicit multistage integration
method (DIMSIM). In these methods, approximations to u at time tv+1 are calculated by using approximations to u1
at interior points of the interval [tv, tv+1] (called internal stages). The method is as follows.

Method 2:
For j = 0, . . . , n and v ≥ 0, calculate

u(xj, tv+1) = u(xj, tv) + �t[γ0u1(xj, tv + c1�t) + γ1u1(xj, tv + c2�t) + γ2u1(xj, tv + c3�t)

+β3u1(xj, tv + c4�t)] (10)

where γ0 = γ3 = 13/48, γ1 = γ2 = 11/48, c1 = 1/8, c2 = 3/8, c3 = 5/8, c4 = 7/8.
The principal characteristic of Method 2 is that the internal stages u1(xj, tv + ci�t), i = 1, . . . , 4, as well as the

estimates u(xj, t) are all O(�t4) accurate; the reader is referred to [2,10] for details. As a consequence, Method 2
should outperform Method 1; explanation about this can be found in [10].

A comment is required concerning a conclusion in a paper by Jackiewicz and Renaut [11]. In that paper the authors
analyze numerically the spectra of matrices A1 and A2 and conclude, among other things, that the spectrum of A1
differs from the spectrum of A2 (see Section 2 in [11]). The following proposition shows this conclusion is incorrect.1

Proposition 1. System matrices A1 and A2 are similar.

Proof. Define

S =
[

0(n−1)×(n+1) c2In−1

In+1 0(n+1)×(n−1)

]
.

It follows that S is non singular and that its inverse is

S−1 =

⎡
⎢⎣ 0(n+1)×(n−1) In+1

1

c2 In−1 0(n−1)×(n+1)

⎤
⎥⎦ .

Using these matrices it is straightforward to see that

A1 = S−1A2S,

as claimed. �

Remark. It is worth noting that the statement of the above proposition continues to hold irrespective of the grid
points being used, i.e., we might use, for instance, Legendre points, and the assertion will be still valid. Additional
consequences of this proposition will be commented in Section 4.

The eigenvalues of these matrices, which come in complex conjugate pairs, are very sensitive to small perturbations
such as rounding errors, except for some “outlier eigenvalues”. This is illustrated in Fig. 1. Notice that for n = 31 the
eigenvalues of A1 match well those of A2; this is not the case when n = 63. These results do not contradict Proposition
1, of course, they simply illustrate that matrices A1 and A2 are far from normal.

A useful measure of closeness to normality of A ∈Rm×m is the Jordan condition number of the corresponding
eigenproblem. If A has a Jordan decomposition A = V�V−1, the 2-norm Jordan condition number is

κ(V ) = ‖V‖2‖V−1‖2.

A a consequence, the smaller κ(V ), the closer A is to normality.

1 After contacting Z. Jackiewicz, we now know that the analysis in [11] relies on a “system matrix A1” that differs from that in Eq. (7) (Eq. (2.6)
in [11]) and arises from one of the so many ways of incorporating the boundary conditions into the model. This clarifies what is claimed in [11] on
the spectra of matrices A1 and A2 and related issues.
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Fig. 1. Eigenvalues of system matrices A1 (circles) and A2 (dots).

As for the Jordan condition numbers of A1 and A2, for c = 1, n = 31, 63, we have

κ(V1) ≈ 6.5194e + 11, 8.5281e + 14, κ(V2) ≈ 6.5191e + 11, 9.4652e + 14

which explains the behavior of eigenvalues displayed in Fig. 1.
An important consequence of Proposition 1 is that the Jordan condition numbers of the eigenproblems associated

with system matrices A1 and A2 relate to each other by a constant factor that depends on the speed c. This is made
precise in the following proposition.

Proposition 2. Let κ(V1), κ(V2) be the Jordan condition numbers of the eigenvalue problems associated with A1 and
A2, respectively. These numbers relate to each other by a constant factor not larger than � ≥ 1 defined by

� =

⎧⎪⎪⎨
⎪⎪⎩

c2 if c > 1,

1 if c = 1,

1

c2 if c < 1.

Proof. Let A1 = V1�V−1
1 be a Jordan decomposition of A1. By Proposition 1, the 2-norm Jordan condition number

κ(V2) satisfies

κ(V2) = ‖SV1‖2‖V−1
1 S−1‖2 ≤ ‖S‖2‖S−1‖2‖V1‖2‖V−1‖2 = κ(S)κ(V1). (11)

Now observe that if c > 1, because the columns of matrix S are orthogonal, we have ‖S‖2 = c2, ‖S−1‖2 = 1, and hence
κ(S) = c2. A similar reasoning leads to κ(S) = 1/c2 if c < 1, and κ(S) = 1 if c = 1. Insertion of this value in (11)
shows that κ(V2) ≤ �κ(V1). If we reverse the roles of V1 and V2 in the above procedure we obtain κ(V1) ≤ �κ(V2).
What � ≥ 1 follows from the definition itself. This ends the proof. �

The conclusion that can be drawn from Proposition 1 and the above numerical results is that the eigenproblems
associated with system matrices A1 and A2 are either almost equally conditioned when c /= 1 or equally conditioned
when c = 1, and that for any choice of the speed c, the corresponding condition numbers can be extremely huge when
n is sufficiently large. From the practical point of view, this means that the stability properties of time integration
methods for the semidiscrete systems (7) and (8) should not differ significantly.
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2.2. Block companion approach

To describe the proposed method we need some notation. Let ū = [u(x0, t), . . . , u(xn, t)]T . Since the inner product
of jth row of D and ū approximates ux(xj−1, t), 1 ≤ j ≤ n + 1, the boundary conditions (2) imply that

lT1 ū ≈ ux(x0, t) = ut(x0, t)

c
, lTn+1ū ≈ ux(1, t) = −ut(1, t)

c
. (12)

In view that

ūtt = c2ūxx ≈ c2D2ū,

using (12) we obtain

D2ū = d1l
T
1 ū + (d2l

T
2 ū + · · · + dnl

T
n ū) + dn+1l

T
n+1ū ≈ [d1/c 0(n+1)×(n−1) − dn+1/c]ūt + D1D2ū.

Neglecting the approximation error we obtain the set of second order system of ODEs

ūtt = cEūt + c2D1D2ū. (13)

If we introduce

U3 = [ut(x0, t), . . . , ut(xn, t), u(x0, t), . . . , u(xn, t)]
T ,

a first order system in companion block form associated with (13) is{
U3,t = A3U3,

U3(0) = [01×(n+1), f (x0), . . . , f (xn)]T ,
(14)

where

(15)

with D1, D2 and E being defined in (4). Observe that A3 is now of order 2n + 2, as opposed to matrices A1 and A2
which are of order 2n. In spite of this, an important characteristic of the semidiscrete system (14) is that the related
system matrix contains essentially the same information as A1 and A2. This is the subject of the following proposition.

Proposition 3. Except for a zero eigenvalue of multiplicity two, λ(A3), the spectrum of matrix A3, equals λ(A1), the
spectrum de A1.

Proof. We first recall a well known result from numerical linear algebra concerning eigenvalues. Let A ∈Rm×q and
B ∈Rq×m, m ≥ q. Then except for (m − q) zero eigenvalues, we have that λ(AB) = λ(BA).

Now observe that A3 can be rewritten as

Application of the above property to the right hand side of the previous equality gives that, except for two zero
eigenvalues, we have

which proves the assertion of the proposition. �
Another point to be discussed here is the dependence of the spectral radius of the system matrices on constant c.

To highlight the dependence of the system matrix A3 on n and c, we shall use the notation A3(n, c) instead of A3. Our
goal is to relate the spectrum of A3(n, c) for arbitrary c > 0 to the spectrum of A3(n, 1).
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Proposition 4. Let ρ(A3(n, c)) denote the spectral radius of the system matrix A3(n, c) defined in (15). Then
λ(A3(n, c)) = cλ(A3(n, 1)), and thus

ρ(A3(n, c)) = c ρ(A3(n, 1)), (16)

and the same property continues to hold if A3 is replaced with A1 or A2.

Proof. Let A4 = ZA3(n, c)Z−1 where Z is defined by

A simple calculation reveals that A4 = cA3(n, 1). This proves that λ(A3(n, c)) = cλ(A3(n, 1)), which in turn proves
(16); the last part of the statement of the proposition is a consequence of Proposition 3. �

The method proposed in this work relies on the observation that matrix A4 is better scaled than A3, in which case
the eigenvalue problem of the former is better conditioned than the eigenvalue problem of the latter [7]. Essentially,
we change the system coordinates U3 in (14) to U4 = ZU3, which leads to the semidiscrete system{

U4,t = A4U4,

U4(0) = [01×(n+1), f (x0), . . . , f (xn)]T ,
(17)

and propose to integrate in time by the fourth-order Runge–Kutta method. The method, which we denote by CPS-RK,
can be described as follows.

Method 3 (CPS-RK): For v ≥ 0, calculate

U4(tv+1) = U4(tv) + �t

6
(F1 + 2F2 + 2F3 + F4)

where

F1 = A4U4(tv), F2 = A4

(
U4(tv) + �t

2
F1

)

F3 = A4

(
U4(tv) + �t

2
F2

)
, F4 = A4 (U4(tv) + �tF3) .

The principal feature of using the semidiscrete system (17) is that now u(xj, t) can be calculated directly from
initial data, as opposed to the approaches of Jackiewicz and Renaut which estimate u from approximations to u1 and
u2. As far as accuracy is concerned, CPS-RK will certainly outperform Method 1 but nothing can be affirmed with
respect to its performance compared with Method 2 because both methods are fourth-order accurate. Even so, it is
worth emphasizing that CPS-RK has the capability to construct highly accurate approximations by simply taking the
stepsize �t fairly small.

3. Stability of the proposed method

In this section we discuss the choice of the maximum stepsize that assures stable integration for a given spatial grid.
A discussion about this involving matrices A1 and A2 is carried out by Jackiewicz and Renaut in [11]. They analyze
the spectra and ε-pseudospectra of these matrices and conclude that the maximum stepsize that assures stability of
his RK-based method can be chosen by requiring the spectrum of the system matrix scaled by �t to lie within the
stability region of the method. Limits on allowable stepsizes for stability of both formulations for speed c = 1 are
also reported (Table 1 in [11]). Ignoring the fact that most part of these reported values are incorrect because they
contradict the statement of Proposition 1, what must be observed here is that the conclusion of these authors concerning
the appropriateness of eigenvalue analysis for stability is actually correct. This is supported by the results displayed
in Fig. 2. With regard to the stability limits on the stepsizes for the proposed method, they can be found by coupling
the line of analysis of Jackiewicz and Renaut with Proposition 4. They are displayed in Table 1 for several values of
n. Observe that in the sense of “eigenvalue stability”, these values apply to all matrices Ai, i = 1, 2, 3, 4, since by
Proposition 4, all these matrices share the same spectral radius.
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Fig. 2. Region of absolute stability of fourth-order Runge–Kutta method scaled by 1/�tmax and spectra and ε-pseudospectra of system matrices
A1 (top left) A2 (top right), A3 (bottom left), and A4 (bottom right), for ε = 10−9, 10−8, . . . , 10−3 (from inner to outer), n = 31, c = 5, and
�tmax = 0.01680.

Since these stability limits were shown to hold in practice in [11] when solving the semidiscrete system involving
matrix A2, it remains to verify whether the same occurs in conjunction with the system matrix A4 of the proposed
method. As demonstrated in [14] and illustrated in [17,18], the right way to carry out such verification is via pseu-
doeigenvalues. In words, this requires choosing the timestep in such a way that the pseudospectra of A4 lie within a
distance O(ε) + �t of the scaled region of stability as ε → 0 and �t → 0 [14,18]. The spectra and ε-pseudospectra
of all matrices Ai for n = 31 and the scaled region of stability of RK method are displayed in Fig. 2.

Several conclusions can be drawn from Fig. 2. First, it shows that the eigenvalues of matrices A1 and A2 are
almost equally sensitive to perturbation, as predicted in theory (see Proposition 2), and that among the eigenvalue
problems associated with matrices Ai (i = 1 : 4), the most sensitive to perturbation is the one associated with matrix
A3. Moreover, in view that the ε-pseudospectra of A4 are well within the scaled region of stability, the most important
conclusion is that the pseudoeigenvalue stability criterion is indeed satisfied, thus verifying that the �tmax calculated
using the standard eigenvalue analysis is appropriate in this case.

Table 1
Maximum stable stepsize for arbitrary speed c, for matrices Ai, i = 1, 2, 3, 4 of several orders, according to eigenvalue stability analysis

n + 1 c�tmax for Ai, i = 1 : 4

4 0.61413877092330
8 0.23643588530295

16 0.06906986008198
32 0.01680029485722
64 0.00410202619991

128 0.00101143197421
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Fig. 3. Exact and CPS-RK-based approximate solution for 1D wave equation.

4. Numerical example

We give a numerical example to illustrate the effectiveness of the proposed method. The example addresses the
solution of a 1D wave equation with speed c = 5 and initial condition defined by

u(x, 0) = e−100(x−0.5)2

The problem was solved on the interval [0, 0.12], n + 1 = 64, and �t = 0.004/c = 0.0008 (see Table 1). This test
problem is taken from [11] in which the solution is computed on the interval [0,0.6] with c = 1 and �t = 0.004. For
comparison, we also solve the problem using Method 1 and Method 2. For Method 2 we provide exact internal stages
u1(xj, tv + ci�t) (see (10), and we do so to illustrate that this method should not outperform CPS-RK. All numerical

Fig. 4. Error in absolute value of approximate solutions at time level t = 0.12.
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computation were carried out in MATLAB. In our implementation we use a slightly modified version of function
cheb.m by Trefethen [18] (see also, Trefethen and Embree [17], p. 410).

The numerical results of PCS-RK method are presented in Fig. 3, in which the exact solution is plotted by solid line
and approximate solutions by small circles.

To assess the performance of the methods, the error of the approximate solutions was calculated. This is simple to
do since for 1D problems the exact solution is known in closed form. Fig. 4 presents the error in absolute value of
numerical solutions calculated by the tested methods. The numerical results are clear: even that Method 2 is shown in
an advantageous light because exact internal stages were provided, it does not outperform CPS-RK, as expected.

5. Concluding remarks

We have presented a method for numerical simulation of 1D wave propagation with absorbing boundary conditions
that relies on the Runge–Kutta method and that does not use a first order hyperbolic system. Doing so, we maintained
the simplicity and accuracy of the Runge–Kutta method and avoided the difficulty of recovering the solution u from
low order approximations to derivatives ut , which is typical of methods like Method 1 and Method 2. Stability of the
proposed method was also discussed and the stability limits on the stepsize for arbitrary speed were calculated and
verified in practice.

The method we have presented can be extended to 2D wave equations without difficulties. Indeed, a block companion
approach for 2D problems appears naturally following the same line of reasoning as the one used in Section 3. This
extension was not included here because the error of the approximate solutions for 2D problems as well as the assessment
of how much reflection is avoided at the artificial numerical boundaries is not as simple to estimate as for the 1D case.
This is the subject of future work.
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