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Abstract

An error analysis of so-called signal zeros of polynomials associated with exponentially
damped/undamped signals is performed and zero error bounds are derived. The bounds are in
terms of the angle between the exact and approximate signal subspace, the signal parameter
themselves, the polynomial degree, and the error on the polynomial coeficients. The key idea
behind the analysis is to regard signal zeros as eigenvalues of projected companion matrices
and then to generate error bounds by exploiting perturbation theorem for eigenvalues. The
conclusion drawn from the bounds is that the signal zeros become relatively insensitive to
small perturbations on the polynomial coefficients as long as the polynomial degree is large
enough and the zeros are extracted as eigenvalues of projected companion matrices. Also,
the bounds suggests that signal zero estimates derived from projected companion matrices
are more accurate than those obtained from the companion matrices themselves. Illustrative
numerical results are provided.
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1. Introduction

Let PN(z) denote a monic polynomial:

PN(z) = f0 + f1 z + · · · + fN−1z
N−1 + zN (1.1)

whose coefficients fj satisfy the recurrence relation

f0hk + f1hk+1 + · · · + fN−1hk+N−1 = hk+N, k = 0, 1, . . . , (1.2)

where hk is defined by

hk =
n∑

j=1

rj esj �t k =
n∑

j=1

rj zk
j . (1.3)

In this definition, rj , sj ∈ C, sj /= sk for j /= k, sj = αj + iωj , i = √−1, αj �
0, and �t , called the sampling rate, is assumed to satisfy maxj ωj�t < π, 1 � j �
n. It is well known that if N � n, then PN(z) has zj = esj �t k (j = 1, 2, . . . , n) as
roots [2,20]. These zj are often referred to as signal zeros and their estimation from
noisy data h̃k = hk + εk, k = 0, 1, . . . , L, where εk represents noise, is an impor-
tant problem in science and engineering. Applications of the problem include signal
processing, radar, geophysics, and direction of arrival, among others [9–14,19].

Since in practical applications the polynomial coefficients are estimated from
noisy data h̃k rather than being given exactly, the effect of uncertainties εk on the
signal zeros zj is an issue of considerable importance. The problem has received
the attention of numerous researchers and several error analyses based on statistical
properties of the noise have been carried out; for works in signal processing and
system identification problems, see [19] and references therein. A recent work that
does not rely on any statistical assumption can be found in [4]. The analysis of these
authors relies on the fact that, since polynomial zeros can be regarded as compan-
ion matrix eigenvalues, both in theory and practice [6,18], the derivation of error
bounds for the signal zeros from eigenvalue perturbation theory is always possible.
Following this line of analysis, Bazán and Toint conclude that if the signal zeros are
regarded as eigenvalues of the companion matrix FN :

FN = [e2 e3 · · · eN f ] =


0 0 · · · 0 −f0

1 0 · · · 0 −f1

0 1 · · · 0 −f2
...

...
...

...

0 0 · · · · · · −fN−1

 , (1.4)

the sensitivity of these eigenvalues to perturbations on the coefficients fj is governed
by κ(WN), the 2-norm condition number of WN , where
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WN =


1 z1 z2

1 · · · zN−1
1

1 z2 z2
2 · · · zN−1

2
...

...
... · · · ...

1 zn z2
n · · · zN−1

n

 . (1.5)

Additionally, they provide an error bound which essentially depends on N and κ(WN)

and show that the bound may be small as long as N is large enough.
In this work we derive new error bounds for the signal zeros, concentrating on

bounds that relate the signal zeros to a small eigenvalue problem as opposed to the
approach of Bazán and Toint that requires the solution of a large companion matrix
eigenvalue problem. The key idea is to regard the signal zeros as eigenvalues of a
small n × n matrix obtained by projecting the companion matrix onto the column
space of W ∗

N (the star symbol denotes complex conjugate transpose) and then to
derive error bounds from the projected problem. A particularly nice thing behind
this is that better error estimates can be obtained. Besides this, like the bound of
Bazán and Toint, the ones derived here do not depend on the nature of the noise, i.e.,
the error analysis is free of statistical hypotheses.

For future reference, the columns subspace of W ∗
N will be called the signal sub-

space and denoted by SN . Also, we note for later use that

WNFN = ZWN, (1.6)

where Z = diag(z1, . . . , zn). In the following the zj ’s will be referred to as signal
eigenvalues.

The paper is organized as follows. In Section 2 we review and derive a few basic
results that are needed for our eigenvalue analysis. Section 3 contains a general
bound for the eigenvalue error in terms of the angle between SN and S̃N , the poly-
nomial degree and the signal parameter themselves. S̃N denotes an approximation
for SN and it is assumed to be extracted from available data. An important aspect of
the bound is that it does not depend on any method used to compute the approximate
signal subspace. When the approximate signal subspace is computed via the singular
value decomposition (SVD), error bounds that provide insight into the problem are
obtained. This is done in Section 4. Section 5 is devoted to numerically illustrate the
theory, the superiority of our bounds over the one by Bazán and Toint is illustrated
there. Finally, some conclusions are provided in Section 6.

2. Some preliminaries

The goal of the section is to introduce further notation, a few basic definitions and
preliminary results. The conjugate transpose of A is A∗ and A† its Moore–Penrose
pseudo-inverse. ‖ · ‖2 denotes the 2-norm and ‖ · ‖F the Frobenius norm. The 2-
norm condition number of A is κ(A) = ‖A‖2‖A†‖2. The spectrum of A ∈ Cn×n is
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denoted by λ(A). The singular values of A are denoted by σi(A) and ordered as
σ1(A) � σ2(A) � · · · � σn(A) � 0.

Definition 1. Let S and S̃ be two subspaces in Rn of the same dimension, and let
P and P̃ be orthogonal projectors onto S and S̃, respectively. The distance between
S and S̃ is defined as (see, e.g., [7, p. 76])

d(S, S̃) = ‖P − P̃‖2. (2.1)

A known result regarding separation of equidimensional subspaces is

d(S, S̃) = sin(�), (2.2)

where � denotes the largest canonical angle between S and S̃. For details on ca-
nonical angles, see [5].

Let A ∈ Cn×n have simple eigenvalues and let λi an eigenvalue of A with right
eigenvector vi and left eigenvector ui . Define

si = u∗
i vi

‖ui‖2‖vi‖2
. (2.3)

It is well known that si is always nonzero and that the real number κi = 1/|si | serves
as a measure for the sensitivity of eigenvalues λi to perturbations on A. Such a
number is referred to as condition number of eigenvalue λi (see, e.g., [22, p. 314]).
A precise result regarding eigenvalue perturbation along this line is as follows. Let
λ̃i be an eigenvalue of Ã = A + E ∈ Cn×n that is closest to eigenvalue λi . Then, for
small enough E, the following first-order estimate holds:

|̃λj − λj | �
∣∣∣∣∣u

∗
jEvj

u∗
j vj

∣∣∣∣∣ � κj‖E‖2, j = 1, . . . , n. (2.4)

Definition 2. For each A ∈ Cn×n, the Departure from normality of A, in the Frobe-
nius norm, is

D2(A) = ‖A‖2
F −

n∑
i=1

|λi |2.

Number D(A) measures how close is A of being a normal matrix. For normal matri-
ces D(A) = 0 and the A-matrix eigenvalue problem is perfectly conditioned. Con-
sequently, the smaller D(A), the better the conditioning of the matrix eigenvalue
problem. An informative result explaining this, due to Smith [15], is as follows.

Proposition 1. Let A ∈ Cn×n have simple eigenvalues λj . Define

δi = min
j

j /=i

|λi − λj |, 1 � i, j � n.
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Then it holds

1 � κi �
[

1 + D2(A)

(n − 1)δ2
i

](n−1)/2

, i = 1, 2, . . . , n. (2.5)

We end the section by describing a technical result concerning the behavior of the
polynomial coefficients fj as a function of the degree of PN(z).

Proposition 2. Let HM,N((), ( � 0, M � N � n, denote an M × N Hankel matrix
whose (i, j) entry is h(+i+j−2, with hk defined in (1.3). Let f † denote the minimum
2-norm solution of the linear system

HM,N(()x = HM,N(( + 1)eN , (2.6)

where eN is the N th canonical vector in RN. Then ‖f †‖2 is a decreasing function of
N, and

lim
N→∞ ‖f †‖2 = 0. (2.7)

Proof. It is well known that matrix HM,N(() has a Vandermonde decomposition of
the form

HM,N(() = W T
M Z( RWN, (2.8)

where WN and WM are as in (1.5), R = diag(r1, . . . , rn), and Z as in (1.6). From
this it is straightforward that

f † = HM,N(()†HM,N(( + 1)eN ⇔ f † = W
†
NZNe, (2.9)

with e = [1 · · · 1]T ∈ Rn. The statements of the proposition follow from this rela-
tion upon using Theorem 1 from [1]. �

3. Signal eigenvalue error bounds

As was mentioned in the Introduction, the bounds for the eigenvalue error that
we state in the work will appear from analyzing a projected companion matrix ei-
genvalue problem. To explain this in a precise way we need to describe how the
companion matrix eigenvalue problem and the projected one are related. Let the
columns of QN ∈ CN×n form an orthonormal basis for the signal subspace SN =
R(W ∗

N). It then follows that there exists a nonsingular matrix G ∈ Cn×n such as

W ∗
N = QNG.

Substitution of this decomposition in (1.6) yields an equivalence of the type

WNFN = ZWN ⇔ Q∗
NFNQN = G−∗ZG∗, (3.1)

which describes in a precise way the link between the projected eigenvalue prob-
lem described in the right equality and the related FN -companion matrix eigenvalue
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problem. Equivalence (3.1) plays an important role in our analysis. First, for using
the right equality we reduce the original (generally large) eigenvalue problem to one
of order n, which yields substantial computational savings if n � N , and secondly,
for we shall see that the eigenvalue error estimation problem from the projected
companion matrix becomes simple. We now introduce some notation to describe the
eigenvalue error associated with the projected problem. If the data are free of noise
and QN and FN are available, the n × n projected matrix in (3.1) will be denoted by
FN , i.e.,

FN = Q∗
NFNQN. (3.2)

The counterpart of FN for the case where the data are contaminated by noise is

F̃N = Q̃
∗
NF̃N Q̃N, (3.3)

where the columns of Q̃N ∈ CN×n form an orthonormal basis for an n-dimensional
subspace S̃N , close to SN (in some sense), and F̃N denotes a perturbation of FN

that preserves the companion structure. Thus, if z̃j denotes the eigenvalue of F̃N

that is closest to zj , our goal is to estimate the eigenvalue error |z̃j − zj |, j = 1 : n.
With the above preparation, many bounds for the eigenvalue error may be gener-

ated by using appropriate perturbation theorems for eigenvalues. For example, using
the Bauer–Fike Theorem [7, Theorem 7.2.2, p. 312] one may obtain estimates of the
form

|z̃j − zj | � κ(X)‖F̃N − FN‖2, j = 1 : n, (3.4)

where κ(X) is the 2-norm condition number of a right eigenvector matrix of FN .
The difficulty found with this bound is that the error ‖F̃N − FN‖2 is rather in-
volved in our case. So, the bounds that we derive will arise from a related eigenprob-
lem which can be described as follows. Let P and P̃ denote the orthogonal projectors
on SN and S̃N , respectively, and introduce FN,P and F̃N,P defined by

FN,P = QNQ∗
NFN

.= PFN, F̃N,P = Q̃N Q̃
∗
NF̃N

.= P̃F̃N . (3.5)

Our eigenvalue error bounds will thus arise from applying the eigenvalue perturba-
tion result described in (2.4) to the matrix FN,P. The reason of this is that, discarding
zero eigenvalues

λ(FN,P) = λ(FN) and λ(F̃N,P) = λ(F̃N).

Note that the choice of FN,P is to simplify the analysis; in practice, signal zeros
have to be extracted from the small n × n matrix FN defined in (3.2).

The following propositions provide information on a measure for the sensitivity
of eigenvalue zj and an estimate for the error matrix ‖FN,P − F̃N,P‖2.

Proposition 3. Let κj,P denote the condition number of eigenvalue zj regarded as
eigenvalue of matrix FN,P. Then

κj,P = ‖e∗
j WN‖2‖W

†
Nej‖2, j = 1, . . . , n, (3.6)
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where WN is defined in (1.5), and this condition number coincides with the condition
number of eigenvalue zj regarded as eigenvalue of matrix FN. Additionally, it holds
that

1 � κj,P

�
[

1 + n − 1 + ‖f †‖2
2‖p1‖2

2 + ∏n
i=1 |zi |2 − |f0|2 − ∑n

i=1 |zi |2
(n − 1)δ2

j

](n−1)/2

,

j = 1 : n, (3.7)

where

δi = min
j

j /=i

|zi − zj |, 1 � i, j � n,

p1 is the first column of the projector P, f † is the same as in Proposition 2 and f0
its first component.

Proof. We first note that QNQ∗
N = W

†
NWN . Using this equality in (3.5) we have

FN,P = W
†
NWNFN = W

†
NZWN, (3.8)

where the last equality comes from (1.6). Hence it is straightforward to see that W
†
Nej

and W ∗ej are, respectively, right and left eigenvectors of FN,P corresponding to

eigenvalue zj , and that they satisfy the property e∗
j WNW

†
Nej = 1. Substitution of

these eigenvectors into the definition of κj,P (see (2.3)) leads to (3.6).
We now analyze the condition number κj of eigenvalue zj regarded as eigenvalue

of FN . In fact, using (3.1) and (3.2) it follows that FN has a spectral decomposition
of the form

FN = (Q∗
NW

†
N)Z(WNQN) = (QNW

†
N)Z(Q∗

NW †)−1, (3.9)

and so vi = Q∗
NW

†
Nei and ui = Q∗

NW ∗
Nei are right and left eigenvectors of FN

related to eigenvalue zj , respectively. Since these eigenvectors satisfy the normal-
ization condition u∗

i vi = 1, the condition number κj of eigenvalue zj regarded as
eigenvalue of FN is

κj = ‖ui‖2‖vi‖2 = ‖Q∗
NW ∗

Nei‖2‖Q∗
NW

†
Nei‖2.

Now, since both W ∗
Nej and W

†
Nej belong to the signal subspace SN , it is clear that

‖Q∗
NW ∗

Nej‖2 = ‖W ∗
Nej‖2 and ‖Q∗

NW
†
Nej‖2 = ‖W

†
Nej‖2 so κj = κj,P.

To prove (3.7) we need to compute D(FN), the departure from normality of
matrix FN as given in Definition 2. For this, the singular values of matrix FN can
be used (see, e.g., [1, Theorem 4]). The proof of the proposition ends by substituting
this D(FN) into inequality (2.5) in Proposition 1. �



160 F.S.V. Bazán / Linear Algebra and its Applications 369 (2003) 153–167

We thus see that for zj ’s not extremely close to each other and not much smaller
in modulus than 1, the only condition needed to ensure small values of κj is to keep
N large enough for in this case ‖f †‖2

2 ≈ 0.

Proposition 4. For every N � n,

‖FN,P − F̃N,P‖2 �
√

sin(�)2 + ε2 − ε1, (3.10)

where � is the largest canonical angle between SN and S̃N, and ε1, ε2 are positive
real numbers. Additionally, if f̃ ∈ S̃N and ‖f † − f̃ ‖2

2 � ‖f †‖2
2, where f † and f̃

are the last column vector of matrices FN and F̃N , respectively, then for N large
enough,

‖FN,P − F̃N,P‖2 ≈ sin(�). (3.11)

Proof. Let pi and p̃i denote the columns of P and P̃, respectively. Set εi = pi −
p̃i , i = 1 : N , and ζ = f † − P̃f̃ . Using the definitions of FN,P and F̃N,P given
in (3.5) we have that

FN,P − F̃N,P = PFN − P̃F̃N = [ε2 · · · εN ζ ],
and hence that

(FN,P − F̃N,P)(FN,P − F̃N,P)∗

= ε1ε
∗
1 + ε2ε

∗
2 + · · · + εNε∗

N + ζ ζ ∗ − ε1ε
∗
1

= (P − P̃)(P − P̃)∗ + ζ ζ ∗ − ε1ε
∗
1 .

Let λ be the largest eigenvalues of (FN,P − F̃N,P)(FN,P − F̃N,P)∗ and let φ

denote a related unit eigenvector. The Rayleigh–Ritz characterization of λ together
with Definition 1 imply then that

‖FN,P − F̃N,P‖2
2 � sin(�)2 + |φ∗ζ |2 − |φ∗ε1|2.

The proof of (3.10) follows from this inequality upon defining ε1 = |φ∗ε1|2 and
ε2 = |φ∗ζ |2.

To prove (3.11) observe that, since f̃ ∈ S̃N and ‖f † − f̃ ‖2
2 � ‖f †‖2

2, both by
assumption, we have that ε2 � ‖f †‖2

2. Now as ‖f †‖2
2 ≈ 0 for N large enough, by

Proposition 2, this last inequality in (3.10) ensures (3.11). �

Note from Proposition 4 that for the error matrix to be small not only N has
to be large enough but also S̃N has to approximate the exact signal subspace SN

well. Having a small error matrix is important because in this event one is allowed
to carry out a first-order eigenvalue perturbation analysis near zero to assess the
accuracy of the eigenvalues z̃j . Indeed, we shall see that taking N large enough is
usually sufficient to ensure that S̃N ≈ SN , as long as the approximate matrix Q̃N

is conveniently computed and the amount of noise on the data is not very large.
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The following theorem states a first-order estimate for the absolute eigenvalue
error.

Proposition 5. Let zj and z̃j be eigenvalues of FN and F̃N, respectively, as
described before. Then the following first-order estimate holds:

|z̃j − zj | �
[

1 + n − 1 + ‖f †‖2
2‖p1‖2

2 + ∏n
j=1 |zj |2 − ∑n

i=1 |zj |2
(n − 1)δ2

j

](n−1)/2

×
√

sin(�)2 + ‖f † − f̃ ‖2
2, j = 1, . . . , n. (3.12)

Proof. It is sufficient to apply the result described in (2.4) to matrix FN,P and then
to use Propositions 3 and 4. �

Thus, taking for grant that N is large enough, that SN ≈ S̃N , and that the zj ’s
are near to the unit circle but not extremely closed to each other, we conclude that a
reasonable estimate for the eigenvalue error is sin(�), the subspace angle between
SN and S̃N . That is,

|z̃j − zj | ≈ sin(�), j = 1, . . . , n. (3.13)

The simplicity and significance of this result suggests that the eigenvalue error bound
(and hence the eigenvalue error itself) obtained by using the projected companion
matrix is smaller than the one derived from the related companion matrix derived by
Bazán and Toint in [4]. Numerical experiments that illustrate the validity of (3.13)
are presented in Section 5.

4. SVD-based estimates

Reintroduce the Hankel matrix containing pure signal, and for ease of notation,
for fixed (, e.g., ( = 0, let it and the right-hand side in (2.6) be denoted by H and b,
respectively. The goal here is to estimate bound (3.12) for the case when the projected
matrix is computed via the singular value decomposition (SVD) of H̃ = H + E

where E stands for noise. Let

H = U�V ∗ = [U1 U2]
[
�1 0
0 0

] [
V ∗

1
V ∗

2

]
(4.1)

be a partitioned SVD of H where both U1 and V1 have n columns, with �1 containing
the n nonzero singular values of H , and let

H̃ = Ũ �̃Ṽ ∗ = [Ũ1 Ũ2]
[
�̃1 0
0 �̃2

] [
Ṽ ∗

1
Ṽ ∗

2

]
(4.2)

be a conformal decomposition of H̃ . For convenience, we write H̃ = Ũ1�̃1Ṽ
∗
1 +

Ũ2�̃2Ṽ
∗
2

.= H̃1 + H̃2. From these decompositions, the signal subspace is
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R(H ∗) = R(V1), and the approximate signal subspace is R(H̃ ∗
1 ) = R(Ṽ1). Also,

the exact and approximate minimum norm solution of the system (2.6) are, re-

spectively, f † = H †b = V1�
−1
1 U∗

1 b, and f̃ = Ṽ1�̃
−1
1 Ũ∗

1 b̃. To estimate bound (3.12)
we therefore need to estimate sin(�), the angle between R(H̃ ∗

1 ) and R(H ∗), and the
error ‖f † − f̃ ‖2, both in terms of signal characteristics and the amount of noise ‖E‖2.

As a preparation, recall from Wedin [21] that if B is a perturbation of A ∈ Cn×n,

i.e., B = A + E, with rank(B) = rank(A) = r , then sin(�), the subspace angle be-
tween R(B) and R(A), satisfies

sin(�) � ‖E‖2

σr(A)
. (4.3)

This bound is not applicable to our case since ‖H̃1 − H‖2 is not available. However,
a similar bound as that of (4.3) can be derived for sin(�) involving the norm of the
error ‖H̃ − H‖2. Of course, following Stewart [16] (see also [17, Lemma 3.5]), it is
not difficult to prove that

sin(�) � ‖E‖2

γ
with γ = min{σn(H), σn(H̃ )}. (4.4)

Assuming that ‖E‖2 < σn(H), we obtain the bounds

sin(�) �


‖E‖2

σn(H) − ‖E‖2
if γ = σn(H̃ ),

‖E‖2

σn(H)
if γ = σn(H),

(4.5)

from which it is clear that ‖E‖2 must be much smaller than σn(H) for S̃N to approx-
imate SN well. Note that this suggests we should discuss the behavior of σn(H) as a
function of the signal parameters rj and zj and the dimension of the Hankel matrix.
For this, note from (2.8) that

1

σn(H)
= ‖H †‖2 � ‖W T

N

†‖2‖R†‖2‖W
†
M‖2. (4.6)

But since by (3.6)

‖W
†
Nei‖2 = κi,P

‖e∗
i WN‖2

,

we have that

‖W
†
N‖2

2 � ‖W
†
N‖2

F =
n∑

i=1

κ2
i,P

‖e∗
i WN‖2

2

� n · max
i

κ2
i,P

‖e∗
i WN‖2

2

. (4.7)

Since ‖W
†
N‖2 decreases with N (see, e.g., [1]), inequality (4.7) in (4.6) gives that

1

σn(H)
� n · max

i

1

|ri | · max
i

κ2
i,P

‖e∗
i WN‖2

2

. (4.8)

Using this inequality in bound (4.5) corresponding to the condition γ = σn(H), we
deduce that
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sin(�) � n

ρ

[
1 + n − 1 + ‖f †‖2

2‖p1‖2
2 + ∏n

j=1 |zj |2 − ∑n
j=1 |zj |2

(n − 1)δ2

](n−1)

× (1 − β2)

(1 − β2N)
‖E‖2, (4.9)

where ρ = mini{|ri |}, δ = mini{δi}, and β = mini{|zi |}.
Bound (4.9) shows that if the approximate signal subspace is computed from a

large Hankel matrix via the SVD, the signal subspace of signals comprising well-
resolved components and modes zj near to the unit circle is relatively insensitive to
noise.

As for the error ‖f † − f̃ ‖, it essentially depends on the conditioning of H (see,
e.g., [8, Theorem 3.2.3]) and it can be proved that if H is well conditioned and
‖E‖2 � σn(H), then the error ‖f † − f̃ ‖ must be small. Concerning κ(H), since it
depends on κ(WN) (see (2.8)), good conditioning of WN will result in good con-
ditioning of H . This ensures that whenever N is large enough and |zj | ≈ 1 (which
ensure WN is well conditioned, see [1]), H will be well conditioned unless the zeros
zj are extremely close to each other, see [3].

To conclude, note that the estimates for sin(�) and ‖f † − f̃ ‖ derived from the
SVD approach could be substituted in (3.12) to produce an interesting bound for the
eigenvalue error. Although we do not explicitly carry through the substitution here,
note that the estimate (4.9) for sin(�) and the estimate of ‖f † − f̃ ‖ (not included
here) are sufficient to predict that the signal eigenvalues become relatively insensi-
tive to noise when N is sufficiently large. Finally, observe that all bounds described
throughout simplify considerably when the signal zeros fall on the unit circle. As an
illustration, by setting |zj | = 1, the bound on κj,P in (3.7) becomes

κj,P �
[

1 + ‖f †‖2
2‖p1‖2

2

(n − 1)δ2
j

](n−1)/2

, j = 1, . . . , n. (4.10)

while that for sin(�) is

sin(�) � n

ρ

[
1 + ‖f †‖2

2‖p1‖2
2

(n − 1)δ2

](n−1) ‖E‖2

N
. (4.11)

These bounds show that if N is sufficiently large, then the eigenvalue problem is
almost perfectly conditioned as κj,P ≈ 1, and the signal subspace is quite insensitive
to noise as sin(�) ≈ 0. A by-product of this is that the eigenvalues themselves are
in this case quite insensitive to noise.

5. Numerical experiment

In this section we shall numerically illustrate the behavior of the eigenvalue error
bounds described before. Specifically, we wish to illustrate the superiority of the
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projected companion matrix approach in resolving closely spaced signal zeros over
the polynomial approach described in [4]. To achieve this goal, we compute bounds
(5.1), (3.12) and (2.4). Bound (5.1) is due to Bazán and Toint and it is described as

|zj − z̃j | � |e∗
j WN(f † − f̃ )|‖W

†
N‖2

2

√
n

(
1 + αN

1 − α

)
, 1 � j � n, (5.1)

where α = maxj {|zj |}.
The exact eigenvalue errors for both approaches were also computed. To describe

these errors we use the notation:

• |zj − z̃j |PA: eigenvalue error obtained from the polynomial approach,
• |zj − z̃j |PCA: eigenvalue error obtained from the projected companion matrix

approach.

The signal used in our experiment is the same as that used by Bazán and Toint in [4].
The signal parameters are reproduced in Table 1. As the signal comprises closely
spaced zeros (see the separations δj in Table 1), we choose the dimension of the
Hankel matrix relatively large in order to enforce the associated Vandermonde matrix
WN to be well conditioned (see the theory in [1]). The Hankel matrix H used to
construct the signal subspace and the polynomial coefficients fj (or equivalently the
companion matrix FN ) is then chosen of order 256 × 256 (i.e., N = 256).

All quantities needed were computed using the SVD. The data in the experiment
consists of pure signal plus Gaussian noise generated by MATLAB, with the seed
value set to zero, and at a level of 5%.

As can be seen from (5.1), (3.6) and (3.12), the quantities ‖W
†
N‖2

2, ‖f †‖2
2, ‖f † −

f̃ ‖2
2, and sin(�), all play a crucial role in the eigenvalue error bounds. For this

example we have

‖W
†
N‖2

2 ≈ 1.1264 × 10−2,

‖f †‖2
2 ≈ 2.2285 × 10−3,

‖f † − f̃ ‖2
2 ≈ 3.8635 × 10−5.

The important quantity sin(�) in (3.12) is in this case

sin(�) = 3.0414 × 10−2.

Table 1
Signal parameters corresponding to a vibrating system

j zj , z̄j |zj |, |z̄j | rj , r̄j δ2
j

1 0.9699 ± 0.2248ı 0.9956 −0.1366 ± 0.2490ı 0.0042
2 0.9532 ± 0.2931ı 0.9972 0.7294 ± 0.5743ı 0.0049
3 0.9844 ± 0.1619ı 0.9976 −0.3162 ± 0.0844ı 0.0031
4 0.9921 ± 0.1055ı 0.9977 1.3284 ± 0.6265ı 0.0023
5 0.9972 ± 0.0585ı 0.9989 −0.0591 ± 0.1958ı 0.0023
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Table 2
Eigenvalue error and eigenvalue error bounds

j 1 2 3 4 5

|zj − z̃j |PA 8.6248 × 10−4 9.8894 × 10−5 1.7676 × 10−4 3.2045 × 10−5 1.8996 × 10−4

|zj − z̃j |PCA 2.3791 × 10−4 6.3195 × 10−5 1.6163 × 10−4 3.1855 × 10−5 8.9152 × 10−5

Bound (2.4) 3.1076 × 10−2 3.0784 × 10−2 3.1198 × 10−2 3.0951 × 10−2 3.0773 × 10−2

Bound (3.12) 4.1439 × 10−2 3.9648 × 10−2 4.5428 × 10−2 5.1395 × 10−2 5.1395 × 10−2

Bound (5.1) 2.2825 × 10−1 6.7112 × 10−2 1.8134 × 10−1 3.3282 × 10−2 4.7127 × 10−1

All numerical results (shown to five significant figures) are reported in Table 2.
Two facts should be emphasized from this table. First, that the superiority of our
eigenvalue error bound (3.12) over that by Bazán and Toint, i.e., the bound derived
from the companion matrix approach described in (5.1), is very apparent, and second,
that the eigenvalues computed through the projected companion matrix approach
are in fact more accurate than the eigenvalues computed through the polynomial
approach. Table 2 also includes the eigenvalue error bounds described in (2.4). No-
tice that although this bound uses the exact condition numbers κj,P and the exact
matrix error ‖FN,P − F̃N,P‖2, it is not much better than our error bound (3.12).
Notice also that the estimate for the eigenvalue error given by sin(�) (see (3.13)) is
appropriate in this case.

As a final comment, it is worth mentioning that many numerical experiments were
made using signals arising from modal analysis of dynamic structures and nuclear
resonance spectroscopy in which we observed the behavior of the eigenvalue error
bounds as well as the eigenvalue error themselves. The conclusion drawn from these
experiments was that except for signal comprising extremely closely spaced signal
zeros, moderate values of N are sufficient to ensure small values of the bounds and
hence of the eigenvalue error themselves. These experiment confirmed that in general
signal zeros become relatively insensitive to noise, under appropriate conditions.

6. Conclusions

In this work an error analysis of so-called signal zeros was carried out and eigen-
value error bounds were provided. The bounds rely on the observation that signal
zeros can be regarded as eigenvalues of projected companion matrices as well as on
Bauer–Fike-type perturbation theorems for eigenvalues. The bounds are in terms of
the subspace angle, the error of the polynomial coefficients, the polynomial degree
and the signal parameters themselves. Specifically, it is shown that if the approximate
signal subspace and the polynomial coefficients are extracted from large Hankel ma-
trices via the SVD, the bounds ensure the signal zeros become rather insensitive to
noise on the data, the result being strengthened when the signal zeros fall close to the
unit circle. In addition to this, the bounds suggests that signal zero estimates derived
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from projected companion matrices are more accurate than those obtained from the
companion matrices themselves. This is confirmed by the numerical simulation. Fi-
nally, it is worth emphasizing that the results obtained are theoretical contributions;
further work would be required to develop a reliable algorithm for extracting signal
zeros using the projected companion matrix FN .
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