
Extension of GKB-FP algorithm to large-scale

general-form Tikhonov regularization

Fermı́n S. Viloche Bazán ∗, Maria C. C. Cunha and Leonardo S. Borges †

Department of Mathematics, Federal University of Santa Catarina,
88040-900, Florianópolis SC, Brazil
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Abstract

In a recent paper [24] an algorithm for large-scale Tikhonov regularization in
standard form called GKB-FP was proposed and numerically illustrated. In this
paper, further insight into the convergence properties of this method is provided
and extensions to general-form Tikhonov regularization are introduced. In addition,
as alternative to Tikhonov regularization, a preconditioned LSQR method coupled
with an automatic stopping rule is proposed. Preconditioning seeks to incorpo-
rate smoothing properties of the regularization matrix into the computed solution.
Numerical results are reported to illustrate the methods on large-scale problems.
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1 Introduction

We are concerned with the computation of stable solutions to large-scale discrete ill-
posed problems of the form

x = argmin
x∈Rn

‖b− Ax‖22 (1)

where the matrix A ∈ R
m×n, m ≥ n, is severely ill-conditioned. Matrices of this type

arise, for example, when discretizing first kind integral equations with smooth kernel,
e.g., in signal processing and image restoration. In applications the vector b represents
the data and is assumed to be of the form b = bexact + e, where e denotes a noise vector
due to measurement or approximation errors, bexact denotes the unknown error-free data,
and xexact = A†bexact (where A† denotes the Moore-Penrose Pseudo Inverse of A) is the
noise-free solution of (1). In these cases, due to the noise in the data, the least squares
solution x

LS
= A†b is dominated by the noise and regularization methods are required to
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construct stable approximations to xexact. In Tikhonov regularization [1], we replace x
LS

by the regularized solution

xλ = argmin
x∈Rn

{
‖b− Ax‖22 + λ2‖Lx‖22

}
, (2)

where λ > 0 is the regularization parameter and L ∈ R
p×n is referred to as the regular-

ization matrix. When L = In, the n × n identity matrix, the Tikhonov regularization
problem is said to be in standard form, otherwise, it is in general form. Solving (2) is
equivalent to solve the so-called regularized normal equations

(ATA+ λ2LTL)x = AT b, (3)

whose solution xλ is unique when N (A) ∩ N (L) = {0}. In this paper N (·) denotes
the null space of (·) and R(·) denotes its column space. When A and L are small, the
regularized solution can readily be computed using the GSVD of the pair (A,L), and
good approximate solutions can be obtained provided that λ and L are properly chosen.
There are many Tikhonov parameter choice methods. These include the discrepancy
principle (DP) of Morozov [2], which depends on a priori knowledge of the norm of the
error e, and the so called noise-level free or heuristic parameter choice rules such as the
L-Curve criterion of Hansen and O’Leary [3], the Generalized Cross-Validation (GCV) of
Heath, Golub and Wahba [4] and the algorithmic realization of Regińska’s rule [5] via the
fixed-point (FP) method by Bazán [6], among others.

It is well-known that the regularization parameter selected by DP depends on the norm
of the error ‖e‖2 and that the error in the corresponding regularized solution converges
to zero as ‖e‖2 → 0 (under certain conditions), see, e.g., [7]. Unfortunately, this is not
the case with heuristic rules for which the regularization parameter is not a function of
the noise level. As a result, heuristic rules are not without difficulties and cannot be
successful in all problems. This is in accordance with a famous result of Bakushinski [8],
which asserts that parameter choice rules that do not depend explicitly on the noise level
should fail, at least for some problems. Nevertheless, noise-level free rules are widely used
in real applications, as for example the L-curve method. For discussions and analyses of
heuristic rules the reader is referred to [7, 9]. A numerical comparison of many heuristic
parameter choice rules can be found in [10], and, recently in [11].

From the practical point of view, all of the above and many other methods from the
literature can be readily implemented using the GSVD when A and L are small or of
moderate size. However, for large-scale problems the GSVD is computationally demand-
ing, and one can use instead iterative methods such as LSQR or CGLS to approximate
xλ provided that the parameter λ is known a priori. Another way to proceed is to use
projection methods based on Lanczos/Arnoldi iterations; these include CGLS/LSQR and
the family of minimum residual methods [12, 13, 14, 15, 16, 17, 18, 19], where the number
of iterations k plays the role of the regularization parameter and where the choice of the
”best” k can be done using the discrepancy principle or L-curve [15, 20]. However, it is
well known that DP is likely to fail if the error norm ‖e‖ is poorly estimated, and that
the L-curve criterion works well except possibly when the curve is not L-shaped, see e.g.,
Morigi [21] or when the curvature of the L-curve has more than a one local maximum,
see, e.g., Hansen et al. [20] or [22].

The difficulty in determining reliable stopping criteria for iterative methods can be
alleviated by combining them with an inner regularization method, which gives rise to
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Hybrid methods. For the case L = In, two successful hybrid methods that do not require
knowledge of ‖e‖2 and combine projection over the Krylov subspace generated by the
Golub-Kahan bidiagonalization (GKB) method and standard Tikhonov regularization at
each iteration, are W-GCV [23] and GKB-FP [24]. Here the difference is on the projected
problem: while W-GCV uses weighted GCV as parameter choice rule, GKB-FP uses the
FP method. The case L 6= In has received less attention and there are few efficient
methods for large-scale regularization. An interesting approach that uses a joint bidi-
agonalization (JBD) procedure applied to the pair (A,L) and minimizes the Tikhonov
functional over the generated Krylov subspace is proposed by Kilmer et al. [15]. This
method may be infeasible for large-scale problems because the JBD procedure is com-
putationally demanding. More recently, J. Lampe et. al [25], and Reichel et. al [26],
propose approximate solutions by minimizing the Tikhonov functional over generalized
Krylov subspaces; in both cases the regularization parameter for the projected problem is
determined by the discrepancy principle. A related method which also uses the discrep-
ancy principle as parameter choice rule can be found in [27].

In this paper we assume that no estimate of ‖e‖2 is available and concentrate on
extensions of the GKB-FP algorithm to large-scale general-form Tikhonov regularization.
Two approaches are considered. The first approach relies on the observation that the
general-form Tikhonov regularization can be transformed into a Tikhonov problem in
standard form which can be handled efficiently by GKB-FP; therefore our first approach
is to apply GKB-FP to the transformed Tikhonov problem. As for the second approach,
it constructs regularized solutions by minimizing the general-form Tikhonov problem over
the Krylov subspace generated by the GKB algorithm applied to matrix A, as suggested
in [27]. In all cases, the underlying philosophy of GKB-FP is preserved, i.e., the fixed-point
method is always used on the projected problem. Also, to overcome possible difficulties
associated with the Tikhonov regularization parameter selection problem at each iteration,
as done by GKB-FP or W-GCV, we propose an iterative regularization algorithm based
on LSQR applied to the least squares problem min ‖b̄ − Āx̄‖2, where b̄ and Ā arise from
the transformed Tikhonov problem, coupled with a stopping rule that does not require
knowledge of the norm of the noise ‖e‖2 and that can be regarded as a discrete counterpart
of Regińska’s rule. Theoretically, we follow a paper by Hanke and Hansen [13], see also [28],
where it is shown how to construct regularized solutions to (2) via CGLS/LSQR in such
a way that the smoothing properties of L are incorporated into the iterative process, and
hence into the computed solution.

The paper is organized as follows. Section 2 presents an analysis of GKB-FP within
the framework of projection methods which provides valuable insight into the convergence
properties of the algorithm. In Section 3 the extensions of GKB-FP to general-form
Tikhonov regularization are presented and discussed. Our alternative to general-form
Tikhonov regularization comes in Section 4, and Section 5 contains numerical examples
devoted to illustrate the potential of the methods. Conclusions are in Section 6.

2 GKB-FP as a projection method

The purpose of this section is to provide further insight into the convergence properties
of GKB-FP. Recall that after k < n steps, the GKB algorithm applied to A with initial
vector b/‖b‖2 yields two matrices Uk+1 = [u1, . . . , uk+1] ∈ R

m×(k+1) and Vk = [v1, . . . , vk] ∈
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R
n×k with orthonormal columns, and a lower bidiagonal matrix Bk ∈ R

(k+1)×k,

Bk =




α1

β2 α2

β3
. . .
. . . αk

βk+1




, (4)

such that

β1Uk+1e1 = b = β1u1, (5)

AVk = Uk+1Bk, (6)

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1, (7)

where ei denotes the i-th unit vector in R
k+1 [29]. The columns of Vk provide an or-

thonormal basis for the generated Krylov subspace Kk(A
TA,AT b), which is an excellent

choice for use when solving discrete ill-posed problems [30]. GKB-FP combines the GKB
algorithm with standard form Tikhonov regularization in Kk(A

TA,AT b), choosing the reg-
ularization parameter on the projected problem via the FP method [6]. The FP method
relies on an earlier work of Regińska [5], where the regularization parameter is chosen as
a minimizer of the function

Ψ(λ) = ‖rλ‖22 ‖xλ‖2µ2 , µ > 0, (8)

where rλ = b − Axλ. Regińska proved that if the curvature of the L-curve is maximized
at λ = λ∗, and if the slope of the L-curve corresponding to λ = λ∗ is −1/µ, then Ψ(λ) is
minimized at λ = λ∗. However, no method to compute the minimum was done afterward.
More recently, Bazán [6] investigated the issue and, with a proper choice of µ, showed that
the minimum can be calculated via fixed-point iterations, giving rise to the FP method.

The key idea behind this parameter choice rule can be explained as follows. Let
Rλ = (ATA+ λ2In)

−1AT . Then the error in the regularized solution xλ can be expressed
as xexact − xλ = xexact −Rλ b

exact −Rλe, and therefore

‖xexact − xλ‖2 ≤ ‖xexact −Rλ b
exact‖2 + ‖Rλe‖2 ≡ E1(λ) + E2(λ). (9)

The term E1(λ) represents the regularization error and increases with λ. The second
term denotes the error caused by the noise and decreases with λ, see, e.g., [31]. Thus,
in order to obtain a small error we should balance the terms as in this event the bound
is approximately minimized. However, neither E1(λ) nor E2(λ) is available, hence, an
alternative is to minimize a model for the bound. The motivation for using Ψ(λ) as a
model is that minimizing log(Ψ(λ)) we minimize the sum of competing terms, since ‖xλ‖2
decreases with λ while ‖rλ‖2 increases, as illustrated in Figure 1.

The FP method can be summarized as follows:

• Given an initial guess, FP takes µ = 1 as a default value and proceeds by computing
the iterates

λj+1 = φ(λj), j ≥ 0, where φ(λ) =
√
µ‖rλ‖2/‖xλ‖2, λ > 0, (10)

until the largest convex fixed-point of φ is reached.
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Figure 1: Bound (9) and Ψ(λ) for shaw problem from [32], n = 512 and b = bexact+e where
e is white noise with ‖e‖2 = 0.005‖bexact‖2. The small circle points out the location of
λoptimal = argmin{E1(λ) +E2(λ)} = 0.0102 and of λ

FP
= argmin{Ψ(λ), µ = 1} = 0.0116.

The relative errors in xλoptimal
and xλ

FP
are 5.34% and 5.36% respectively.

• If µ = 1 does not work, µ is adjusted and the iterations restart; see [6, 33] for
details.

The GKB-FP algorithm computes approximations to the sought fixed-point by com-
puting a finite sequence of fixed-points of functions φ(k)(λ) =

√
µ‖r(k)λ ‖2/‖x(k)

λ ‖2, where
x
(k)
λ solves the constrained problem

x
(k)
λ = argmin

x∈Kk(ATA,AT b)

{‖Ax− b‖22 + λ2‖x‖22} (11)

and r
(k)
λ = b− Ax

(k)
λ . Based on (5)-(7), it is straightforward to prove that

x
(k)
λ = Vky

(k)
λ , with y

(k)
λ = argmin

y∈Rk

{‖Bky − β1e1‖22 + λ2‖y‖22}, (12)

and the regularized solution norm and the corresponding residual norm satisfy

‖x(k)
λ ‖2 = ‖y(k)λ ‖2, and ‖r(k)λ ‖2 = ‖Bky

(k)
λ − β1e1‖2. (13)

The evaluation of φ(k)(λ) for each λ can be done approximately in O(k) arithmetic
operations, which corresponds to the cost of solving the projected problem (12). Numerical
examples on large-scale problems reported in [24] show that the largest convex fixed-point
of φ(λ) is quickly captured. For a detailed description of GKB-FP, see [24] again; here
we summarize the main steps of GKB-FP, since, as we will see later, they will be also
followed by the methods proposed in this work.

GKB-FP Algorithm:

1. Perform p0 > 1 GKB steps applied to A with initial vector b/‖b‖2.

2. For k ≥ p0 compute the fixed-point λ(k)
FP

of φ(k)(λ) until a termination criterion is
satisfied.

3. Once convergence is achieved compute x
(k)
λ using (12).
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The value of p0 can be freely chosen by the user. In our numerical experiments we take:
p0 = 10 for small problems, p0 = 15 for relatively large problems, and p0 = 20 for larger
problems. As for the initial guess of λ when computing the first fixed point at step k = p0,
it is set equal to 10−4. For further details about the initial guess, see [6, 24].

To provide further insight into the convergence properties of GKB-FP, we will concen-
trate on the question of how well xλ can be approximated by “projecting” the large-scale
problem onto a subspace of small dimension. More specifically, assume that {Vk}k≥1 is a
family of k dimensional subspaces such that V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ Vk+1 ⊂ · · · , and for

k > 1 consider approximations x
(k)
λ defined by

x
(k)
λ = argmin

x∈Vk

{‖Ax− b‖22 + λ2‖Lx‖22}. (14)

Then our goal is to bound the error ‖xλ − x
(k)
λ ‖2 for the case where the regularization

parameter is selected by the FP method. To this end we first introduce some notation
that will be used later. Let the reduced singular value decomposition of A be given by

A = UΣVT , (15)

where U = [u1, . . . , un] ∈ R
m×n and V = [v1, . . . , vn] ∈ R

n×n have orthonormal columns
and Σ = diag(σ1, . . . , σn) is a diagonal matrix with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. In addition,
let Uk, Vk and Sk be defined by

Uk = [u1, . . . , uk], Vk = [v1, . . . , vk], Sk = span{v1, . . . , vk},
and notice that if L = In, then the regularized Tikhonov solution xλ can be written as

xλ =
n∑

i=1

σi(u
T
i b)

σ2
i + λ2

vi. (16)

We start with the following technical result.

Lemma 2.1. Let Pk denote the orthogonal projection on Vk. Define γk = ‖A − APk‖2
and δk = ‖L− LPk‖2. Then ∀λ > 0 there holds,

‖Lxλ − Lx
(k)
λ ‖2 ≤

√
δ2k +

γ2
k

λ2
‖(In − Pk)xλ‖2. (17)

Proof : Since N (A) ∩ N (L) = {0}, it follows that the function < u, v >#=< Au,Av >
+λ2 < Lu,Lv >, where < ·, · > denotes the usual inner product in R

n, defines an inner
product in R

n. Note that (3) implies < Axλ− b, Ax > +λ2 < Lxλ, Lx >= 0, ∀x ∈ R
n and

that < Ax
(k)
λ − b, Aϕ > +λ2 < Lxλ, Lϕ >= 0, ∀ϕ ∈ Vk. Combining these we have

< xλ − x
(k)
λ , ϕ >#= 0, ∀ϕ ∈ Vk. (18)

Therefore, x
(k)
λ = Pkxλ, where Pk denotes the orthogonal projector onto the subspace Vk

with respect to the inner product < ·, · ># and induced norm ‖ · ‖#. Then

‖xλ − x
(k)
λ ‖2# = ‖xλ − Pkxλ‖2#

≤ ‖xλ − Pkxλ‖2#
= ‖A(In − Pk)xλ)‖22 + λ2‖L(In − Pk)xλ‖22
≤ ‖A(In − Pk)‖22‖(In − Pk)xλ‖22 + λ2‖L(In − Pk)‖22‖(In − Pk)xλ‖22
= (γ2

k + λ2δ2k)‖(In − Pk)xλ‖22.

.
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Now it suffices to use the inequality λ2‖L(xλ − x
(k)
λ )‖22 ≤ ‖xλ − x

(k)
λ ‖2# and the proof is

complete. �

We are in a position to state the main result of the section.

Theorem 2.1. Let Pk and Pk be, respectively, the orthogonal projector onto Vk and Sk,

and let Ωk be the subspace angle between Vk and Sk. Then for arbitrary λ > 0 there holds

‖(In − Pk)xλ‖ ≤ sin(Ωk)‖xλ‖2 + γk
‖b̃k‖2
λ2

, (19)

where b̃k = b−UkU
T
k b. As a consequence, whenever L = In and the regularization param-

eter is selected by the fixed-point method, which is denoted by λ
FP
, there holds

‖xλ
FP

− x
(k)
λ
FP
‖2

‖xλ
FP
‖2

≤
√

1 +
γ2
k

λ2
FP

[
sin(Ωk) +

γk
λ

FP

‖b̃k‖2
‖rλ

FP
‖2

]
, (20)

Proof : The regularized solution xλ can be written as xλ = Pkxλ+(In−Pk)xλ. Multiplying
on both sides of this equality by (In − Pk) and taking norms

‖(In − Pk)xλ‖ ≤ ‖(In − Pk)Pkxλ‖2 + ‖(I − Pk)(In − Pk)xλ‖2 (21)

The first term can be bounded as

‖(In − Pk)Pkxλ‖2 ≤ sin(Ωk)‖xλ‖2, (22)

where we used the fact that ‖(I − Pk)Pk‖2 = sin(Ωk), see [34, Theorem 2.6.1, p. 76]. To
bound the second term, observe that from (16)

(In − Pk)xλ =
n∑

i=k+1

σi(u
T
i b)

σ2
i + λ2

vi = (ATA+ λ2In)
−1AT b̃k = AT (AAT + λ2Im)

−1b̃k,

where we used the SVD of A to obtain (ATA+ λ2In)
−1AT = AT (AAT + λ2Im)

−1. Thus,

‖(In − Pk)(In − Pk)xλ‖2 = ‖(In − Pk)A
T (AAT + λ2Im)

−1b̃k‖2 ≤ γk
‖b̃k‖2
λ2

. (23)

The inequality (19) follows by replacing (22) and (23) in (21).
On the other hand, if the regularization parameter λ is selected by the fixed-point

method, which means, λ
FP

= ‖rλ
FP
‖2/‖xλ

FP
‖2, then (19) becomes

‖(In − Pk)xλ
FP
‖

‖xλ
FP
‖2

≤
(
sin(Ωk) +

γk
λ

FP

‖b̃k‖2
‖rλ

FP
‖2

)
, (24)

The second part of the proof concludes using this inequality in (17). �

Theorem 2.1 shows that if the subspace Vk approximates Sk well, in which case sin(Ωk)

is small, then the solution of the projected problem (14), x
(k)
λ
FP
, will be a good approxima-

tion to xλ
FP

provided that the ratio γk/λFP
is sufficiently small. We shall illustrate this

by computing the relative error ‖(In −Pℓ)xλ
FP
‖2/‖xλ

FP
‖2 and its bound (24) for the case
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where Vℓ coincides with Sℓ, as well as the bound for the case where we take approximations
to Sℓ instead. To this end, we consider two test problems from [32] and for fixed k, take

S̃ℓ, ℓ = 1, . . . , k, to be the subspace spanned by the first ℓ columns of Ṽk = Vk v, where
Vk is from (6) and v ∈ R

k×k is the matrix of right singular vectors of Bk also introduced

in (6). It is known that for the first values of ℓ the subspaces S̃ℓ approximate Sℓ well
and that the quality of the approximation deteriorates as ℓ approaches k, see, e.g., [30,
Chapter 6]. Computed quantities for k = 80 are displayed in Figure 2.
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Figure 2: Relative error and estimates (24) for phillips (left) and heat (right) test problems
from [32], for n = 512 and b = bexact + e where e is white noise such that ‖e‖2 =
0.005‖bexact‖2. Here, LHS stands for left-hand side of (24).

We now turn to describe the quantity γk as a function of k in connection with the GKB
process. To this end we shall assume exact arithmetic and that GKB runs to completion,
i.e., we are able to run n GKB steps without interruption, which is reasonable for discrete
ill-posed problems since the singular values decay gradually to zero without any gap.

Theorem 2.2. Assume that the GKB algorithm applied to A runs to completion, and let

Gk and Ĝk be the bidiagonal matrices defined respectively by

Gk =




αk+1

βk+2 αk+2

.

.

.

.

.

.

βn αn

βn+1




=

(
Ĝk

βn+1e
T
n−k

)
(25)

Then for k = 1, . . . , n− 1 we have γk =

{ ‖Gk‖2, if m > n,

‖Ĝk‖2, if m = n,
, and γk+1 ≤ γk.

Proof : Assume that m > n. If the GKB algorithm runs to completion, from (6) it
follows that A = Un+1BnVn, where Un+1 ∈ R

m×(n+1) and Vn ∈ R
n×n have orthonormal

columns, and Bn ∈ R
(n+1)×n is lower bidiagonal. But matrix A can be rewritten as

A = U

(
B
0

)
V T , (26)

where U = [Un+1 U
⊥] ∈ R

m×m with U⊥ chosen so that U is orthogonal, V = Vn, B = Bn,
and 0 ∈ R

(m−n−1)×n is a zero matrix. Then Pk = VkV
T
k , APk = AVkV

T
k = Uk+1BkV

T
k by

(5), and A− APk = U(B − UTUk+1BkV
T
k V )V T . Hence

‖A− APk‖2 = ‖B − UTUk+1BkV
T
k V ‖2 = ‖Gk‖2,
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which proves the first statement of the theorem.

Now if m = n and the GKB algorithm runs n steps, then we have that A = UB̂nV,

where U, V ∈ R
n×n have orthonormal columns, and B̂n ∈ R

n×n defined by

B̂n =




α1

β2 α2

. . .
. . .

βn αn


 , (27)

and the proof proceeds in the same way as above.
Finally, the second statement is a consequence of the fact that Gk+1 (resp. Ĝk+1) is a

submatrix of Gk (resp. Ĝk), which completes the proof. �

Remark 1: The number γk can be approximated using the 2-norm of the first column of
Gk, that is, if e1 denotes the unit vector in R

n−k, then

γk ' ||Gke1‖2 =
√
α2
k+1 + β2

k+2. (28)

Remark 2: Provided that rank(APk) = k, we have

γk ≥ σk+1, (29)

the equality being attained when Vk is spanned by the first k right singular vectors of A.
In this case APk is the matrix of rank k that is closest to A in the 2-norm sense, see, e.g.,
[34, Thm. 2.5.3]. In practice, because Vk carries relevant information on the first k right

singular vectors, both γk and
√
α2
k+1 + β2

k+2 approximate σk+1, with γk decreasing as fast

as σk+1, see Figure 3. As a result, whenever the fixed point of φ(k)(λ), λ(k)
FP
, is close to

λ
FP
, the bound (17) becomes small because γk decreases quickly near zero. This explains

why GKB-FP often converges rapidly, as reported in [24].
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Figure 3: Estimates (28) and (29) for phillips (left) and heat (right) test problems from
[32], for n = 512 and b = bexact + e where e is white noise such that ‖e‖2 = 0.005‖bexact‖2.

3 Extensions of GKB-FP

We shall now consider extensions of GKB-FP to general-form Tikhonov regulariza-
tion, concentrating, in particular, on problems that involve rank-deficient matrices L with
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much more rows than columns, as often seen, e.g., in deblurring problems. Two well-
distinguished approaches shall be considered. One approach is based on the fact that we
can apply GKB-FP to a related transformed problem. The second approach constructs
regularized solutions by solving the constrained problem (14).

3.1 Extensions of GKB-FP via standard-form transformation

Theoretically, we can always transform the general-form Tikhonov problem (2) into a
problem in standard form

x̄λ = argmin
x̄∈Rp

{
‖b̄− Āx̄‖22 + λ2‖x̄‖22

}
. (30)

If L is invertible we use y = Lx ⇔ x = L−1y, b̄ = b, and Ā = AL−1. When L is not
invertible the transformation takes the form

xλ = L†
Ax̄λ + xN , Ā = AL†

A, b̄ = b− AxN , (31)

where xN lies in the null space of L and

L†
A =

(
In −

(
A
(
In − L†L

))†
A
)
L†,

is the A-weighted generalized inverse of L. If we know a full rank matrixW whose columns
span the null space N (L), then xN = W (AW )† b, and the A-weighted generalized inverse

of L reduces to L†
A =

(
In −W (AW )† A

)
L† [28]. Thus, for the GKB-FP algorithm to be

successfully applied to (30), the matrix Ā must not be explicitly formed and the matrix-
vector products with Ā and ĀT must be performed as efficiently as possible. Is is clear

that these matrix-vector products depend on the way the products with L† and LT †
are

performed, and that computation of the product L†u requires determining the minimum
2-norm least squares solution of the problem

t
LS

= argmin ‖Lt− u‖2 (32)

as quickly and efficiently as possible; the same observations holds for LT †
v. Searching for

this efficiency, one can try iterative methods such as CGLS or LSQR and its subspace
preconditioned version [16]. Unfortunately, our computational experience with these tech-
niques when ‖Lx‖2 is a Sobolev norm has been unsatisfactory due to the slow conver-
gence of the iterates; however, for applications involving sparse regularization matrices
e.g., banded regularization matrices with small bandwidth, among others, the following
approaches can be considered:

3.1.1 LU-based approach

If L is assumed to be rank deficient with rank(L) = q < min{p, n}, we can determine
permutation matrices PL ∈ R

p×p and QL ∈ R
n×n such that

PLLQL = L̂Û (33)
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where L̂ ∈ R
p×q is “unit lower triangular”, Û ∈ R

q×n is “upper triangular”, and both have
rank q. Thus the linear squares problem (32) requires the minimum 2-norm least squares
solutions of the full-rank subproblems:

y
LS

= argmin ‖L̂y − PLu‖2, and t
LS

= argmin ‖Û t− y
LS
‖2. (34)

Once t
LS

is determined, we then get t = L†u = QLtLS
. The approach becomes attractive

specially when L is banded with small bandwidth; in this case the two above subproblems
can be handled efficiently [28, 30], an important condition for GKB-FP to work well.

3.1.2 LD-based approach

In this case we consider regularization matrices L of the form

L =

[
Iñ ⊗ Ld1

Ld2 ⊗ Im̃

]

with Ld1 ∈ R
(ñ−d1)×ñ, and Ld2 ∈ R

(m̃−d2)×m̃. The key idea is that if we use the SVDs of
the small matrices Ld1 and Ld2 : Ld1 = Ud1Σd1V

T
d1
, Ld2 = Ud2Σd2V

T
d2
, then the smoothing

seminorm satisfies the property

‖Lx‖2 = ‖LDx‖2, with LD = D(Vd1 ⊗ Vd2)
T , (35)

where D is a nonnegative diagonal such that [14]

D2 = ΣT
d1
Σd1 ⊗ Im + In ⊗ ΣT

d2
Σd2 . (36)

The null space of LD, N (LD), is spanned by the columns of the matrix Vd1⊗Vd2 associated
with the zero entries of D, see [14] again. As a consequence, we can now solve the standard
Tikhonov problem (30) associated with

xλ = argmin
x∈Rn

{
‖b− Ax‖22 + λ2‖LDx‖22

}
, (37)

taking advantage of the fact that Vd1 ⊗ Vd2 is orthogonal; in this case the products L†
Du

and L†T

D v required in (32) can be performed efficiently as

L†
Du = (Vd1 ⊗ Vd2)D

†u, L†T

D v = D†(Vd1 ⊗ Vd2)
Tv. (38)

The main advantage here is that the cost of the subproblem (32) reduces essentially to a
matrix-vector product involving the Kronecker product Vd1 ⊗ Vd2 , which is important for
the efficiency of GKB-FP. Further savings are possible when the matrix A is a Kronecker
product of the form A1 ⊗A2, as seen in image processing and numerical analysis. To see
how this can be done, recall that Vd1 ⊗ Vd2 is orthogonal and consider the transformation

x̌ = (Vd1 ⊗ Vd2)
Tx. (39)

Then (37) reduces to

x̌λ = argmin
x̌∈Rn

{
‖b− Ǎx̌‖22 + λ2‖Dx̌‖22

}
, with Ǎ = (A1Vd1)⊗ (A2Vd2), (40)

where only the matrices A1Vd1 and A2Vd2 need to be stored. Now it is evident that
the Tikhonov problem (40) can be solved much more efficiently than the one in (37).
Numerical results that illustrate the efficiency of this approach on deblurring problems
are postponed to the next section.
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3.2 PROJ-L: GKB-FP free of standard-form transformation

We now consider regularized solutions obtained by minimizing the general-form Tikhonov
functional over the subspace Kk(A

TA,AT b), as suggested in [27]. Therefore the approxi-
mate solution is now determined as

x
(k)
λ = Vky

(k)
λ , y

(k)
λ = argmin

y∈Rk

{‖AVky − b‖22 + λ2‖LVky‖22}. (41)

Note that if we use the QR factorization of the product LVk, LVk = QkRk, using (5)-(6)
the least squares problem in (41) reduces to

y
(k)
λ = argmin

y∈Rk

{‖Bky − β1e1‖22 + λ2‖Rky‖22}, (42)

which can be computed efficiently in several ways, e.g., by a direct method or by first
transforming the stacked matrix [BT

k λRT
k ]

T to upper triangular form, as done when
implementing GKB-FP [24]. Then it follows that

‖Lx(k)
λ ‖ = ‖Rky

(k)
λ ‖2, ‖r(k)λ ‖2 = ‖Bky

(k)
λ − β1e1‖, (43)

and the function φ(k)(λ) associated with the projected problem is

φ(k)(λ) =
√
µ
‖Bky

(k)
λ − β1e1‖2

‖Rky
(k)
λ ‖2

. (44)

Unlike the approach in [27] where the Tikhonov regularization parameter is determined
by the discrepancy principle, our proposal denoted by PROJ-L is to follow the same ideas
as GKB-FP. That is, for chosen p0 > 1 and k ≥ p0, we determine the largest convex
fixed-point λ(k)

FP
of φ(k)(λ), repeating the process until a stopping criterion is satisfied.

Numerical examples have shown that the largest fixed-point of φ(λ) associated with the
large-scale problem is captured in a relatively small number of GKB steps.

To make our proposal computationally feasible, the following aspects must be consid-
ered

• the initial guess of the fixed-point method on the projected problem at step k + 1
is taken to be the fixed-point λ(k)

FP
and

• the QR factorization LVk = QkRk is calculated only once at step k = p0 and is
updated in subsequent steps.

Algorithms for updating the QR factorization can be found in [34, Chapter 12].

4 Alternative to Tikhonov regularization: smoothed

preconditioned LSQR

We have seen that GKB-FP requires the projected problem to be solved repeatedly
in order to calculate solution and residual norms for distinct values of the regularization
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parameter λ. This may be expensive in connection with large-scale problems. An alter-
native is to use iterative regularization in which the number of iterations plays the role of
the regularization parameter. Methods in this class include CGLS/LSQR, GMRES, MIN-
RES, and Landweber iterations, among many others, see., e.g., [14, 15, 16, 18, 19, 30, 35].
While the regularizing properties of these methods are reasonably well understood, less
clear is the situation when the task is to determine a proper number of iterations without
a priori knowledge about the norm of the noise. The purpose of this section is to show how
to construct regularized solutions via a version of LSQR which incorporates the smooth-
ing properties of the regularization matrix L into the iterative process and automatically
stops the iterations without requiring the norm of the noise as input data.

4.1 Stopping rule for LSQR

Recall that LSQR constructs a sequence of approximations for the solution of (1) by
minimizing the residual over the Krylov subspace Kk(A

TA,AT b). That is, the LSQR
approximations are defined by

xk = argmin
x∈Kk(ATA,AT b)

‖Ax− b‖2, (45)

and can be expressed as

xk = Vkyk, yk = argmin
y∈Rk

‖Bky − β1e1‖2, (46)

where Bk and Vk are from (4)-(6) [17]. To describe our stopping rule, we first consider
a truncation criterion for the method of truncated SVD (TSVD) solutions. Using the
notation introduced in (15) the TSVD solution xk is defined as

xk = A
†
kb =

k∑

j=1

uTj b

σj

vj, (47)

where Ak =
∑k

j=1 σjujv
T
j and k is the truncation parameter. We shall assume that the

noise free data bexact satisfies the discrete Picard condition (DPC) [36], i.e., the coefficients
|uT

j b
exact|, on the average, decay to zero faster than the singular values, and that the noise

is Gaussian zero mean. These assumptions imply that there exists a integer k∗ such that

|uTj b| = |uTj bexact + uTj e| ≈ |uTj e| ≈ constant, for j > k∗. (48)

We now note that an error estimate for xk can be expressed as

‖xk − xexact‖ ≤ ‖A†
kb

exact − xexact‖2 + ‖A†
ke‖2 ≡ E1(k) + E2(k), (49)

with

E1(k) =

(
n∑

j=k+1

|uTj bexact|2
σ2
j

)1/2

, E2(k) =

(
k∑

j=1

|uTj e|2
σ2
j

)1/2

. (50)

The first term, called the regularization error, decreases with k and can be small when
k is large. The second term measures the noise magnification error; it increases with k
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and can be large for σj ≈ 0. Thus the choice of the truncation parameter requires a
balance between these two errors in order to make the overall error small. A closer look
at the two types of errors reveals that for k > k∗, the error E2(k) increases dramatically
while E1(k) remains under control due to the DPC, and the overall error should not be
minimized for k > k∗. Conversely, for k < k∗, E1(k) increases regularly with k while E2(k)
remains under control since the singular values σj dominate the coefficients |uTj e|; again
the overall error is not minimized. Therefore the error estimate should be minimized at
k = k∗. However, neither E1(k) nor E2(k) is available and k∗ must be estimated by other
means. We propose to do this by minimizing the product

Ψk = ‖rk‖2‖xk‖2 k ≥ 1, (51)

where rk = b−Axk =
∑n

j=k+1(u
T
j b)uj+b⊥ with b⊥ = (Im−UUT )b; this can be explained as

follows. Note from (48) that if k > k∗, the residual norm decreases approximately linearly
while the solution norm increases dramatically as 0 ≈ σk < |uTk e|. Thus Ψk cannot be
minimized for k > k∗. On the other hand, if k < k∗, the residual norm gets relatively
large since the coefficients |uTk b| are large, while the solution norm increases slowly with k.
Hence Ψk cannot be minimized for k < k∗. Thus, the sequence Ψk should be minimized
at k = k∗. We can thus conclude that a good choice of the truncation parameter for
TSVD is the minimizer of Ψk. Our experience is that this truncation criterion produces
a regularization parameter that very often coincides with the optimal parameter, the
minimizer of the relative error REk = ‖xexact − xk‖2/‖xexact‖2, as seen in Fig. 4.
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Figure 4: Errors in xk, Ψk and relative errors for shaw test problem using the same data
as in with Fig. 1. The optimal relative error is 4.98% and reached at k∗ = 7 = argminΨk.
The reader should compare this result with that of Tikhonov regularization, see Fig. 1

However, the SVD is infeasible for large-scale problems and the TSVD method may
not be of practical utility. As an alternative to TSVD for large-scale problems, we propose
to use LSQR coupled with a stopping rule defined similarly as the truncation criterion for
TSVD above. Therefore, our stopping rule for LSQR selects as stopping index the first

integer k̂ satisfying :

k̂ = argminΨk, Ψk = ‖b− Axk‖2‖xk‖2. (52)

The choice of the stopping rule can be supported as follows. First, the residual and
solution LSQR norms behave monotonically like the residual and solution TSVD norms,
i.e., while ‖b−Axk‖2 decreases with k, ‖xk‖2 increases, and second, the LSQR iterate xk

lives in the Krylov subspace Kk(A
TA,AT b) which very often carries relevant information
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on the dominant k right singular vectors of A [30], in which case xk approximates the k-th
TSVD solution well, and a similar observation applies to the sequences Ψk for TSVD and
LSQR, respectively, as we see in Figure 5.

10
0

10
1

10
2

10
3

||b−Ax
k
||

||x
k||

Corner at k=7

 

 
L−Curve (LSQR)

0 5 10
10

0

10
2

10
4

 

 
Ψ

k
(SVD)

Ψ
k
(LSQR)

0 5 10
10

−2

10
0

10
2

 

 
RE

k
(SVD)

RE
k
(LSQR)

Figure 5: L-curve, sequences Ψk associated with TSVD and LSQR for shaw test problem
with the same data of the previous figure and error histories of a few iterates.

From the practical point of view, our proposal for determining the stopping index k̂ is
to evaluate the finite forward differences

∇Ψk = Ψk+1 −Ψk, k ≥ 1, (53)

and then select the first index k for which ∇Ψk changes sign. More specifically, our
proposal is to select the first k such that ∇Ψk−1 ≤ 0 and ∇Ψk ≥ 0. The main feature of
this stopping rule is that only k̂+1 GKB steps are required to construct the approximation
xk̂ to the noise free solution of (1). All our numerical results to be presented in the sequel
are obtained with this stopping rule.

The following result bounds the error in the LSQR iterate xk as an approximation to
the k-th TSVD solution.

Theorem 4.1. Assume that the GKB algorithm runs to completion. Then the relative

distance between the LSQR and the TSVD solution can be bounded as

‖xk − xk‖2
‖xk‖2

≤ 1

σk

(Φk + γk) , (54)

where Φk = ‖rk‖2/‖xk‖2, and γk defined in the previous section.

For the proof of Theorem 4.1 we require a technical result.

Lemma 4.1. Let Ωk be the angle between the subspaces spanned by the k first right singular

vectors of A and the Krylov subspace Kk. Then sinΩk ≤ γk/σk.

Proof: As in the proof of Theorem 2.2, we first assume m > n. In this case, after n GKB
steps matrix A can be decomposed as

A = Un+1Bn+1V
T
n , (55)
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in which, for convenience of the proof, we write Un+1 = [Uk+1 U
⊥], Vn = [Vk V ⊥], and

Bn+1 =
k n− k(
Bk Ck

Dk Fk

)
k + 1
m− k − 1

with Bk defined in (4). The other matrices, Ck, Dk,

and Fk are clear from the context. Now by (55) we have AV ⊥ = [Uk+1 U
⊥]

[
Ck

Fk

]
.

Multiplying this equality with UT
k and using the fact that UT

kA = ΣkV
T
k , where Uk

and Vk have k columns and Σk contains the k largest singular values of A, we get

VT
k V

⊥ = Σ−1
k UT

k [Uk+1 U
⊥]

[
Ck

Fk

]
. Taking norms we obtain sinΩk ≤

∥∥∥∥
[
Ck

Fk

]∥∥∥∥
2

/σk(A),

where we have used that ‖VT
k V

⊥‖2 = sinΩk, see, e.g., [34]. Thus, (4.1) follows because
the norm in this expression coincides with γk.

Ifm = n then A = UnB̂nV
T
n , with B̂n defined in (27), and the proof follows analogously.

�

Proof of Theorem 4.1: Note that, based on (5)-(6), the LSQR iterate xk = Vkyk and
the associate residual rk = b− Axk satisfy

xk = VkB
†
kU

T
k+1b, B†

kU
T
k+1rk = 0. (56)

Then the error in xk with respect to xk can be written as

xk − xk = A
†
kb− VkB

†
kU

T
k+1b

= (A†
k − VkB

†
kU

T
k+1)(rk + Axk)

= A
†
krk + (A†

kA− VkB
†
kU

T
k+1A)xk.

But

A
†
kA = A

†
kAk, VkB

†
kU

T
k+1Axk = VkB

†
kU

T
k+1AVkV

T
k xk = VkB

†
kBkV

T
k xk = VkV

T
k xk = xk,

therefore
xk − xk = A

†
krk − (In − A

†
kAk)xk = A

†
krk − (In − Pk)Pkxk.

Hence

‖xk − xk‖ ≤ ‖A†
k‖2‖rk‖2 + ‖(In − Pk)Pk‖2‖xk‖2 ≤ ‖A†

k‖2‖rk‖2 + sinΩk‖xk‖2,

where we have used the fact that ‖(In−Pk)Pk‖2 = sinΩk (see, Golub, [34, Theorem 2.6.1,
p. 76]). The assertion of the theorem follows on using Lemma (4.1). �

Theorem 4.1 states that if the information contained in Kk(A
TA,AT b) is rich enough

so that γk ≪ σk and if the sum γk + Φk is small compared to σk, then the LSQR iterate
xk will be close to the k-th TSVD solution. Theorem 4.1 can also be used to bound
the error in xk with respect to xexact by using the triangular inequality and bounds on
‖xk − xexact‖ which require smoothness conditions on xexact. This is quite involved and is
not considered in the present paper.

We now turn to the stopping rule (52). Note that it is nothing more than a discrete
counterpart of the parameter choice rule (8) for µ = 1 which looks for a corner of the
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continuous Tikhonov L-curve; hence, it should come as no surprise to see the minimizer
of Ψk closely related to a point on the discrete L-curve

(log ‖b− Axk‖2, log ‖xk‖2), k = 1, . . . , q, (57)

located near the corner of the L-shaped region, see Fig. 5. Thus, the decision to stop
LSQR in connection with discrete ill-posed problems can, in principle, be also managed by
locating the corner of discrete L-curves for which several algorithms exist. Corner finding
methods include a method based on spline curve fitting by Hansen and O’Leary [3], the
triangle method by Castellanos et al. [37], a method by Rodriguez and Theis [38], and
an adaptive algorithm referred to as the “pruning algorithm” by Hansen et al. [20]. The
pruning algorithm advocates that to overcome difficulties of its predecessors, the corner
must be determined by evaluating the overall behavior of the L-curve. The effectiveness
of this approach and its capability to determine the “best” corner of discrete L-curves is
illustrated numerically in [20]. However, finding the corner using a limited sequence of
points is not an easy task, and the existing algorithms are not without difficulties, see,
e.g., Hansen [30, p. 190] for discussions on shortcomings, Hansen et al. [20] for a multiple
corner case, and Salehi Ravesh et al. [22] for an application of the L-curve criterion to
quantification of pulmonary microcirculation.

To illustrate the performance of the pruning algorithm in connection with LSQR
(with full reorthogonalization), we use gravity, heat, foxgood and shaw test problems
from [32], moler (with α = 0.5), lotkin, prolate and hilbert test problems from Matlab’s
“matrix gallery”. In all cases we consider coefficient matrices of size 1024 × 1024 and
distinct right-hand sides defined by b = Axexact + e, where e is generated by the Matlab
function randn with the state value set to 0 and with three distinct noise levels (NL)
NL = ‖e‖2/‖Axexact‖2 = 10−4, 10−3, 10−2. To ensure that the overall behavior of the
L-curve is contained in the data, we take q = 120 points. The corner of the L-curve,
denoted by k

LC
, is determined by using the Matlab code corner from [32], and the relative

error in xk
LC

is denoted by E
LC
. For comparison, the stopping index k̂ determined by

minimizing Ψk, the relative error in xk̂ denoted by EΨ, optimal parameters and optimal
errors, denoted by kopt and Eopt, respectively, are also computed.

Average relative errors of 20 realizations as well as the minimum/maximum k deter-
mined by the pruning algorithm, the stopping rule (52) and the optimal one along the
realizations, are all displayed in Table 1.

Note that, except for the fact that the pruning algorithm failed solving moler and lotkin

test problems for NL = 10−4 and NL = 10−2, respectively, the quality of the approximate
solutions produced by this algorithm and the stopping rule (52) remains comparable in
the other cases and other test problems. In particular, for the noise level NL = 10−4, we
note that while the pruning algorithm produced approximate solutions of poor quality,
the solutions produced by the stopping rule (52) remained within tolerable bounds. The
pruning algorithm failed constructing reasonable approximate solutions because the corner
of the L-curve was not correctly identified several times, see Fig. 6 (left). Fig. 6 (center)
shows the discrete L-curve of the first realization with the corner determined by the
pruning algorithm (corresponding to k

LC
= 107) marked by � (in red) and with the “true”

corner located at k = 19 marked by ◦ (in red). A similar observation applies for lotkin

test problem.
To learn more about the properties of the pruning algorithm, we investigated the
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NL = 10−4

k
LC

k̂ kopt E
LC

EΨ Eopt

gravity 13(19) 11(14) 11(13) 0.0522 0.0109 0.0043
heat 46(52) 28(42) 28(31) 0.0902 0.0175 0.0125
foxgood 4(5) 5(5) 4(4) 0.0096 0.0119 0.0028
shaw 9(9) 9(9) 9(9) 0.0325 0.0325 0.0325
moler 18(108) 19(21) 9(11) 8.7458 0.1283 0.0107
lotkin 7(7) 7(7) 7(9) 0.4384 0.4384 0.4317
prolate 20(22) 10(12) 9(13) 0.0223 0.0002 0.0002
hilbert 9(10) 9(9) 10(12) 0.4358 0.4382 0.4258

NL = 10−3

k
LC

k̂ kopt E
LC

EΨ Eopt

gravity 11(15) 10(11) 9(11) 0.0368 0.0224 0.0118
heat 27(31) 28(29) 20(22) 0.0774 0.0691 0.0222
foxgood 3(4) 3(4) 3(3) 0.0201 0.0201 0.0074
shaw 7(8) 7(8) 7(9) 0.0514 0.0515 0.0439
moler 9(10) 9(10) 7(8) 0.0496 0.0654 0.0220
lotkin 3(5) 5(5) 5(7) 0.4478 0.4475 0.4445
prolate 17(17) 12(16) 6(11) 0.0260 0.0145 0.0008
hilbert 7(8) 7(8) 7(9) 0.4396 0.4396 0.4391

NL = 10−2

k
LC

k̂ kopt E
LC

EΨ Eopt

gravity 7(11) 7(8) 6(8) 0.0454 0.0356 0.0266
heat 15(17) 16(16) 14(16) 0.0674 0.0674 0.0629
foxgood 2(2) 2(2) 2(3) 0.0311 0.0311 0.0217
shaw 5(5) 5(6) 6(8) 0.1094 0.0660 0.0534
moler 4(4) 4(4) 5(6) 0.1885 0.1885 0.0788
lotkin 3(18) 3(3) 3(5) 1.9× 105 0.4522 0.4505
prolate 10(13) 7(12) 1(6) 0.0173 0.0150 0.0071
hilbert 6(6) 6(6) 6(7) 0.4400 0.4400 0.4400

Table 1: Regularization parameters and relative errors of regularized solutions determined
by the pruning algorithm, the stopping rule (52) and the optimal one. The exact solution
for moler, lotkin, prolate and hilbert test problems were taken to be the solution of shaw
test problem from [32].

behavior of k
LC

as a function of the number of data points q being used. The results
for moler test problem with NL = 10−4 are displayed in Fig. 6 (right). We note that for
several values of q the corner index k

LC
stagnates at k = 21, which coincides with the

maximum minimizer of Ψk, and that for larger values of q this corner index falls far away
from k = 21. Corner indexes for heat and gravity test problems did not behave this way
and they are not reported here. The results suggest that the corner index k

LC
depends on

the number of points q, and that unfortunate choices of q might lead to wrong corners.
We shall return to this point later in connection with a deblurring problem.
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Figure 6: Corner index determined by the pruning algorithm of 20 realizations for moler

test problem in connection with LSQR (left). L-curve of first realization (center); in this
case, the corner determined by pruning algorithm is marked by � while the “true” corner
is marked by ◦. Corner index determined by pruning algorithm using q points with q
ranging from 30 until 120 (right).

4.2 P-LSQR

As commented earlier, our intention is to construct approximate solutions using a
version of LSQR that incorporates smoothing properties of the regularization matrix L
into the computed solution. We shall do this by applying LSQR to the least squares
problem min ‖Āx− b̄‖ with Ā and b̄ from (30), as suggested in [13], using (52) as stopping
rule. Our iterative regularization algorithm, which we denote by P-LSQR, can thus be
summarized as follows

• apply LSQR to ‖Āx− b̄‖2 and compute the iterate x̄k using the stopping rule defined
in (52).

• once the stopping index is determined, take as approximate solution

xk = L†
Ax̄k + xN ,

with xN and L†
A as in (31).

Obviously for P-LSQR to be computationally feasible, the dimension of N (L) must be

small and the products with L† and LT †
must be performed as efficiently as possible, i.e.,

all possibilities must be explored in order to reduce the computational cost, either through
fast matrix-vector products or through the use of preconditioners. However, the latter is
not considered in this paper.

5 Numerical examples

We give some examples to illustrate our methods. Two examples involve deblurring
problems and a third one involves a Super-resolution problem; as before, the data vector
is of the form b = Axexact + e, where e is generated by the Matlab code randn with the
state value set to 0, and NL = ‖e‖2/‖Axexact‖2 is referred to as the the noise level. All
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computations were carried out in Matlab. To simplify the notation, the extension of GKB-
FP based on the LU factorization of L is denoted by FP-LU and the LD-based approach
is denoted by FP-LD. Average values of regularization parameters, time and relative error
in x

(k)
λ , are denoted by λ̄, t̄ and Ē, respectively, while the minimum and maximum number

of steps required by the algorithms are denoted by km and kM , respectively.

5.1 Deblurring problems

The goal in this case is to recover an image stored in a vector xexact ∈ R
MN from a

blurred and noisy image b = bexact + e so that Axexact = bexact, where A plays the role of
blurring operator (often referred to as the PSF matrix), and bexact represents the blurred
image. For simplicity, we consider N ×N images and use N2 ×N2 PSF matrices defined
by A = (2πσ2)−1T ⊗ T . In this case, σ controls the width of the Gaussian point spread
function and T is an N × N symmetric banded Toeplitz matrix with half-bandwidth
band [15]; in what follows we use σ = 2 and band = 16. The regularization matrix is
chosen as

L =

[
IN ⊗ L1

L1 ⊗ IN

]
, L1 =




1 -1
1 -1

. . .
. . .

1 -1


 ∈ R

(N−1)×N . (58)

5.1.1 Rice test problem

Rice 64: The purpose here is two-fold: to illustrate that the methods proposed in this
work are less expensive than the joint bidiagonalization (JBD) algorithm by Kilmer et
al. [15] and, to learn more about the capabilities of the pruning algorithm to identify
the corner of discrete L-curves. We start with the observation that at the k-th step, the
JBD-based approach determines approximate solutions given by

x
(k)
λ = argmin

x∈Zk

‖b− Ax‖22 + λ2‖Lx‖22, (59)

where Zk is a Krylov subspace generated by the JBD algorithm applied to QA and QL,
with QA ∈ R

m×n , QL ∈ R
p×n and Q = [QT

A QT
L]

T , where Q is from the QR factorization

of Â = [AT LT ]T . Each step of the JBD approach requires two matrix vector products of
the form v̂ = QQTv, but the QR factorization is never computed; in practice one takes

v̂ = Âu
LS
, with u

LS
= argmin

u∈Rn

‖v − Âu‖2. (60)

This not only explains why the JBD-based approach is expensive but also shows that its
efficiency depends on the way u

LS
is computed. Two distinct ways were considered in this

paper: one uses LSQR as reported in [39], and the other one uses LSQR with subspace
preconditioning, as done in [12, 16]. We will report results obtained through the former,
which turned out to be the most efficient. To achieve our first goal we will use the JBD
algorithm with the FP method as parameter choice rule, which we call JBD-FP. JBD-
FP proceeds like PROJ-L in that for chosen p0 > 1 and for k ≥ p0, the largest convex
fixed-point of φ(k)(λ) is computed and the process is repeated until a stopping criterion is
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satisfied. Two distinct implementations of JBD-FP were considered: one implementation
denoted by JBD-FPL, which deals with problem (2) using the matrix L, and other denoted
by JBD-FPD, which deals with the equivalent problem (40). In this example we consider
a 64 × 64 subimage of the image rice which was used in [15] to illustrate a JBD-based
algorithm. Thus N = 64, A ∈ R

4096×4096 and L ∈ R
8064×4096; similarly as in [15], we

use data with 1% of white noise. Both GKB and JBD were implemented with complete
reorthogonalization; computation of fixed-points started with p0 = 10, and the iterations
stopped using a tolerance parameter ǫ = 10−6.

For future comparison, regularization parameters determined by L-curve, a fixed-point
method, the stopping rule (52), optimal regularization parameters, and relative errors, are
all reported in Table 2. Regularization parameters for L-curve and Fixed-Point methods
were computed using the GSVD of the pair (A,R), where R ∈ R

4095×4096 is from the
QR factorization of L. The optimal Tikhonov regularization parameter, defined as the
minimizer of ‖xλ − xexact‖2/‖xexact‖2, is computed via exhaustive search. P-LSQR uses
Ā and b̄ from the explicit transformation approach implemented in std−form in [32]. As
it is apparent, see Figure 7, in this case the L-Curve has a well defined corner and φ(λ)
(with µ = 1) has a unique fixed-point that minimizes Ψ(λ). The true image, the blurred
and noisy image, and the images determined by L-Curve and fixed-point methods are all
displayed in Fig. 8.

L-Curve FP optimal P-LSQR optimal

λ 0.0783 0.0956 0.0409 k = 48 k = 83
E 8.03% 8.19% 7.75% 8.31% 7.82%

Table 2: Regularization parameters and relative errors.
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Figure 7: L-Curve, φ(λ), discrete L-curve and log(Ψk) for rice test problem with N = 64.
The corner of the L-curve, the fixed-point of φ(λ), the“true”corner of the discrete L-curve,
and the minimizer of Ψk, are all marked by ◦. The corner determined by the pruning
algorithm of the first of 20 realizations using q = 150 points is marked by �.

We now turn to the results obtained through JBD-FP and the methods proposed in
this paper. Average time of 20 realizations are Table 3. It becomes apparent that the
JBD-FP approaches are in fact more expensive than the methods proposed in this work,
and that the fastest one is P-LSQR followed by PROJ-L and FP-LD. Note that FP-LU
can be a good option. As far accuracy is concerned, all methods produced solutions with
relative error of approximately 8.2%; this is in accordance with the results obtained using
the GSVD of the pair (A,R) shown in Table 2.

21



Figure 8: True image (top left), blurred and noisy image (top right), reconstructed image
by LC (bottom left) and reconstructed image by FP (bottom right).

JBD-FPL JBD-FPD FP-LU FP-LD PROJ-L P-LSQR

t̄ 5.2206 4.2688 2.0084 0.8863 0.2576 0.2809

Table 3: Average time (in seconds) of 20 realizations.

Concerning the capability of the pruning algorithm to find the corner of discrete L-
curves, we arrive at the same conclusion as before: the corner index k

LC
can vary with

the number of points q of the discrete L-curve. Table 4 shows the corner index k and the
relative error in xk of the first realization for several values of q. The starting value of q
was chosen relatively close to the minimizer of Ψk, k = 48, to evaluate how the corner
index behaves in these cases. A false corner corresponding to q = 150 is displayed in
Fig. 7.

q 60 80 100 120 140 160 180 200

k
LC
(q) 3 3 43 43 3 3 46 43

Error 20.65% 20.65% 8.46% 8.46% 20.65% 20.65% 8.38% 8.46%

Table 4: Corner index k
LC
(q) selected by the pruning algorithm as a function of the

number of points q of the discrete L-curve (log ‖r̄k‖2, log ‖Āx− b̄‖2), where r̄k and x̄k are
LSQR iterates of min ‖Āx− b̄‖2 for rice test problem.

The conclusion we can drawn from the numerical experiments so far is that LSQR
coupled with the proposed stopping rule is cheaper than the pruning algorithm, that
the corner determined by the pruning algorithm depends on the number of points of the
discrete L-curve, and that for the tested problems our approach performs similarly as the
pruning algorithm when the latter works well. These conclusions explain why the pruning
algorithm will not be used in the following examples.

Rice 256: We now consider the 256 × 256 entire rice image. The PSF matrix A ∈
R

65536×65536, it has singular values decaying gradually to zero without any particular gap
(not shown here) and condition number κ(A) ≈ 3.40 × 1016. The regularization matrix
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L ∈ R
130560×65336. Only FP-LD, P-LSQR and PROJ-L are used. Average results of 20

realizations each with NL = 0.01 with and without complete reorthogonalization (labeled
as reorth = 1 and reorth = 0, respectively) are displayed in Table 5. Again, all methods
produced solutions with approximately the same quality regardless of whether reorthog-
onalization is used or not. However, in terms of speed, PROJ-L is superior. In this
example µ = 1 did not work in all runs and adjustments were needed. For details on such
an adjustment the reader is referred to [6].

FP-LD P-LSQR PROJ-L FP-LD P-LSQR PROJ-L

λ̄ 0.0706 - 0.0874 0.0746 - 0.0874
Ē 0.0820 0.0851 0.0831 0.0812 0.0845 0.0831
t̄ 7.9603 4.3365 1.0652 54.6983 15.9995 1.8808
km (kM ) 433 (512) 242 (268) 28 (30) 280 (290) 140 (141) 28 (30)
µ̄ 0.6519 - 1 0.6635 - 1

reorth = 0 reorth = 1

Table 5: Results for entire rice test problem for NL = 0.01, p0 = 15 and ǫ = 10−6.

5.1.2 Pirate test problem

In this example we consider a large image of size 512 × 512 called pirate, see Fig. 9.
Thus N = 512, the PSF matrix A ∈ R

262144×262144 and the regularization matrix L ∈
R

523264×262144. As in the previous example, we report average results of 20 realizations
using FP-LD, P-LSQR and PROJ-L with and without complete reorthogonalization. Nu-
merical results for the noise level NL = 0.01 are shown in Table 6. In this case, the
relative error in the computed solutions is approximately 14.7% and once more the fastest
algorithm is PROJ-L. Visual results of this experiment can be seen in figure 9. For this
test problem, the choice µ = 1 works satisfactorily in all runs.

FP-LD P-LSQR PROJ-L FP-LD P-LSQR PROJ-L

λ̄ 0.1563 - 0.1491 0.1577 - 0.1492
Ē 0.1479 0.1483 0.1463 0.1472 0.1477 0.1462
t̄ 64.5863 36.4999 12.5072 426.0727 156.7809 17.6866
km(kM ) 516 (572) 309 (335) 39 (39) 282 (282) 163 (163) 39 (39)

reorth = 0 reorth = 1

Table 6: Results for Pirate test problem with NL = 0.01, p0 = 20 and ǫ = 10−6.

5.2 Super-resolution

High-resolution (HR) images are important in a number of areas such as medical
imaging and video surveillance. However, due to hardware limitations and cost of image
acquisition systems, Low-resolution (LR) images are often available. We consider the
problem of estimating an HR image form observed multiple LR images. Let the original
HR image of size M = M1 ×M2 in vector form be denoted by x ∈ R

M , and let the k-th
LR image of size N = N1 × N2 in vector form be denoted by bk ∈ R

N , k = 1, 2, . . . , q,
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Figure 9: True image, LR noisy image, and restored image by PROJ-L.

with M1 = N1 ×D1, M2 = N2 ×D2, where D1 and D2 represent down-sampling factors
for the horizontal and vertical directions, respectively. Assuming that the acquisition
process of the LR sequence involves blurring, motion, subsampling and additive noise, an
observation model that relates x to bk is written as [40]

bk = Akx+ ǫk (61)

where Ak is N ×M , and ǫk stands for noise. The goal is to estimate the HR image x from
all LR images bk. In this case Tikhonov regularization takes the form

xλ = arg min
x∈RM

{‖b− Ax‖22 + λ2‖Lx‖22} (62)

where b = [bT1 . . . bTq ]
T , A = [AT

1 . . . AT
q ]

T , and L is a discrete 2D differential operator.
In this example we estimate the 96 × 96 image tree from a sequence of five noisy LR

images with D1 = D2 = 2. Therefore A ∈ R
11520×9216 and L ∈ R

18240×9216. As both A and
the regularization matrices are not too large, the JBD-FP approaches are used again and
all implemented with complete reorthogonalization. Average results of 20 realizations are
shown in Table 7. We note again that PROJ-L is superior. For this example the choice
µ = 1 worked satisfactorily in all cases. The original HR image and two noisy LR images
are depicted in the first row of Fig. 10. One of the restored images determined by PROJ-L
is depicted in the second row of the same figure. Also, to illustrate the performance of

FP-LU FP-LD P-LSQR PROJ-L JBD-FP JBD-FP

λ̄ 0.0309 0.0309 - 0.0300 0.0309 0.0309
Ē 0.0496 0.0496 0.0502 0.0535 0.0497 0.0497
t̄ 16.4869 9.1734 3.2403 0.8753 21.6653 25.1221
km (kM ) 281 (284) 281 (284) 157 (160) 47 (57) 112 (114) 112 (114)

Table 7: Results for super-resolution problem for NL = 0.01, ǫ = 10−6, and p0 = 15.

the algorithms using distinct regularization matrices, we consider the cases L = I and

L
2,2D

=

[
IN ⊗ L2

L2 ⊗ IN

]
, L2 =




-1 2 -1
. . .

. . .
. . .

-1 2 -1


 ∈ R

(N−2)×N .

In this case we obtained solutions with relative error of approximately 28.80% and 4.95%,
respectively. That is, while the quality of the solutions for the case L = I deteriorate
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Figure 10: First row: HR image (left) and two LR noisy images. Second row: Restored
image with L = I determined by GKB-FP (left), restored image with L from (58) deter-
mined by PROJ-L (center), and restored image with L

2,2D
determined by PROJ-L (right).

significantly, the quality of the solutions using L
2,2D

remain practically the same as that
obtained using L from (58). Visual results are depicted in Fig. 10.

We end the numerical results section with the observation that we also performed
numerical experiments involving the three above deblurring test problems using data
with distinct noise levels. The results showed that the extensions of GKB-FP perform
similarly as the original version of the algorithm, and are not show here.

6 Conclusions

We reviewed the GKB-FP algorithm and showed how to extend it to large-scale gen-
eral form Tikhonov regularization. As a result, three distinct approaches that do not re-
quire estimates of the noise level were proposed and numerically illustrated on large-scale
deblurring problems. Numerical results for representative test problems using data with
realistic noise levels (e.g., 0.1% and 0.01%) showed that in term of accuracy and efficiency,
the extended versions of GKB-FP perform satisfactorily in as much the same way as the
original version of the algorithm, and are therefore competitive and attractive for large-
scale general-form Tikhonov regularization. In addition, to overcome possible difficulties
in GKB-FP when selecting the Tikhonov regularization parameter at each iteration, we
proposed a stopping rule for LSQR, and showed numerically that the smoothed precon-
ditioned LSQR algorithm (P-LSQR) coupled with the new rule can be a good alternative
to large-scale general-form Tikhonov regularization.
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