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Kirsch’s factorization method is a fast inversion technique for visualizing the profile of a
scatterer from measurements of the far-field pattern. The mathematical basis of this
method is given by the far-field equation, which is a Fredholm integral equation of the first
kind in which the data function is a known analytic function and the integral kernel is the
measured (and therefore noisy) far-field pattern. We present a Tikhonov parameter choice
approach based on a fast fixed-point iteration method which constructs a regularization
parameter associated with the corner of the L-curve in log–log scale. The performance of
the method is evaluated by comparing our reconstructions with those obtained via the
L-curve and we conclude that our method yields reliable reconstructions at a lower com-
putational cost.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

For inverse acoustic scattering the original linear sampling method was introduced by Colton and Kirsch [1], and math-
ematically clarified in [2]. Kirsch [3] improved the original version of the linear sampling method, leading to the so-called
(FwF)1/4-method. Recently, Arens [4] presented a proof of convergence for this method for the case of acoustic scattering
by sound soft obstacles. Linear sampling methods involve the solution of a linear Fredholm equation of the first kind, the
far-field equation, which is written for each point x0 inside the scatterer and whose integral kernel is the far-field pattern,
i.e. far-field data that are usually contaminated with significant noise. Its right-hand side is an exactly known analytic func-
tion. In particular, linear sampling methods attempt to recover the object by sampling the space by using functions that take
known value when they are evaluated inside the object. Consequently, in the second version of the linear sampling method,
Kirsch, characterized the obstacle in terms of the spectral data of the far-field operator F. Two of the attractive futures of this
method is its computational speed, and the very low amount of a priori information of the physical properties of the scat-
terers. One of its disadvantages though is that it only gives an explicit characterization of the scattering obstacle (i.e. it only
determines the support of the scatterer).

It is well known that every numerical implementation of an inverse scattering method requires at some point regulari-
zation in order to cope with the ill-posedness of the problem, and the linear sampling method is not an exception. In
most numerical applications of the linear sampling method, Tikhonov regularization has been employed and the regulariza-
tion constant was computed via Morozov’s discrepancy principle [2], which involved the computation of the zeros of the
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discrepancy function at each point of the grid, a process that is time-consuming. In addition, the noise level in the data
should be known a priori, something that in real life applications is not the case in general. Several other strategies for select-
ing the regularization parameter have been proposed, one of them being the L-curve method [5], see also [6] for an appli-
cation of the L-curve method in inverse elastic scattering. The L-curve method is a log–log plot of the norm of a
regularized solution versus the norm of the corresponding residual norm. It relies on the observation that the vertical part
of the curve for small changes in the regularization parameter corresponds to rapidly varying regularized solutions with very
little change in the residual norm, while the horizontal part for large values of the regularized parameter corresponds to
slowly varying regularized solutions with large changes in the residual norm. Hence, a reasonable regularized solution
should lie in the vicinity of the ‘corner’ of the L-curve. The L-curve method selects the parameter which maximizes the cur-
vature of the L-curve. However, computing the point of maximum curvature in a robust way is not an easy task [5,7,8].

In this work we propose a fixed-point (FP) algorithm for selecting the regularization parameter based on an earlier work
of Reginska [8] and Bazán [9,10], which we use for the characterization of an object via Kirsch’s (FwF)1/4 -method. The FP
algorithm only needs computation of the solution norm (or solution seminorm) and the residual norm, while the L-curve
requires either the SVD (or GSVD) or the computation of the derivative of the solution norm with respect to the regulariza-
tion parameter. Hence the FP algorithm is simpler and better suited for large-scale problems.

In what follows the method will be denoted by MKM-FP which stands for modified Kirsch’s method coupled with the FP-
algorithm.

We organize our paper as follows. Section 2 will be devoted to the formulation of the problem and a brief description of
the Kirsch’s factorization method. Consequently, Section 3 will deal with the description of the FP algorithm as a parameter
choice method. In Section 4, we will be concerned with the idea behind the selection of our parameter as well as with its
implementation within the framework of the linear sampling method. In order to show the effectiveness of our approach
we will present numerical examples for the case of inpenetrable scatterers. For the reconstructions we will use simulated
data obtained by means of the Nyström method [11]. We will finally list our conclusions in Section 5.

2. A description of the factorization method

It is well known that the propagation of time-harmonic acoustic fields in a homogeneous medium, in the presence of a
sound soft obstacle D, is modeled by the exterior boundary value problem (direct obstacle scattering problem)
M2uðxÞ þ k2uðxÞ ¼ 0; x 2 R2 n D; ð2:1Þ
uðxÞ þ uiðxÞ ¼ 0; x 2 @D; ð2:2Þ
where k is a real positive wavenumber and ui is a given incident field, that in the presence of D will generate the scattered
field u.

In addition, the scattered field u will satisfy the Sommerfeld radiation condition
lim
r!1

ffiffiffi
r
p @u

@r
� iku

� �
¼ 0; ð2:3Þ
jrj ¼ jxj; x 2 R2 n D, and the limit is taken uniformly for all directions x̂ ¼ x=jxj.
The Green formula implies that the solution u of the direct obstacle scattering problem above has the asymptotic behavior
uðxÞ ¼ u1ðx̂Þ
eikrffiffiffi

r
p þ Oðr�3=2Þ ð2:4Þ
for some analytic function u1, called the far-field-pattern of u, and defined on the unit sphere X. In the case of the inverse
problem, it represents the measured data. In particular, the inverse problem that will be considered here, is the problem of
finding the shape of D from a complete knowledge of the far-field pattern.

We now define the far-field equation
ðFgzÞðx̂Þ ¼
eip=4ffiffiffiffiffiffiffiffiffi
8pk
p e�ikx̂�z; ð2:5Þ
where the right-hand side is the far-field pattern of the fundamental solution of the Helmholtz equation, z 2 R2 and
F:L2(X) ? L2(X) is given by
ðFgÞðx̂Þ ¼
Z

X
u1ðx̂; d̂Þgðd̂Þdsðd̂Þ; d 2 X ð2:6Þ
It is well known that the first version of the linear sampling method [1] solves the linear operator equation (2.5) based on the
numerical observation that its solution will have a large norm outside and close to @D. Hence, reconstructions are obtained
by plotting the norm of the solution. However, the problem is that the right-hand side does not in general belong to the range
of the operator F. Kirsch [3] was able to overcome this difficulty with the introduction of a new version of the linear sampling
method based on appropriate factorization of the far-field operator F. In this method, Kirsch is elegantly using the spectral
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properties of the operator F to characterize the obstacle. In particular, the following far-field equation is now used in place of
Eq. (2.5)
ðFHFÞ1=4gz ¼
eip=4ffiffiffiffiffiffiffiffiffi
8pk
p e�ikx̂�z ð2:7Þ
and the spectral properties of F are used for the reconstructions. However, due to noisy data, the discretized version of the
far-field operator F is characterized by numerical instability which may result to false information about its singular system.
In the next section, we will show that we can overcome this difficulty via the a priory determination of a Tikhonov regular-
ization parameter.

3. The fixed-point method for the selection of the Tikhonov parameter

We start by introducing appropriate notation concerning Tikhonov’s method for problems of the form
min
f2Rn
kb� Afk2; A 2 Rk�nðk P nÞ; b 2 Rk; ð3:8Þ
where A is ill-conditioned and has singular values decaying to zero without particular gap in the singular value spectrum. In
its simplest form, Tikhonov’s method amounts to replacing the least squares problem (3.8) by
min
f2Rn
fkb� Afk2

2 þ k2kfk2
2g; ð3:9Þ
where k > 0 is the regularization parameter. Solving (3.9) is equivalent to solving the regularized normal equations
ðAT Aþ k2InÞf ¼ AT b; ð3:10Þ
whose solution is fk = (ATA + k2In)�1ATb, where In is the n � n identity matrix.
Let the SVD of A be
A ¼ URV�;
where U and V are square orthonormal matrices, and R = diag(r1, . . . ,rn), with r1 P r2� � �P rp > rp+1 = � � � = 0,
p = rank(A) 6 n.

Define ai ¼ juT
i bj2 (the squared Fourier coefficient of b), and d0 = k(I � UUT)bk2 (the size of the incompatible component of

b that lies outside the column space of A).
Define also yðkÞ ¼ kfkk2

2; and xðkÞ ¼ kb� Afkk2
2. Then it is easy to see that
xðkÞ ¼
Xp

i¼1

k4ai

ðr2
i þ k2Þ2

þ d2
0; yðkÞ ¼

Xp

i¼1

r2
i ai

ðr2
i þ k2Þ2

: ð3:11Þ
The fixed-point method can be regarded as a realization of a parameter choice rule devised by Regińska [8], who proposed as
regularization parameter a local minimum of the function
WlðkÞ ¼ xðkÞylðkÞ; ð3:12Þ
for proper l > 0. The motivation for using this rule can be supported heuristically noting that when k is small, the squared
solution norm y(k) gets large while x(k) gets small, and Wl(k) is not minimized. Conversely, when k is large, y(k) gets small
while x(k) gets large, and once again Wl(k) is not minimized. This suggests that the minimizer of Wl(k) corresponds to a
good balance between the size of the solution norm and the size of the corresponding residual norm. Regińska proved that
if the curvature of the L-curve is maximized at k = k*, and if the tangent to the L-curve at (logx(k*), logy(k*)) has slope �1/l,
then Wl(k) is minimized at k = k*.

Bazán [9] investigated the properties of Wl(k) and concluded that its minimizers are converging values of a sequence de-
fined by
kjþ1 ¼ /lðkjÞ; j P 0; /lðkÞ ¼
ffiffiffiffi
l
p kb� Afkk2

kfkk2
; k > 0; ð3:13Þ
which gave rise to the fixed-point (FP) algorithm. One of the main advantages of the FP method is that it does not exploit any
knowledge of the norm of the error in g. The main steps of FP can be described as follows:

� Given a proper initial guess, FP starts with l = 1 as a default value, and then proceeds with the iterates (3.13) until the
largest convex fixed-point of /1 is reached (a convex fixed-point is a fixed point of /1 at which the L-curve is locally con-
vex [10]). The choice l = 1 is because in most problems this value yields a regularization parameter that leads to a point
on the L-curve near the corner of maximum curvature.
� If l = 1 does not work (which means /1(k) > k for all k > 0), l is adjusted and the iterations restart; see [9,10] for details.
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Fig. 1. Concave L-curve in all domain and corresponding curve /1.
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Numerical experiments have shown that FP performs well when the L-curve is well-behaved (i.e., when there is a unique
and sharp convex L-corner), and when the convexity regions of the L-curve are well-defined, as often seen in most practical
problems.

However, since minimizers of Wl (when they exist) are points where the L-curve is convex [8,10], it is intuitively clear
that the FP should fail when the L-curve is concave for all k > 0. Such an example is depicted in Fig. 1. In this example, since
the L-curve is concave in the whole domain, the only fixed-point of the function /1 (see dotted line) maximizes W1 and the FP
algorithm fails.

We end this review with some convexity results on the L-curve due to Regińska [8].

� When d0 – 0 the curve is always convex on (0,�) for � sufficiently small and concave on (r1,1).
� When d0 = 0 the L-curve is concave on (0,rn) [ (r1,1). The case d0 = 0 is typical of problems where g 2 RðAÞ and occurs,

e.g., when k = n and A is nonsingular.

More informative results on convexity properties of the L-curve can be found in [10].

4. Numerical method and applications

In this section we shall describe a method for selecting the Tikhonov regularization parameter in connection with Kirsch’s
(F*F)1/4 method [3]. Recall that in practice, the goal of Kirsh’s method is to solve a finite dimensional linear equation
ðeF �deF dÞ1=4g ¼ rz;
for each z in the grid and where rz is given by the right-hand side of Eq. (2.7), eF d is a perturbed finite-dimensional far-field
operator: eF d ¼ Fd þ E 2 Cn�n, and n denotes the number of observed incident fields. We also observe that because the far-
field operator is compact, the singular values of Fd decay quickly to zero and in general there is no particular gap in the sin-
gular spectrum. Taking all these under consideration, the problem we are interested in is to select the Tikhonov regulariza-
tion parameter for
min
g2Rn
fkrz � eAdgk2

2 þ k2kgk2
2g; ð4:14Þ
where for simplicity we denote eAd ¼ ðeF �deF dÞ1=4. The choice of k for the above problem has been done via Morozov’s discrep-
ancy principle [1–3], adapted to the case when the data matrix is corrupted by noise. The strategy is reliable but the noise
level (or some estimate) must be known in advance. However, the norm of the error Ad � eAd is rarely available in practice
(making the discrepancy principle of little use), and rules that do not exploit this information are highly desirable.

In what follows we will discuss how to choose the Tikhonov regularization parameter by using the FP-method and with-
out requiring any knowledge of the noise level in the far-field matrix.

We start with the crucial observation that since eF d is square and nonsingular (since Ad so is ), the linear system
eAdg ¼ rz ð4:15Þ
is always compatible and hence the important constant d0 introduced in the previous section satisfies d0 = 0. To make mat-
ters worse, numerical examples for several reconstruction problems showed that the iteration function /1 has a unique fixed
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point that is a maximizer of W1, making the FP-method unpractical for solving the reconstruction problem. In order to over-
come this difficulty we propose to replace eAd by another matrix, say eBd, with eBd close to Ad in some sense and such that the
constant d0 associated with eBd satisfies d0 – 0. To be precise, let the SVD of eF d be
eF d ¼ eU eR eV � ¼Xn

i¼1

~ri~ui ~v�i
so that eAd ¼
Pn

i¼1

ffiffiffiffiffi
~ri

p
~v i ~v�i . Then if we take eBd to be
eBd ¼
Xm

i¼1

ffiffiffiffiffi
~ri

p
~v i ~v�i ;
with a chosen cut-off index m < n, our proposal is to reconstruct the object by solving (4.14) with eBd in place of eAd and with
the Tikhonov parameter being chosen via the FP-method. The motivation for this choice is that the exact far-field matrix Fd

always has at least one negligible singular value. In what follows this method will be denoted by MKM-FP which stands for
modified Kirsch’s method coupled with the FP-algorithm.

In order to explain why MKM-FP is expected to work, we observe that the constant d0 associated with matrix eBd is given
by d2

0 ¼
Pn

i¼mþ1j~v�i rzj2 and that this value is expected to be very small but nonzero. A by-product of this is that there exists a
vicinity of the origin in which the L-curve is convex and so at least one minimizer of W1 is always guaranteed to exist [8]. In
order to illustrate the fundamental difference of using eBd instead of eAd, we have computed the functions /1 and W1 associ-
ated with (2.7) as well as the corresponding functions associated with MKM-FP which we denote by /ðmÞ1 and WðmÞ1 respec-
tively. The problem considered in this illustration is that of reconstructing the profile of a kite. All these functions are
depicted in Fig. 2.
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Observe from this figure that while /1 has a unique fixed-point that maximizes W1, the function /ðmÞ1 has two fixed-points,
the smallest one being a minimizer and the largest one being a maximizer of WðmÞ1 .

Note that the cut-off index m is chosen to be the largest index in which the quantity
Pn

i¼mþ1j~v�i rzj2 < � for a given toler-
ance �. In our image reconstruction experiments with one object, a tolerance of 1.0e�12 is used.
Fig. 4. Reconstruction results using L-curve and FP shown on a grid of 127 � 127 obtained by interpolating the kgzk2 values.

Fig. 5. Reconstruction results using L-curve and FP shown on a grid of 127 � 127 obtained by interpolating the kgzk2 values.

Fig. 6. Reconstruction results using L-curve and FP for a kite and an ellipse shown on a grid of 159 � 159 obtained by interpolating the kgzk2 values.
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The profile of the kite and its reconstructed version obtained without regularization are shown in Fig. 3. In this example
the far-field matrix eF d is 21 � 21 (i.e., we use 21 incident observed directions), the noise level (in a relative sense) is 4.3% and
the object is located in a grid of 64 � 64 points.

For MKM-FP, only the first 20 singular values and corresponding singular vectors are used, that is the cut-off index m is
20. The results of MKM-FP are displayed in Fig. 4 where we have also included the results obtained by Kirsch’s method where
the L-curve criterion is used for the selection of the Tikhonov regularization parameter.

Our second experiment is concerned with the application of MKM-FP method to the reconstruction of the profile of a pea-
nut from 20 incident fields. Here again we use a grid of 64 � 64 points and a far-field matrix with approximately 2% of noise
(in a relative sense). The results of both L-curve and MKM-FP are displayed in Fig. 5. Note that the cut-off index m = 19 is
used with the same tolerance �.

In our last numerical experiment we reconstruct two objects, a kite and an ellipse, from 50 incident fields. We use a grid
of 80 � 80 and a far-field matrix with approximately 2% of noise. The tolerance � for the cut-off index m is increased to
1.0e�10 due to the larger number of incident fields, and resulted in removing the two smallest singular-value pairs. Recon-
structions using both the L-curve and the MKM-FP are displayed in Fig. 6.

5. Conclusions

We proposed a fixed-point algorithm that selects a Tikhonov parameter associated with the characterization of an impen-
etrable scatterer using Kirsch’s factorization method. Numerical results suggest that the MKM-FP’s cost is extremely modest
(comparing to that of the L-curve) and robust. In addition, our algorithm produces visually satisfactory reconstructions with-
out a-priory knowledge of the noise level, in contrast to the Morozov discrepancy principle that till recently was used by
most researchers [1–3]. Future research will be geared towards extending the method to three dimensional problems.
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