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Abstract

A method for computing highly accurate numerical solutions of 1D convection–diffusion equations is proposed. In this
method, the equation is first discretized with respect to the spatial variable, transforming the original problem into a set of
ordinary differential equations, and then the resulting system is integrated in time by the fourth-order Runge–Kutta
method. Spatial discretization is done by using the Chebyshev pseudospectral collocation method. Before describing the
method, we review a finite difference-based method by Salkuyeh [D. Khojasteh Salkuyeh, On the finite difference approx-
imation to the convection–diffusion equation, Appl. Math. Comput. 179 (2006) 79–86], and, contrary to the proposal of
the author, we show that this method is not suitable for problems involving time dependent boundary conditions, which
calls for revision. Stability analysis based on pseudoeigenvalues to determine the maximum time step for the proposed
method is also carried out. Superiority of the proposed method over a revised version of Salkuyeh’s method is verified
by numerical examples.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Convection; Diffusion; Chebyshev pseudospectral method; Stability region; Pseudoeigenvalues
1. Introduction

We consider numerical methods for the 1D convection–diffusion equation
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subject to the initial and boundary conditions
uðx; 0Þ ¼ f ðxÞ; 0 6 x 6 1;

uð0; tÞ ¼ g0ðtÞ; t P 0;

uð1; tÞ ¼ g1ðtÞ; t P 0:

ð2Þ
Partial differential equations (PDEs) like these appear in connection with problems in fluid mechanics,
financial mathematics, and many other fields. The numerical solution of the problem is a topic of research that
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has provided a challenge of lasting interest in numerical analysis and resulted in a number of methods, see e.g.
[3,6,7,9–11]. The purpose of this paper is to propose a method for solving convection–diffusion equations
based on the Chebyshev pseudospectral (CPS) collocation method. This choice is supported by the excellent
reputation of CPS amongst practitioners due to its high accuracy and relatively low computational cost
[2,4,12,13]. For this reason, the numerical solutions of (1) and (2) by using a pseudospectral method should
be highly accurate as well.

Before describing the proposed method, we review a finite difference approach (FDA) by Salkuyeh [7], and,
contrary to the proposal of this author, we show that FDA does not apply when the problem involves time
dependent boundary conditions, which calls for revision.

Both methods CPS and FDA start by discretizing (1) and (2) with respect to the spatial variable, transform-
ing the problem into a system of ordinary differential equations (the semidiscrete counterpart of (1) and (2)),
dV

dt
¼ AVþ bðtÞ; Vð0Þ ¼ V0; ð3Þ
where A is a matrix and V, b are the vector valued functions of dimension N h. Subscript h is a positive param-
eter that determines the spatial grid and all these quantities depend on the spatial discretization chosen. The
numerical solution itself is then constructed in a second stage by integrating the corresponding semidiscrete
system (3). Thus, the methods differ in the way the corresponding semidiscrete system is integrated in time.
While the CPS method computes the solution VðtÞ by using the fourth-order Runge–Kutta method, Sal-
kuyeh’s approach computes the solution VðtÞ by using an exact formula for the exponential matrix expðAtÞ
at a given time level t. The paper is organized as follows. In Section 2 we reintroduce the finite difference ap-
proach by Salkuyeh and show why it does not apply for problems involving time dependent boundary con-
ditions. Comments about stability of FDA are included. The proposed pseudospectral method is described
in detail in Section 3 and stability issues are discussed in Section 4. Numerical results that illustrate the effi-
ciency of the proposed method are reported in Section 5. Section 6 contains concluding remarks.

2. Semidiscrete problem from finite differences

Perhaps the simplest way to transform problem (1)–(2) into a system of ODEs is by centered finite differ-
ences. Let xi ¼ hi; i ¼ 0; . . . ;m be a set of regular grid points of the interval [0,1] with x0 ¼ 0; xm ¼ 1; and
h ¼ 1=m. Then it is well known that
ou
ox
ðxi; tÞ ¼

uðxiþ1; tÞ � uðxi�1; tÞ
2h

þ Oðh2Þ;

o
2u

ox2
ðxi; tÞ ¼

uðxiþ1; tÞ � 2uðxi; tÞ þ uðxi�1; tÞ
h2

þ Oðh2Þ:
If we neglect the approximation error and introduce viðtÞ to denote the values approximating uðxi; tÞ, we
transform (1) and (2) into a system of m� 1 ordinary differential equations:
dV
dt ¼ AdVþ bðtÞ;
Vð0Þ ¼ ½f ðx1Þ; . . . ; f ðxm�1Þ�T;

(
ð4Þ
where
Ad ¼
1

h2
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with
p ¼ �2c; q ¼ cþ ch
2
; r ¼ c� ch

2
:
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The solution to (4) subject to the given initial condition is readily shown to be [1]
VðtÞ ¼ eAtVð0Þ þ 1

h2
q
Z t

0

expðAdðt � sÞÞg0ðsÞe1 dsþ r
Z t

0

expðAdðt � sÞÞg1ðsÞem�1 ds

� �
; ð6Þ
where expðAd tÞ stands for the exponential of Ad t and ei is the ith canonical vector in Rm�1:
When bðtÞ does not depend on t; which is the case when the boundary conditions in (2) are constant, the

unique solution to (4) reduces nicely to
VðtÞ ¼ �A�1
d bþ expðtAdÞðVð0Þ þ A�1bÞ: ð7Þ
This VðtÞ together with an explicit formula for expðtAdÞ at a fixed time level t is used by Salkuyeh in [7] to
compute numerical solutions of test problem of type (1)–(2) involving time dependent boundary conditions.
Ignoring the fact that the numerical results reported in [7] are incorrect because (7) holds only when the
boundary conditions are constant, what should be emphasized here is that expðtAdÞ is easy to compute in this
case because Ad is diagonalizable, i.e., Ad ¼ PKP�1, and because both the eigenvector matrix P and the matrix
of corresponding eigenvalues K are known in closed form [5]. This was exploited by Salkuyeh to determine a
closed form for P�1 and hence for expðtAdÞ. Specifically, Salkuyeh uses the fact that the columns of P are of
the form [5]
pi ¼

ðq=rÞ1=2 sinð1ip=mÞ
ðq=rÞ2=2 sinð2ip=mÞ

..

.

ðq=rÞðm�1Þ=2 sinððm� 1Þip=mÞ

2
666664

3
777775; i ¼ 1; . . . ;m� 1; ð8Þ
and concludes in a closed form for P�1. A crucial point ignored here is that because ðq=rÞ is always larger than
1, the powers of this quotient yield ill-conditioning in P when n is large enough. Another important observa-
tion is that the left factor 1=h2 and the dependence of b on t in (5) are ignored in the paper by Salkuyeh. We
wonder how this author incorporated time dependent boundary conditions into vector b independent of t.
Anyway, since matrix Ad is tridiagonal Toeplitz, this property can be exploited to implement (6) in a numer-
ically stable way, without using any explicit form for P�1 even if the problem involves time dependent bound-
ary conditions. In fact, to compute stably P�1b it suffices solving the system Px ¼ b using a matrix P of
normalized eigenvectors. Below we give some details of an implementation of the difference-finite-based meth-
od for the case where the initial and boundary conditions of problems (1) and (2) are defined such that the
corresponding exact solution is of the form uðx; tÞ ¼ expðaxþ btÞ with parameters a and b suitably chosen.
Our interest is because these are the test problems used in [7] which we also use to illustrate the potential
of our method to be described in the next section. The following simple result will be used.

Lemma 1. Let Ad have a spectral decomposition Ad ¼ PKP�1: Then a necessary condition for

uðx; tÞ ¼ expðaxþ btÞ to solve problem (1) and (2) is that g0ðtÞ ¼ expðbtÞ; g1ðtÞ ¼ expðaþ btÞ; and

ca2 � ca� b ¼ 0: Moreover, the approximate difference-finite-based solution becomes in this case
VðtÞ ¼ P expðtKÞw0 þ
1

h2
ððbI � KÞ�1ðexpðbItÞ � expðKtÞÞw1Þ

� �
; ð9Þ
where w0 ¼ P�1Vð0Þ; w1 ¼ P�1ðqe1 þ expðaÞrem�1Þ

Proof. The first part is an immediate consequence of the fact that the solution to (1) and (2) is of the form
uðx; tÞ ¼ expðaxþ btÞ. As for Eq. (9), it results from using Ad ¼ PKP�1 in (6) and the specified boundary
conditions. h

In Section 5, we report numerical results of an implementation of FDA that relies on (9), where P contains
normalized eigenvectors and w0 and w1 are obtained by solving linear systems instead of using the closed form
for P�1: Despite the fact that this implementation has better numerical properties than the one that uses the
explicit formula for P�1, it is worth emphasizing that except for special cases, the truncating Oðh2Þ error in this



540 F.S.V. Bazán / Applied Mathematics and Computation 200 (2008) 537–546
discretization cannot be improved. Indeed if problem (1)–(2) has solution as in Lemma 1, it is easy to prove the
following result concerning the truncating error siðtÞ at ðxi; tÞ.

Lemma 2. Let the solution of (1) and (2) be as in Lemma 1. Then the truncating error at ðxi; tÞ in discretizing (1)

by finite differences satisfies
siðtÞ � c
a3 expðaÞ

6
� c

a4

12

� �
h2 expðbtÞ: ð10Þ
It is clear that this discretization error becomes small when a� 1 and b < 0: This will be illustrated in Sec-
tion 5.
3. Pseudospectral semidiscrete model

We concentrate on a semidiscrete method obtained by discretizing (1) with respect to the spatial variable
using the pseudospectral Chebyshev method. In the following the first-order ðnþ 1Þ � ðnþ 1Þ Chebyshev dif-
ferentiation matrix associated with the collocation points
0 ¼ x0 < x1 < � � � < xn ¼ 1; with xj ¼
1

2
½1� cosðjp=nÞ�; j ¼ 0; 1; . . . ; n ð11Þ
will be denoted by D. Also, if di (resp., lT
i ) denotes the ith column (resp., row) vector of matrix D, we write
D ¼ ½d1; . . . ; dnþ1� ¼

lT
1

..

.

lT
nþ1

2
664

3
775
Let D1;D2; and D3 be matrices defined by
D1 ¼ ½d2; . . . ; dn�; D2 ¼ ½l2; . . . ; ln�T; D3 ¼ ETDE; ð12Þ

with E ¼ ½e2; . . . ; en�, where ei is the ith column of the identity matrix of order nþ 1.

Now let us introduce the semidiscrete version of (1) and (2) obtained by discrete differencing using matrix
D. Recall that if v ¼ ½v0; . . . ; vn�T denotes a vector of data at positions xj; j ¼ 0; 1; . . . ; n, the first-order differ-
entiation matrix D gives highly accurate approximations to v0ðxjÞ; v00ðxjÞ; . . . ; simply by taking v0ðxjÞ ¼ ðDvÞj;
v00ðxjÞ ¼ ðD2vÞj; and so on. Formulae for the entries of D and an m-file for its computation can be found in
several references, see e.g., Trefethen [13], where the collocation points xi are numbered from right to left
and defined in ½�1; 1�. A slight modification of a Matlab m-file by Trefethen [13] for computing D, adapted
to the interval ½0; 1�; could go as follows:

%% CHEBY compute D = differentiation matrix, y = Chebyshev grid%%

function [D,y]=cheby(N)

if N==0, D=0; x=1; return, end

x=cos(pi*(0:N)/N)0; y=0.5*(x+1);

c=[2; ones(N-1,1); 2].*(-1).(̂0:N)0;
X=repmat(y,1,N+1);

dX=X-X0;

D1=(c*(1./c)0)./(dX+(eye(N+1))); % off-diagonal entries

D1=D1 - diag(sum(D10)); % diagonal entries

y=flipud(y); % ordering points from left to right

D=flipud(fliplr(D1)); % differentiation matrix

The accuracy of this discrete differencing operator is illustrated in Fig. 1.
Now, let us discretize problem (1)–(2) using the Chebyshev pseudospectral collocation method. In fact, for

the first-order derivative we have
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Fig. 1. Chebyshev differentiation of uðx; tÞ ¼ expðaxþ btÞ; with a ¼ 9, b ¼ �0:09.
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where we have used the columnwise representation of D to deduce the last equality. Insertion of the boundary
conditions shows that at interior grid points we have
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A similar procedure leads to
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ox2 ðx1; tÞ

..

.

o2u
ox2 ðxn; tÞ

2
664

3
775 � D2D1

uðx1; tÞ
..
.

uðxn; tÞ

2
664

3
775þ g0ðtÞD2d1 þ g1ðtÞD2dnþ1: ð14Þ
If we neglect the approximation error and denote by viðtÞ the approximation to uðxi; tÞ, a semidiscrete
Chebyshev approximation to (1) and (2) is provided by the system of n� 1 ODEs
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dV
dt ¼ AVþ bðtÞ; t P 0;

Vð0Þ ¼ ½f ðx1Þ; . . . ; f ðxn�1Þ�T

(
ð15Þ
with xi being defined in (11), VðtÞ ¼ ½v1ðtÞ; . . . ; vn�1ðtÞ�T, and
A ¼ cD2D1 � cD3; bðtÞ ¼ g0ðtÞðcD2 � cETÞd1 þ g1ðtÞðcD2 � cETÞdnþ1:
When a spectral decomposition of A is available, A ¼ PKP�1, it is straightforward to see that the solution
to the above initial value problem is
VðtÞ ¼ P expðtKÞ w0 þ
Z t

0

expð�KsÞg0ðsÞdsw1 þ
Z t

0

expð�KsÞg0ðsÞdsw2

� �� �
; ð16Þ
where w0 ¼ P�1Vð0Þ, w1 ¼ P�1ðcD2 � cETÞd1; and w2 ¼ P�1ðcD2 � cETÞdnþ1: Now if the solution of (1) and (2)
is as in Lemma 1, the solution of (15) turns out to be
VðtÞ ¼ P ½expðtKÞw0 þ ðbI � KÞ�1ðexpðbItÞ � expðKtÞÞw�; ð17Þ
where w0 ¼ P�1Vð0Þ; w ¼ P�1ðcD2 � cETÞðd1 þ expðaÞdnþ1Þ:
Despite the fact that the eigenvalues of A are not known in closed form, it is worth noting that eigenvalue-

based solutions for the semidiscrete system can be implemented without difficulties as long as n is a moderate
number. This is so as Chebyshev differentiation matrices of moderate order, e.g., n 6 30, very often lead to
highly accurate solutions. Another possibility is using either an ODE solver for time integration or any numer-
ical method for ODE’s. The method we propose relies on this category: we regard the semidiscrete system as
one of the form dV=dt ¼ fðt;VÞ and propose to integrate in time by the classical fourth-order Runge–Kutta
(RK) method.
4. Stability considerations

The section is devoted to discuss the maximum stepsize for the RK method to assure stable integration for a
given spatial grid. Recall that to assure stable integration of a system of ODE’s with system matrix A; close to
normal, the stepsize Dt must be chosen in such a way that the spectrum of DtA is contained in the stability
region of the time integrator. Also, recall that for non-normal A, this stability condition is not always reliable
and often seen to fail when A is far from normal. Indeed, for such problems, the stepsize must be chosen such
that the �-pseudospectrum of DtA lies within a distance Oð�Þ þ OðDtÞ of the stability region as �! 0 and
Dt! 0 [8,13].

Thus we have to discuss whether the system matrix A ¼ cD2D1 � cD3 in (15) is close to normal or not. To
this end we first observe that while matrix D2D1 is close to normal, this is not the case for matrix D3 which is
highly non-normal; explanation about this can be found in [12]. Since A combines properties of D2D1 and D3

in a highly non-linear way, matrix A should be highly non-normal as well, except probably when c � 0. This
can be verified in several ways and one of these is by inspecting the �-pseudospectra of A; which is depicted in
Fig. 2 for two different choices of constants c and c and with n ¼ 30. In both cases matrix A has a pair of
‘‘outlier” eigenvalues at approximately �3:8� 103, that are real and insensitive to perturbation. These are
not included in the �-pseudospectra. Since for c ¼ 3:5 and c ¼ 0:022 the �-pseudospectra of A are broader than
that for c ¼ 0:035, we can conclude that the ‘‘degree” of non-normality in A is higher in the former case than
in the latter. Another way to verify this is by evaluating the condition number of the eigenvector matrix P of
A. In fact, we see that in the former case condðPÞ ¼ 8:84� 103, whereas in the latter condðP Þ ¼ 3:05, thus
illustrating that A is close to normal when c is small.

In view of the evidences that A may become highly non-normal, we conclude that the right way to assure
stability of the proposed method is via the pseudoeigenvalue stability criterion. To do this we exploit the fact
that the left end of the interval of absolute stability for the fourth-order RK method is known to be approx-
imately 2.78. Using this information we compute the maximum stepsize in the sense of ‘‘eigenvalue stability
analysis” by the formula
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Fig. 2. Left: spectrum and �-pseudospectra of A for � ¼ 10k=2; k ¼ �12;�11; . . . ; 2 with c ¼ 3:5 and c ¼ 0:022. Right: spectrum and �-
pseudospectra of A for � ¼ 10k=2; k ¼ �12;�11; . . . ; 4 with c ¼ 0:035 and c ¼ 0:022.
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Dtmax ¼
2:78

qðAÞ ;
where qðAÞ is the spectral radius of A; and then choose the stepsize that guarantees stability by inspecting the
�-pseudospectra of DtA with Dt smaller than Dtmax. The same procedure was followed in several numerical
experiments, two of which we describe in the next section.

5. Numerical examples

We present results of some numerical experiments to illustrate the effectiveness of the proposed method. To
this end we choose convection–diffusion equations taken from [7] which are characterized by the fact of having
parameter dependent solutions of the form
uðx; tÞ ¼ expðaxþ btÞ; 0 6 x 6 1; t P 0;
where a; b are adjusted such that the condition ca2 � ca� b ¼ 0 is satisfied (see Lemma 1). Initial and bound-
ary conditions are in this case
uðx; 0Þ � f ðxÞ ¼ expðaxÞ; uð0; tÞ � g0ðtÞ ¼ expðbtÞ; uð1; tÞ � g1ðtÞ ¼ expðaþ btÞ:

These equations were solved by the finite difference approach (FDA), implemented as described just after

Lemma 1, and by two versions of the pseudospectral method: one based on the Runge–Kutta method (CPS),
and the other based on eigenvalue computation (ECPS) as described in (17). Numerical computations were
carried out in MATLAB.

Before proceeding, it is worth emphasizing that Salkuyeh’s approach cannot work well in these cases as we
have seen in Section 2 this approach applies to problems involving constant boundary conditions.

Example 1. Parameters defining problem (1)–(2) and the corresponding solution are
c ¼ 3:5; c ¼ 0:022; a ¼ 0:02854797991928; and b ¼ �0:0999
This test problem is Example 3 in [7], in which parameter b is taken to be �0.09. This choice of b is not correct:
it does not satisfy the necessary condition ca2 � ca� b ¼ 0 for uðx; tÞ ¼ expðaxþ btÞ to solve problems (1) and
(2) (see Lemma 1).

We now turn our attention to the choice of the stepsize that guarantees stability. Inspection of the spectrum
of A for n ¼ 20 reveals that except for a real outlier at �776.2908, the rest of the spectrum comes in complex
conjugate pairs and that the spectral radius is determined by the outlier. Maximum stepsize in the sense of
eigenvalue stability analysis is thus Dtmax ¼ 0:0036: Then we analyze the �-pseudospectra of A and conclude
that a reasonable stepsize that assures stable integration is Dt ¼ 0:001. The appropriateness of this choice fol-
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lows from inspecting the �-pseudospectra of DtA which is displayed in Fig. 3 where we take Dt ¼ 0:003. Com-
plete inclusion of the �-pseudospectra of DtA within the region of stability is apparent in this case.

Numerical solutions of the methods at time level t ¼ 0:1 for n ¼ 20, Dt ¼ 0:001 and h ¼ 0:025 ðm ¼ 40), are
all displayed in Fig. 4. The time level was chosen to compare the results of our pseudospectral method with
those reported in [7]. Unfortunately such a comparison is not done here as our attempts to reproduce the
results in [7] were unsuccessful. For this, what we compare in Fig. 4 are the results of our implementation
of the finite difference method, which can be verified to be superior than those in [7], with those of the pseudo-
spectral method. The most important conclusion here is the superiority of both versions of the pseudospectral
method (ECPS and CPS) over the finite difference method (FDA). Superiority of ECPS over CPS is also noto-
rious in this case. Apart from this, it should be noticed that the results of FDA shown in Fig. 4 (on the left) are
consistent with theory as they verify that the truncating error (hence the error itself) is in fact proportional to
h2 (with small constant of proportionality in this case as a � 0 and b < 0, see Lemma 2). Fig. 4 (on the right)
displays results in the opposite direction: it illustrates that the solution by FDA for h ¼ 1=55 �
0:1818 ðm ¼ 55Þ deteriorates significantly. The reason is that the eigenvector matrix P of Ad is severely ill-con-
ditioned as the powers of the quotient q=r � 4:3846 that enter in the definition of P in (8) are extremely large
for m ¼ 55, a critical phenomenon that does not occur when m ¼ 40 and that was not considered in [7].
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Fig. 3. Left: absolute region of stability for RK-method and �-pseudospectra of matrix DtA for Dt ¼ 0:003 and � ¼ 10�k=2; k ¼ 4; 5; . . . ; 8.
Right: closer look at the �-pseudospectra.
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The behavior of CPS for fixed n and decreasing stepsize was also investigated. Results for n ¼ 20; 30 and
Dt ¼ 0:0001 are displayed in Fig. 5. What impacts here is the substantial improvement of CPS and the loss of
accuracy of solutions by ECPS. The conclusion is that using ECPS may not be always a good idea. The supe-
riority of CPS over ECPS can be explained by saying that eigenvalues were not accurately computed for
n ¼ 30 due to the influence of the non-normality of matrix A (as illustrated in the preceding section).

Example 2. Parameters for this example are
Fig. 5.
n ¼ 20

Fig.
� ¼ 10
a ¼ 9; b ¼ �0:09; c ¼ 0:1; c ¼ 0:01
This test problem is Example 2 in [7]. As in Example 1, the spectral radius of A, for n ¼ 20, is determined by
the real outlier that in this case occurs at �3:11� 102: The maximum stepsize according to eigenvalue analysis
is Dtmax � 0:0089. Proceeding as before we conclude that Dt ¼ 0:008 can be a reasonable stepsize, which is sup-
ported by Fig. 6 where both the region of absolute stability and the �-pseudospectra of DtA for Dt ¼ 0:008 are
depicted.

Results of computed numerical solutions for n ¼ 20, Dt ¼ 0:001 and h ¼ 0:025 ðm ¼ 40) are displayed in
Fig. 7. Superiority of pseudospectral solutions is once more apparent in this example. Oðh2Þ accuracy of FDA
is also verified (in this case with constant of proportionality much larger than 1 as a ¼ 9, see Lemma 2).
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Left: base 10 logarithm of absolute error of solutions by Chebyshev pseudospectral method and finite differences at t ¼ 0:1, for
, Dt ¼ 0:0001 and h ¼ 0:025 (m ¼ 40). Right: results for n ¼ 30; Dt ¼ 0:0001 and h � 0:025 (m ¼ 40).
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Fig. 7. Base 10 logarithm of absolute error of solutions by Chebyshev pseudospectral method and finite differences at t ¼ 0:1, for n ¼ 20,
Dt ¼ 0:001 and h ¼ 0:025 ðm ¼ 40Þ.
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6. Concluding remarks

A Chebyshev pseudospectral method for 1D convection–diffusion equations has been proposed and its effi-
ciency illustrated by solving test problems taken from the literature. Stability analysis based on pseudoeigen-
values was also done along with a strategy to determine the timestep that guarantees stability of the proposed
method. Further, a review of a finite difference approach by Salkuyeh was carried out, showing that such
method does not apply for problems involving time dependent boundary conditions, this being theoretically
shown and verified by numerical examples. More study on stability of the semidiscrete system (15) needs to be
performed; this and the extension of the method for 2D problems are the subject of ongoing research.
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