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A crucial problem concerning Tikhonov regularization is the proper choice of the regular-
ization parameter. This paper deals with a generalization of a parameter choice rule due to
Regińska (1996) [31], analyzed and algorithmically realized through a fast fixed-point
method in Bazán (2008) [3], which results in a fixed-point method for multi-parameter
Tikhonov regularization called MFP. Like the single-parameter case, the algorithm does
not require any information on the noise level. Further, combining projection over the
Krylov subspace generated by the Golub–Kahan bidiagonalization (GKB) algorithm and
the MFP method at each iteration, we derive a new algorithm for large-scale multi-
parameter Tikhonov regularization problems. The performance of MFP when applied to
well known discrete ill-posed problems is evaluated and compared with results obtained
by the discrepancy principle. The results indicate that MFP is efficient and competitive.
The efficiency of the new algorithm on a super-resolution problem is also illustrated.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Linear least squares problems of the form
min kg � Afk2
2; A 2 Rm�n; m P n; g 2 Rm; f 2 Rn ð1:1Þ
with A large and ill-conditioned arise in a number of areas in science and engineering. They are commonly referred to as
discrete ill-posed problems and arise, for example, when discretizing first kind integral equations with smooth kernel as
in signal processing and image restoration, or when seeking to determine the internal structure of a system by external mea-
surements, e.g., computerized tomography. In practical applications g represents data obtained experimentally and it is of
the form g ¼ gexact þ e, where e represents noise, gexact denotes the unknown error-free data and Af exact ¼ gexact. Note that
due to the noise and the ill-conditioning of A, the naive least squares solution of (1.1), fLS ¼ Ayg (where Ay denotes the
Moore–Penrose pseudoinverse of A) is dominated by noise and thus some form of regularization is needed in order to obtain
a useful approximation to f exact. The earliest and most known and well established regularization method is that due to Tik-
honov [35] where f exact is approximated by regularized solutions defined as
. All rights reserved.
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fk ¼ argmin
f2Rn

kg � Afk2
2 þ k2kLfk2

2

n o
; L 2 Rp�n; ð1:2Þ
where L, referred to as the regularization matrix, is introduced to incorporate desirable properties on the solution such as
smoothness, and k > 0 is the regularization parameter. Common choices of L include the identity matrix, in which the prob-
lem is said to be in standard form, and discrete differential operators. The proper choice of the regularization parameter is a
nontrivial problem for which several parameter choice methods exist. These include discrepancy principle (DP) [26], which
requires a priori knowledge of the noise level, and a number of methods that do not require this information such as L-Curve
criterion [17], Generalized Cross-Validation (GCV) [13] and Regińska’s parameter choice rule [31]. For recent contributions
which exploit the discrepancy principle the reader is referred to [30,38]. Apart from the above classical approaches, several
works based on other techniques have been proposed including preconditioning, see, e.g., [37], as well as optimization tools
[10,34]. Most of the above methods can be readily implemented using the generalized singular value decomposition (GSVD)
of the matrix pair ðA; LÞ when A and L are small or of moderate size. However, for large-scale problems the GSVD is compu-
tationally demanding and thus iterative or projection methods are preferable; these include [11,16,20,22,27,32], and a meth-
od called GKB-FP [5], which combines projection over the Krylov subspace generated by the Golub–Kahan bidiagonalization
algorithm [14] and fixed-point iterations at each step.

Although Tikhonov regularization has been widely applied to solve ill-posed problems, it has been mostly confined to a
single constraint. However, there are situations where the noise-free solution exhibits several distinct features and a natural
question is how to incorporate them into the regularization approach. In this paper we are concerned with multi-parameter
Tikhonov regularization problems where the minimization problem (1.1) is replaced by
fk ¼ argmin
f2Rn

kg � Afk2
2 þ

Xq

i¼1

k2
i kLifk2

2

( )
; Li 2 Rpi�n; i ¼ 1; . . . ; q; ð1:3Þ
where k ¼ ½k1; . . . ; kq�T , ki > 0, is a vector of regularization parameters. Note that solving (1.3) amounts to solve the regular-
ized normal equations
AT Aþ
Xq

i¼1

k2
i LT

i Li

 !
f ¼ AT g;
whose solution fk is unique when
NðAÞ \ N ðL1Þ \ � � � \ N ðLqÞ ¼ 0; ð1:4Þ
where NðAÞ denotes the null space of A. Condition (1.4) is met, e.g., when one regularization matrix is the identity or when A
has full column rank; throughout the paper (1.4) is always assumed to be true. Applications of formulation (1.3) have ap-
peared in a number of problems such as the determination of geopotentials from precise satellite orbits [36], high-resolution
image reconstruction with displacement errors [25], image super-resolution [39], and estimation of parameters in jump dif-
fusion processes [12]. Like the one-parameter case, the parameter choice rules for the multi-parameter case can be separated
into two classes: rules that exploit a priori knowledge about the noise level and rules that do not exploit this information. As
an example of parameter choice rule that exploit the knowledge of the norm kekwe cite Lu et al. [23], Lu and Pereverzev [24],
and the papers [1,2,9] where the choice of the parameters depends on the structure of the noise. The second class include a
generalization of L-Curve method [6], a multivariate GCV [8], an approach due to Brezinski et al. [8] where the regularized
solution is taken to be a constrained linear combination of one-parameter regularized solutions, and the minimum distance
function approach of Belge et al. [7].

However, to the best of our knowledge, very little is known about efficient algorithms for solving large-scale multi-
parameter Tikhonov regularization problems of the form (1.3). For a first attempt see [32] where an algorithm based on gen-
eralized Arnoldi iterations is proposed. The algorithm looks promising but its efficiency remains to be verified.

The main purpose of this paper is to present a generalization of Regińska’s parameter choice rule to the multi-param-
eter case, which results in a fixed-point method for multi-parameter Tikhonov regularization called MFP, as well as to pro-
pose a GKB-FP type algorithm that is well suited for large-scale multi-parameter problems. Throughout the paper we
assume that no estimate of kek2 is available. The rest of the paper is organized as follows. In Section 2 we review the ori-
ginal Regińska’s parameter choice rule and provide theoretical results which support its generalization to the multi-
parameter case. Our algorithm for large-scale Tikhonov regularization is described in Section 3. In Section 4 the efficiency
of the proposed algorithm is illustrated by comparing our results with the results obtained by other methods. Conclusions
are in Section 5.

2. Generalization of Regińska’s parameter choice rule to multiple parameters and its algorithmic realization

The purpose here is to generalize the parameter choice rule due to Regińska [31] to multi-parameter Tikhonov regular-
ization and to introduce a corresponding algorithmic realization.
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2.1. Brief review of original Regińska’s rule

Let xðkÞ ¼ kg � Afkk2
2 and yðkÞ ¼ kLfkk2

2 where fk solves the one-parameter Tikhonov problem (1.2). Based on the fact that
yðkÞ decreases with k while xðkÞ increases, Regińska [31] proposed as Tikhonov regularization parameter a local minimum of
the function
Fig. 1.
matrix
in the a
WðkÞ ¼ xðkÞyðkÞl; l > 0: ð2:1Þ
Bazán [3] investigated the properties of W and concluded that its minimizers are fixed-points of
/ðk;lÞ ¼ ffiffiffiffi
l
p kg � Afkk2

kLfkk2
; l > 0; ð2:2Þ
which gave rise to the FP-algorithm. Practically, the FP-algorithm proceeds as follows

� Given an initial guess kð0Þ, set l ¼ 1 and calculate the iterations
kðkþ1Þ ¼ /ðkðkÞ; 1Þ; k P 0; ð2:3Þ
until the largest convex fixed-point of /ðk;1Þ is captured.
� If l ¼ 1 does not work, l is adjusted as explained in [3,4] and the iterations restart.

The success of this choice (hence of the FP-algorithm) is supported by the observation that the minimizer of W corresponds
to a good balance between the size of the solution norm and the size of the residual norm, in which case the error in fk with
respect to f exact tends to be minimized. This justifies the excellent performance of the FP-algorithm when compared to other
well respected methods, as reported in [3,4,21]. We recall from [4] that a fixed-point of / is said to be convex when the asso-
ciated L-Curve is locally convex at that point. Typical behavior of curves WðkÞ and /ðkÞ can be seen in Fig. 1 where small cir-
cles are used to highlight the location of the minimizer of WðkÞ and the corresponding fixed-point of /ðk;1Þ.

2.2. Parameter choice rule for multi-parameter case

The previous single-parameter choice rule can be extended to the multi-parameter case by selecting as regularization
parameter a local minimum of the function
WðkÞ ¼ xðkÞy1ðkÞ
l1 y2ðkÞ

l2 � � � yqðkÞ
lq ; li > 0; ð2:4Þ
where fk solves the multi-parameter Tikhonov problem (1.3) and
xðkÞ ¼ kg � Afkk2
2; yiðkÞ ¼ kLifkk2

2; i ¼ 1; . . . ; q: ð2:5Þ
We shall now discuss conditions for a point k ¼ ½k1; . . . ; kq�T to be a local minimizer of function W. Note that the gradient
rWðkÞ can be demonstrated to be
rW ¼ yl1
1 � � � y

lq
q ðJ XþrxÞ; ð2:6Þ
where
J ¼

@y1
@k1

� � � @yq

@k1

..

. . .
. ..

.

@y1
@kq

� � � @yq

@kq

26664
37775; and X ¼

l1
x

y1

..

.

lq
x

yq

0BBB@
1CCCA:
Functions WðkÞ and /ðk;1Þ for i_laplace test problem from [18], n ¼ 256, and data with relative noise level 1%. For this test problem the regularization
is the identity, the selected parameter is k� ¼ 0:0233 and the relative error in fk� is 18.44% (the optimal one is koptimal ¼ 0:0105 and the relative error
ssociated solution is 18.27%).
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Since each partial derivative of yiðkÞ with respect to kj depends on k, sometimes we will denote JðkÞ to highlight the depen-
dence of J on k; the same observation applies for X. For future reference, note that, as
xðkÞ ¼ kg � Afkk2
2 ¼ gT g � 2gT Afk þ f T

k AT Afk; and yiðkÞ ¼ kLifkk2
2 ¼ f T

k LT
i Lifk;
then
@x
@kj
¼ 2

@fk
@kj

� �T

ATðAfk � gÞ; @yi

@kj
¼ 2

@fk
@kj

� �T

LT
i Lifk: ð2:7Þ
The following technical results will be needed.

Lemma 2.1. Under assumption (1.4), the following properties hold

(i) @x ¼ �k2
1
@y1 � � � � � k2

q

@yq
: ð2:8Þ
@kj @kj @kj

the vectors @fk
@kj

, j ¼ 1; . . . ; q are linearly independent if, and only if, the vectors LT
j Ljfk, j ¼ 1; . . . ; q are linearly independent.
(ii)

(iii) J is nonsingular provided that @fk
@kj

, j ¼ 1; . . . ; q are linearly independent.
Proof. Assumption (1.4) implies that (1.3) has a unique solution fk such that
ðAT Aþ k2
1LT

1L1 þ � � � þ k2
qLT

qLqÞfk ¼ AT g: ð2:9Þ
This implies ATðAfk � gÞ ¼ �k2
1LT

1L1fk � � � � � k2
qLT

qLqfk. Now it suffices to multiply this equation by @fk
@kj

� �T
, j ¼ 1; . . . ; q, and then

use (2.7); this proves (i). On the other hand, differentiation of (2.9) with respect to kj leads to
2kjL
T
j Ljfk þ ðAT Aþ k2

1LT
1L1 þ � � � þ k2

qLT
qLqÞ

@fk
@kj

� �
¼ 0: ð2:10Þ
Let B ¼ AT Aþ k2
1LT

1L1 þ � � � þ k2
qLT

qLq. Then (2.10) can be rewritten as
B
@fk
@k1

@fk
@k2

� � � @fk
@kq

� �
¼ �½2k1LT

1L1fk 2k2LT
2L2fk � � � 2kqLT

qLqfk�:
This proves (ii) since by assumption (1.4) B is definite positive. On the other hand, an immediate consequence of (2.10) is
@fk
@ki

� �T

ðAT Aþ k2
1LT

1L1 þ � � � þ k2
qLT

qLqÞ
@fk
@kj

� �
¼ �2kj

@fk
@ki

� �T

LT
j Ljfk:
Using (2.7) we have
@fk
@ki

� �T

ðAT Aþ k2
1LT

1L1 þ � � � þ k2
qLT

qLqÞ
@fk
@kj

� �
¼ �kj

@yj

@ki
; ð2:11Þ
which in matrix form is FTðAT Aþ k2
1LT

1L1 þ � � � þ k2
qLT

qLqÞF ¼ �J diagðk1; . . . ; kqÞ, where F ¼ @fk
@k1

@fk
@k2
� � � @fk

@kq

h i
; this proves (iii) as F

has full column rank. h

In the single-parameter case kLfkk2 is a decreasing function of k. For the multi-parameter case we can use (2.11) to prove
the following similar result.

Corollary 2.2. The partial derivative of yiðkÞ with respect to ki is always negative.
We can now substitute (2.8) in (2.6) to conclude that the gradient of W can be written as
rWðkÞ ¼ yl1
1 � � � y

lq
q J X�

k2
1

..

.

k2
q

0BB@
1CCA

0BB@
1CCA:
Therefore, the necessary condition for the function WðkÞ be minimized at k� ¼ ½k�1; . . . ; k�q�
T – 0,rWðk�Þ ¼ 0, requires that Jðk�Þ

be not singular and
Xðk�Þ ¼

k�1
2

..

.

k�q
2

0BB@
1CCA() k�i

2 ¼ li
xðk�Þ
yiðk�Þ

; i ¼ 1; . . . ; q: ð2:12Þ
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Therefore, if W(k) reaches a maximum/minimum at k�, this k� must be a fixed-point of the vector-valued function
U : Rq ! Rq defined by
UðkÞ ¼

/1ðk;l1Þ
..
.

/qðk;lqÞ

0BB@
1CCA; /iðk; liÞ ¼

ffiffiffiffiffi
li

p kg � Afkk2

kLifkk2
; i ¼ 1; . . . ; q: ð2:13Þ
The question about existence of fixed-points will be addressed geometrically at the end of the section. We now give a
theorem stating conditions for minimizing W.

Theorem 2.3. A sufficient condition for a fixed-point k� of UðkÞ be a local minimizer of WðkÞ is that 2Jðk�Þdiagðk�Þþ
Jðk�ÞHðk�ÞJðk�ÞT be negative definite, where
HðkÞ ¼

k2
1

y1
ð1þ l1Þ k2

2
l1
y1

� � � k2
q

l1
y1

k2
1

l2
y2

k2
2

y2
ð1þ l2Þ � � � k2

q
l2
y2

..

. . .
.

� � � ..
.

k2
1

lq

yq
k2

2
lq

yq
� � � k2

q

yq
ð1þ lqÞ

266666664

377777775:
Proof. If k� is a fixed-point of U(k), the gradient and the Hessian of W(k) at k� can be shown to be
rWðk�Þ ¼ yl1
1 ðk

�Þ � � � ylq
q ðk�ÞJðk�Þ

�k�
2

1 þ /1ðk�Þ
2

..

.

�k�
2

q þ /qðk�Þ
2

0BBB@
1CCCA ¼ 0;
r2Wðk�Þ ¼ �2yl1
1 ðk

�Þ � � � ylq
q ðk�ÞJðk�Þdiagðk�1; . . . ; k�qÞðIq � J/ðk�ÞÞ;
where J/ðkÞ denotes the Jacobian of the function U(k). Using Eq. (2.8) at k� and the fact that yiðk�Þk�2i ¼ lixðk
�Þ the partial

derivative of /iðkÞ with respect to kj can be written as
@/i

@kj
¼ 1

2yi
�k2

1
li

ki

@y1

@kj
� � � � � kið1þ liÞ

@yi

@kj
� � � � � k2

q
li

ki

@yq

@kj

� �
:

Hence, J/ðk�Þ takes the form
J/ðk�Þ ¼ �
1
2

k1
y1
ð1þ l1Þ k2

2
l1

y1k1
� � � k2

q
l1

y1k1

k2
1

l2
y2k2

k2
y2
ð1þ l2Þ � � � k2

q
l2

y2k2

..

. . .
.

� � � ..
.

k2
1

lq

yqkq
k2

2
lq

yqkq
� � � kq

yq
ð1þ lqÞ

26666664

37777775

@y1
@k1

� � � @y1
@kq

@y2
@k1

� � � @y2
@kq

..

.
� � � ..

.

@yq

@k1
� � � @yq

@kq

26666664

37777775:
Thus, the expression for the Hessian of WðkÞ at k� can be rewritten as
r2Wðk�Þ ¼ �yl1
1 ðk

�Þ � � � ylq
q ðk�Þ 2Jðk�Þdiagðk�1; . . . ; k�qÞ þ Jðk�ÞHðk�ÞJðk�ÞT

h i
:

By hypothesis 2Jðk�Þdiagðk�Þ þ Jðk�ÞHðk�ÞJðk�ÞT
h i

is negative definite, sor2Wðk�Þ is positive definite and k� is a local minimizer
of W. h

From [3, Lemma 1], where the original rule of Regińska was investigated, we learned that for l ¼ 1 and k larger than the
largest generalized singular value of the matrix pair ðA; LÞ, it holds /ðk;1ÞP k. This is an useful result that allows us to locate
fixed-points when they exist. A similar result can be provided for the multi-parameter case under certain conditions.

Theorem 2.4. Assume that one regularization matrix, say L1, has full column rank. Let �c1 be the largest generalized singular value
of the matrix pair ðA; L1Þ. Assume also that fk R NðLiÞ, i ¼ 2; . . . ; q. Then for all k ¼ ðk1; . . . ; kqÞ, with k1 > �c1 and ki > 0, it holds
that
/iðk; 1Þ > ki; i ¼ 1; . . . ; q: ð2:14Þ
Proof. Consider the auxiliary Tikhonov problem

�f n ¼ argmin

�f2Rn
fkg � A�fk2

2 þ n2kLk
�fk2

2g; n > 0; ð2:15Þ
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where
Fig. 2.
being a
Lk ¼
k1L1

..

.

kqLq

2664
3775; ki > 0; i ¼ 1; . . . ; q:
It turns out that �f n is unique and �f 1 ¼ fk. Let uðnÞ ¼ kg � A�f nk2=kLk
�f nk2, n > 0. Then for all ki > 0 we have
/iðk; 1Þ2

k2
i

¼ kg � Afkk2
2

k2
i kLifkk2

2

>
kg � Afkk2

2

k2
1kL1fkk2

2 þ � � � þ k2
qkLqfkk2

2

¼ u2ð1Þ; ð2:16Þ
so it suffices to prove that uð1ÞP 1. Let �ck and �x be the largest generalized singular value and corresponding eigenvector of
the matrix pair ðA; LkÞ, respectively. Since due to [3, Lemma 1], it holds that uðnÞP n whenever n P �ck, it suffices to prove
that �ck 6 1. To this end note that the largest generalized singular value of the matrix pair ðA; L1Þ can be characterized as
�c2
1 ¼max

x–0

xT AT Ax

xT LT
1L1x

: ð2:17Þ
Then
�c2
1

k2
1

¼
�xT AT A�x

�xTðk1L1ÞTðk1L1Þ�x
P

xT AT Ax

xTðk1L1ÞTðk1L1Þx
8x – 0 P

xT AT Ax

xTðk1L1ÞTðk1L1Þxþ � � � þ xTðkqLqÞTðkqL1Þx
8x – 0:
But this implies that
�c2
1

k2
1

P max
x–0

xT AT Ax

xTðk1L1ÞTðk1L1Þxþ � � � þ xTðkqLqÞTðkqL1Þx
¼ �c2

k :
Therefore, provided that k1 > �c1, the largest generalized singular value of the matrix pair ðA; LkÞ satisfies �ck < 1, and the the-
orem is proved. h

We stress that though in many problems the regularization matrices are rank deficient, full rank regularization matrices
are also used in several areas, see, e.g., [33]. A practical consequence of Theorem 2.4 is that if all regularization matrices are of
full column rank, then there exists a box B ¼ ½0; �c1� � ½0; �c2� � � � � ½0; �cq�, where �ci denotes the largest generalized singular va-
lue of the matrix pair ðA; LiÞ, such that
/iðk;1Þ > ki with ki > �ci; kj > 0; j – i; i ¼ 1; . . . ; q: ð2:18Þ
This result generalizes Lemma 1 in [3]. Note that, while (2.14) inform us that fixed-points of U cannot fall outside the region
½0; �c1� � Z, where Z ¼ fðk2; . . . ; kqÞ 2 Rq�1 = ki > 0; i ¼ 2; . . . ; qg, (2.18) asserts that fixed-points of U cannot fall outside the
box ½0; �c1� � ½0; �c2� � � � � � ½0; �cq�. Both of these conclusions are important since they help us to detect divergence of our
fixed-point algorithm to be presented in the next section.

We now give a brief discussion about existence of fixed-points. For the sake of simplicity we shall discuss the two-param-
eter case which has a simple and nice geometric interpretation. This can be explained as follows. Consider the planes Pi and
surfaces Si in R3, defined respectively by:
Pi ¼ fðk1; k2; zÞ=z ¼ kig; Si ¼ fðk1; k2; zÞ=z ¼ /iðk;1Þg; i ¼ 1;2:
Let Ci ¼ Pi \ Si. A typical surface z ¼ WðkÞ as well as the projections of Ci onto the plane z ¼ 0 are displayed in Fig. 2; surfaces
Si and planes Pi are shown in Fig. 3.
100
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100

Surface z ¼ WðkÞ (left) and projections of Ci onto the plane z ¼ 0 (right) for i_laplace test problem from [18], n ¼ 256, data with 1% noise, L1 ¼ I and L2

discrete first order differential operator.
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Fig. 3. Surfaces Si and planes Pi for i_laplace test problem.
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Then, based on (2.12), it is apparent that U will have fixed-points, provided that C1 \ C2 is not empty. If this is the case,
every point in the intersection is a fixed-point of U. Note that the intersection C1 \ C2 in Fig. 2 provides two fixed-points of U.

2.3. FP-algorithm for multi-parameter Tikhonov regularization

Our algorithm for the multi-parameter case, denoted hereafter by MFP, follows exactly the same steps as the fixed-point
algorithm for the single-parameter case; it can be roughly described as follows.

� Given an initial guess kð0Þ ¼ ½kð0Þ1 ; . . . ; kð0Þq �
T , set li ¼ 1, i ¼ 1 : q, and calculate the sequences
kðkþ1Þ
i ¼ /iðkðkÞ; 1Þ; i ¼ 1; . . . ; q and k P 0 ð2:19Þ

until a stopping criterion is satisfied

� If kðkÞi diverges for some i;li is adjusted and the iterations restart. Adjustment of li is done similarly as in the single-

parameter case; see [3] for details.

The choice of the initial guess is always a crucial point for iterative methods and there are probably many alternatives for
the initial guess of MFP. Two of these are as follows: (a) choose as initial guess a set of small parameters, say ki ¼ 10�4, and
then proceed as described above, and (b) apply the single-parameter fixed-point algorithm [3,4] to q single-parameter
Tikhonov subproblems, one for each Li, and take the found fixed-points as initial guess. The main advantage of (b) is that
the FP-algorithm for the single-parameter case provides a parameter li – 1 when adjustment is required. Our numerical
experiments are carried out following the second option, where we choose to stop the iterations when the relative change
of consecutive iterates is small, i.e., when
kkðkþ1Þ � kðkÞk2 < e1kkðkÞk2;
where e1 is a small tolerance parameter or, to prevent slow convergence, when
kkðkþ1Þ � kðkÞk2 < e2kkð1Þk2;
where e2 is another small tolerance parameter. Finally, since the computation of the sequence (2.19) requires the function U
to be evaluated repeatedly for several values of k, the regularized solution fk must be calculated efficiently. This can be done
by first noting that problem (1.3) can be rewritten as
fk ¼ argmin
f2Rn

k�g � Akfk2
2; ð2:20Þ
where Ak ¼ ½AT k1LT
1 � � � kqLT

q �
T , and �g ¼ ½gT 0T �T . Proceeding this way, problem (2.20) can be solved efficiently by using the QR

decomposition or the SVD of Ak.
We end this section with a brief discussion on the convergence properties of the iterates (2.19), concentrating, in partic-

ular, on the two-parameter case; the general case can be handled similarly. Obviously, being (2.19) a sequence generated by
fixed-point iteration, no more than local convergence results can be obtained. The key idea of the convergence analysis is to
recognize that the dynamics of the iterates of the multi-parameter case is essentially the same as the dynamics of the iterates
of the one-parameter case. We thus start by considering the one-parameter iterates defined in (2.3), kðkþ1Þ ¼ /ðkðkÞ;1Þ, k P 0.
As usual, we shall assume that the residual norm kg � Afkk2 does not vanish at k ¼ 0, and function /ðkðkÞ;1Þ has a unique
fixed-point that minimizes WðkÞ and a unique fixed-point that maximizes WðkÞ. Let �k and ek denote the minimizer of WðkÞ
and the maximizer of WðkÞ, respectively. Such a situation is illustrated in Fig. 4 (left) for i_laplace test problem. Then, based
on the property that /ðk;1Þ is always an increasing function, the analysis in [3] (see Theorem 2) leads us to the following
conclusions:



10−4 10−2 100
10−4

10−2

100

102

10−4 10−2 100
10−4

10−2

100

102

λ
1

λ 2 C
1

C
2

λλ

Fig. 4. Left: function /ðk;1Þ for i_laplace test problem with the same data as in Fig. 1. Right: convergence regions of iterates (2.19) (shaded area) for the two-
parameter Tikhonov problem. In this case, the test problem is i_laplace with n ¼ 256, the right hand side has 1% noise, L1 ¼ I, and L2 is a discrete first order
differential operator. Curves C1 and C2 are the same as in Fig. 2.
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� the convergence region of the iterates kðkÞ is the open interval �0; ek½.
� kðkÞ converges to �k as far as kð0Þ belongs to the convergence region. If this is the case, either kðkÞ is a decreasing sequence if

kð0Þ 2��k; ek½ (which means /ðkð0Þ;1Þ < kð0Þ) or kðkÞ is an increasing sequence if kð0Þ 2�0; �k½ (which means /ðkð0Þ;1Þ > kð0Þ).

We now turn to the two-parameter case. LetR1 be the region between the curves C1 and C2 and letR2 be the region bounded
by the curves C1 and C2 and by the lines k1 ¼ 0, k2 ¼ 0, see Fig. 4. Then it turns out that the sequence kðkÞi , i ¼ 1;2, will con-
verge to �ki as far as the initial guess kð0Þi , i ¼ 1;2 lies insideR1 [R2, which means either /iðk

ð0Þ
i Þ < kð0Þi , i ¼ 1;2, or /iðk

ð0Þ
i Þ > kð0Þi ,

i ¼ 1;2. In either case, similar to the one-parameter case, convergence is assured because /iðk1; k2Þ is an increasing function
of ki if the other parameter is kept fixed, as follows from Lemma 2.1 and Corollary 2.2.

3. Extending GKB-FP to large-scale multi-parameter Tikhonov regularization

We have seen that MFP requires the problem (2.20) to be solved repeatedly in order to calculate solution and residual
norms for distinct values of the parameters k1; . . . ; kq. The approach is simple and can be implemented efficiently via QR
decomposition or SVD of Ak for small to medium sized problems. However, this does not work for large problems and there-
fore alternative approaches are needed. In this section such an approach is proposed. Specifically, the purpose of this section
is to extend the GKB-FP algorithm to large-scale multi-parameter Tikhonov regularization. GKB-FP combines the Golub–
Kahan bidiagonalization (GKB) algorithm with Tikhonov regularization in the generated Krylov subspace, with the regular-
ization parameter for the projected problem chosen by the one-parameter FP method [3] at each iteration.

Recall that after k < n steps, the GKB algorithm applied to A with initial vector g=kgk2 yields two matrices
Ukþ1 ¼ ½u1; . . . ;ukþ1� 2 Rm�ðkþ1Þ and Vk ¼ ½v1; . . . ;vk� 2 Rn�k with orthonormal columns, and a lower bidiagonal matrix
Bk 2 Rðkþ1Þ�k, such that
b1Ukþ1e1 ¼ g ¼ b1u1; ð3:1Þ
AVk ¼ Ukþ1Bk; ð3:2Þ
AT Ukþ1 ¼ VkBT

k þ akþ1vkþ1eT
kþ1; ð3:3Þ
where ei denotes the i-th unit vector in Rkþ1. The columns of Vk provide an orthonormal basis for the generated Krylov sub-
space KkðAT A;AT gÞ, which is an excellent choice for use when solving discrete ill-posed problems [19].

The main idea behind our extension of GKB-FP for large-scale multi-parameter Tikhonov problems is to produce a finite
sequence of approximate solutions f ðkÞk obtained by minimizing the Tikhonov functional (1.3) over the subspace KkðAT A;AT gÞ.
Therefore the approximate solution f ðkÞk is determined as
f ðkÞk ¼ argmin
f2Kk

kg � Afk2
2 þ

Xq

i¼1

k2
i kLifk2

2

( )
;

which in turn, can be calculated as
f ðkÞk ¼ VkzðkÞk ; zðkÞk ¼ argmin
z2Rk

kb1e1 � Bkzk2
2 þ

Xq

i¼1

k2
i kLiVkzk2

2

( )
; ð3:4Þ
where the last minimization problem is referred to as the projected problem. When L1 ¼ I and Li ¼ 0, i – 1, the method of the
present paper reduces to GKB-FP. Note that if we calculate the QR decomposition of LiVk, LiVk ¼ Q ðkÞi RðkÞi , the norm kLiVkzk2 in
(3.4) can be replaced by kRðkÞi zk2. Proceeding this way, the minimization problem becomes simpler and computation of f ðkÞk via
(3.4) reduces to
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f ðkÞk ¼ VkzðkÞk ; zðkÞk ¼ argmin
z2Rk

kBðkÞk z� �gk2;
where BðkÞk ¼

Bk

k1RðkÞ1

..

.

kqRðkÞq

26664
37775, and �g ¼ b1e1

0

� �
; so zðkÞk can be efficiently computed in several ways, e.g., by a direct method or by first

transforming the matrix BðkÞk to upper triangular form, as done when implementing GKB-FP [5]. In addition, the approximate

solution f ðkÞk and the corresponding residual rðkÞk ¼ g � Af ðkÞk satisfy
kLif
ðkÞ
k k2 ¼ kRkzðkÞk k2; krðkÞk k2 ¼ kBkzðkÞk � b1e1k: ð3:5Þ
For each k P 1 consider the function
UðkÞðkÞ ¼ ½/ðkÞ1 ðk;l1Þ; . . . ;/ðkÞq ðk;lqÞ�
T
;

with
/ðkÞi ðk;liÞ ¼
ffiffiffiffiffi
li

p kBkzðkÞk � b1e1k2

kRðkÞi zðkÞk k2

; i ¼ 1; . . . ; q: ð3:6Þ
Our proposal for large-scale multi-parameter Tikhonov regularization is to follow the same steps as GKB-FP. That is, for cho-

sen p > 1 and k P p, our projection algorithm computes the fixed-point kðkÞ
�

of UðkÞðkÞ that minimizes

WðkÞðkÞ ¼ krðkÞk k
2
2

Qq
i¼1kLif

ðkÞ
k k

2li
2 , following, e.g., MFP, and proceeds by repeating the process until a stopping criterion is satis-

fied. For algorithmic details of GKB-FP, the reader is referred to [5]. Numerical examples have shown that the minimizer of
WðkÞ associated with the large-scale problem is captured in a relatively small number of GKB steps.

To make our proposal computationally feasible, the following aspects must be considered

� the initial guess of the fixed-point method on the projected problem at step kþ 1 is taken to be the fixed-point kðkÞ
�

and
� the QR factorization LiVp ¼ Q ðpÞi RðpÞi is calculated only once at step p, and is updated in subsequent steps.

Algorithms for updating the QR factorization can be found in [15, Chapter 12].

4. Numerical results

We illustrate the effectiveness of our algorithm by considering two-parameter and three-parameter regulariza-
tion cases. Two problems are taken from the Regularization Toolbox [18] and one problem comes from image
super-resolution. For each problem we ran 20 instances with distinct noisy vectors g ¼ gexact þ e where e is a
random vector generated by the Matlab randn function, scaled so that NL ¼ kek=kgexactk ¼ 0:001, 0.01 and 0.025.
For comparison, we also report results obtained by the method of Brezinski et al. (CLC for short) [8], and the method of
Lu and Pereverzev [24] which is based on the discrepancy principle (DP). CLC proposes as approximate solution a linear
combination of one-parameter solutions fki

:

fkðgÞ ¼
Xq

i¼1

gifki
; g ¼ ðg1; . . . ;gqÞ; ð4:1Þ
where
fki
¼ argmin

f2Rn
fkg � Afk2

2 þ qk2
i kLfk2

2; i ¼ 1; . . . qg; ð4:2Þ
with the parameters gi being constrained to g1 þ � � � þ gq ¼ 1. In our implementation of CLC, one-parameter solutions fki
are

computed by the FP method while the parameters gi are computed following the criterion described in [8]. As for the dis-
crepancy principle, the idea is to choose regularization parameters ðk1; . . . ; kqÞ such that the regularized solution fk satisfies
kg � Afkk2 ¼ cd; c P 1; ð4:3Þ
which is a non linear equation with infinitely many solutions. The main difficulty with DP is that it can produce useless solu-
tions if one of the computed parameters is very small, as we will illustrate later.

The starting values for MFP were taken to be the parameters used by CLC in (4.1) and the iterations terminated when
kkðkþ1Þ � kðkÞk 6 kðkÞ10�6. The initial guess and other parameters required by DP are the same as in [24], i.e., we take

kð0Þ1 ¼
ffiffiffiffiffiffiffi
0:2
p

, kð0Þ2 ¼
ffiffiffiffiffiffiffi
0:1
p

, c ¼ 1, c ¼ 0:5 and d ¼ kek2. All computations were carried out on a Core I7 with 3.3 GHz and 8 GB
RAM using Matlab. To describe the results we use the following notation:
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� Ef , �k1, �k2: average values of relative error in fk and average values of computed parameters.
� kM: maximum number of iterations required by MFP to converge or maximum subspace dimension of KkðAT A;AT bÞ after

convergence of the extended GKB-FP algorithm.

4.1. Fredholm integral equations of first kind

We consider two discrete ill-posed problems arising from the discretization of two Fredholm integral equations of the
form
Table 1
Numeri

Ef

�k1
�k2

kM

Table 2
Numeri

Ef

�k1
�k2

kM
Z b

a
Kðs; tÞf ðtÞdt ¼ gðsÞ; c 6 s 6 d; ð4:4Þ
generated by the functions i_laplace and phillips from [18]. Therefore, for each problem there is a triple fA; f exact; gexactg such
that Af exact ¼ gexact. As regularization matrices we choose combinations of the identity matrix I and discrete differential oper-
ators L1;n 2 Rðn�1Þ�n and L2;n 2 Rðn�2Þ�n defined by
L1;n ¼

�1 1
�1 1

. .
. . .

.

�1 1

266664
377775; L2;n ¼

1 �2 1
1 �2 1

. .
. . .

. . .
.

1 �2 1

266664
377775: ð4:5Þ
4.1.1. Inversion of the Laplace transformation
In this case the kernel in (4.4) is Kðs; tÞ ¼ e�st , s; t 2 ½0;1Þ while the right-hand side and corresponding solution are

gðsÞ ¼ 1=ðsþ 1=2Þ and f ðtÞ ¼ e�t=2, respectively, and the associated discrete ill-posed problem is generated by the function
i_laplace (Example 1). For the selected size, n ¼ 256, the numerical rank of A is 36 and the condition number
jðAÞ � 1:4� 1033. As for the regularization matrices, we consider the cases: (i) L1 ¼ I and L2 ¼ L1;n, and (ii) L1 ¼ I and
L2 ¼ L2;n. Numerical results for the case (i) are summarized in Table 1. Note that all algorithms produced results with approx-
imately the same order of accuracy and that the number of iterations required by MFP to converge are quite small (less than
5); concerning DP, it is also fast but we note that the constant c ¼ 1 may prevent convergence, as occurs for NL = 0.001 where
the maximum number of iterations (set to 100) is reached for a few runs. The reason is that the stopping rule for DP with
c ¼ 1, kg � Afk2 < cd, may take too many steps to be satisfied, hence taking c’1 can be more reliable; repeating the exper-
iment with c ¼ 1:1 the maximum number of iterations is 9. The results for case (ii) (Table 2) show that the quality of the
MFP-based solutions is significantly better than the quality produced by both DP and CLC, the worst results being obtained
by CLC. The reason of the poor quality of CLC-based solutions for NL = 0.01 and NL = 0.025 is because the rule used by CLC
was not able to appropriately balance the one-parameter solutions. In this case both MFP and DP take approximately the
same number of iterations to converge.

In the previous section we remarked that DP may lead to useless approximate solutions if one of the parameters kðkÞ1 is
very small. To illustrate such a situation we take the initial guess to be the same as that used by CLC and keep the other
cal results for i_laplace test problem with L1 ¼ I and L2 ¼ L1;n .

NL = 0.001 NL = 0.01 NL = 0.025

MFP CLC DP MFP CLC DP MFP CLC DP

0.0170 0.0632 0.0104 0.0200 0.0597 0.0292 0.0277 0.0754 0.0579

0.0023 0.0023 0.0002 0.0229 0.0231 0.0482 0.0580 0.0584 0.0859
0.0322 0.0322 0.1980 0.3262 0.3257 0.2106 0.8315 0.8265 0.2318
3 – 100 4 – 8 5 – 6

cal results for i_laplace test problem with L1 ¼ I and L2 ¼ L2;n .

NL = 0.001 NL = 0.01 NL = 0.025

MFP CLC DP MFP CLC DP MFP CLC DP

0.0176 0.5148 0.0615 0.0792 1.4898 0.1469 0.0809 1.9383 0.1627

0.0023 0.0023 0.0075 0.0255 0.0231 0.0429 0.0615 0.0584 0.0774
0.3864 0.3868 0.0115 6.7183 6.8705 0.0323 18.0429 17.6902 0.0658
6 – 13 10 – 8 10 – 7



Table 3
Numerical results for i_laplace test problem with L1 ¼ I and L2 ¼ L2;n and the same initial guess as CLC.

NL = 0.001 NL = 0.01 NL = 0.025

MFP DP MFP DP MFP DP

Ef 0.0176 0.4883 0.0792 1.0634 0.0809 1.2596
�k1 0.0023 0.0003 0.0255 0.00000001 0.0615 0.00000002
�k2 0.3864 0.3376 6.7183 1.8030 18.0429 5.1006
kM 6 35 10 42 10 44

Table 4
Average error in one-parameter regularized solutions for i_laplace test problem.

NL = 0.001 NL = 0.01 NL = 0.025

FP DP FP DP FP DP

L ¼ I 0.1552 0.1612 0.1793 0.1866 0.1930 0.1995
L ¼ L1;n 0.0636 0.0127 0.0600 0.0475 0.0758 0.0702
L ¼ L2;n 0.5146 0.6402 1.4897 1.1710 1.9383 1.2348
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starting parameters unchanged. The results displayed in Table 3 are apparent. Note that for NL = 0.01 and NL = 0.025 the
computed solution are dominated by noise (with relative error exceeding 100%). The reason is that �k2

1 practically vanishes
(see Table 3), in which case the solutions determined by DP behave similarly as those determined by DP applied to a
one-parameter problem with the choice L ¼ L2;n, see Table 4. Note that the errors of the solution determined by DP (in bold-
face) for the one-parameter case in Table 4 are close to those shown in Table 3 (in boldface too).

4.1.2. Phillips test problem
This test problem was first studied by Phillips [29] and then analyzed in several places. The kernel is of the form

Kðs; tÞ ¼ uðs� tÞ, s; t 2 ½�6;6�, with
uðtÞ ¼
1þ cosðpt=3Þ; jtj < 3
0; jtjP 3

	
;

while the solution and the right-hand side are f ðtÞ ¼ uðtÞ and
gðsÞ ¼ ð6� jsjÞ 1þ 1
2

cos ps=3ð Þ
� �

þ 9
2p

sin pjsj=3ð Þ:
As before we take n ¼ 256 and consider the same regularization matrices as in cases (i) and (ii) of the inverse Laplace trans-
formation test problem. The data set is generated by phillips function. The results are summarized in Tables 5 and 6. For this
test problem, both MFP and DP converged in a few iterations (as illustrated by kM), and all algorithms performed quite well
for all noise levels.

4.2. Super-resolution image reconstruction problem

High-resolution (HR) images are important in a number of areas such as medical imaging and video surveillance. We con-
sider the problem of estimating an HR image from observed multiple Low-resolution (LR) images. Let the original HR image
of size M ¼ M1 �M2 in vector form be denoted by f 2 RM , and let the k-th LR image of size N ¼ N1 � N2 in vector form be
denoted by gk 2 RN , k ¼ 1;2; . . . ; q, with M1 ¼ N1 � D1, M2 ¼ N2 � D2, where D1 and D2 represent down-sampling factors
for the horizontal and vertical directions, respectively. Assuming that the acquisition process of the LR sequence involves
blurring, motion, subsampling and additive noise, an observation model that relates f to gk is written as [28]
gk ¼ Akf þ �k; ð4:6Þ
where Ak is N �M, and �k stands for noise. To estimate the HR image f from all LR images gk via single-parameter Tikhonov
regularization we solve the problem
fk ¼ argmin
f2RM

fkg � Afk2
2 þ k2kLfk2

2g; ð4:7Þ
where g ¼ ½gT
1 � � � gT

q �
T , A ¼ ½AT

1 � � �A
T
q �

T , and L is an appropriate regularization matrix. Regularization is needed as A is severely
ill-conditioned. Here we estimate the 96� 96 image tree from a sequence of five noisy LR images with D1 ¼ D2 ¼ 2, hence
A 2 R11520�9216. We consider two and three parameter regularization cases involving as regularization matrices the M �M
identity matrix, IM , and the discrete 2D differential operators defined by



Table 6
Numerical results for phillips test problem with L1 ¼ I and L2 ¼ L2;n .

NL = 0.001 NL = 0.01 NL = 0.025

MFP CLC DP MFP CLC DP MFP CLC DP

Ef 0.0097 0.0097 0.0174 0.0262 0.0262 0.0240 0.0477 0.0461 0.0344
�k1 0.0050 0.0048 0.1581 0.0507 0.0494 0.1614 0.1326 0.1247 0.2468
�k2 3.7597 3.7591 0.00003 39.4760 39.3964 0.0009 110.507 109.297 0.1383
kM 4 – 3 5 – 3 9 – 2

Table 7
Numeri

Ef

�k1
�k2
�k3

kM

Table 5
Numerical results for phillips test problem with L1 ¼ I and L2 ¼ L1;n .

NL = 0.001 NL = 0.01 NL = 0.025

MFP CLC DP MFP CLC DP MFP CLC DP

Ef 0.0138 0.0143 0.0100 0.0218 0.0248 0.0238 0.0309 0.0328 0.0339
�k1 0.0049 0.0048 0.0534 0.0502 0.0494 0.1614 0.1274 0.1247 0.2468
�k2 0.1742 0.1741 0.0836 1.7829 1.7806 0.2155 4.5766 4.5476 0.3807
kM 4 – 7 4 – 3 5 – 2

Fig. 5.
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cal results for image super-resolution tree test problem.

NL = 0.001 NL = 0.01 NL = 0.025

A B C A B C A B C

0.0361 0.0274 0.0310 0.0533 0.0493 0.0516 0.0709 0.0720 0.0703

0.0007 0.0007 0.0007 0.0082 0.0086 0.0089 0.0222 0.0238 0.0257
0.0025 0.0026 0.0027 0.0301 0.0335 0.0340 0.0827 0.0970 0.1019
– – 0.0027 – – 0.0351 – – 0.1104
313 207 177 51 47 46 38 41 54

Top: blurred+noise LR image (left), HR image (right). Bottom: estimated images for the cases A (left), B (center) and C (right), respectively. N = 0.001.
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L1 ¼
IM1 	 L1;M1

L1;M1 	 IM1

� �
; L2 ¼

IM1 	 L2;M1

L2;M1 	 IM1

� �
;

where L1;M1 and L2;M1 are as in (4.5). Note that in this case M1 ¼ 96 implies L1 2 R18240�9216 and L2 2 R18048�9216: Hence matrix
Ak in (2.20) becomes too large and the multi-parameter Tikhonov problem (1.3) may not be handled efficiently via QR
decomposition as done in the previous examples. It is precisely for large-scale problems like this that our projection algo-
rithm is useful. For the two-parameter case we consider the choices A: L1 ¼ IM , L2 ¼ L1 and B: L1 ¼ IM , L2 ¼ L2. For the
three-parameter case (labeled by C) we choose L1 ¼ IM , L2 ¼ L1 and L3 ¼ L2. Average results summarized in Table 7 show
that the quality of the computed solutions at each noise level is about the same for the three choices A, B or C. Note that
in accordance with regularizing properties of Krylov methods, the number of iterations tend to decrease as the noise level
grows. Fig. 5 displays one blurred+noise LR image, the true HR image, and three restored HR images, corresponding to
respectively the cases A, B and C. Since the restored images corresponding to the cases A, B or C are nearly indistinguishable
independently of the chosen noise level, we conclude that for this test problem there is no need to apply three-parameter
regularization with regularization matrices as in case C.

5. Conclusions

We presented a generalization of Regińska’s choice rule that resulted in a fixed-point algorithm for multi-parameter Tik-
honov regularization called MFP. The method does not require a priori knowledge of the noise level in the data. The analysis
and the resulting algorithm presented here can therefore be regarded as a natural generalization of the results and algorithm
for the one-parameter Tikhonov problem published in [3]. The numerical results show that multi-parameter Tikhonov reg-
ularization can improve significantly the quality of the standard one-parameter Tikhonov formulation. In particular, the re-
sults show that MFP performs in general better than CLC, and that MFP can produce solutions with accuracy comparable to
that of the discrepancy principle, with the observation that the drawbacks of the discrepancy principle, namely, the need for
a priori knowledge of the error norm kek2 and non-uniqueness of solutions of the discrepancy equation (4.3), are not present
when using MFP. Further, following the main ideas of GKB-FP (which realizes the one-parameter fixed-point method for
large-scale problems), we proposed a GKB-FP type algorithm for large-scale multi-parameter Tikhonov regularization. Fur-
ther investigation of the proposed algorithm is necessary in order to assess its potential; efficient ways to solve the multi-
parameter Tikhonov regularization are the subject of ongoing research. A rigorous analysis about existence of fixed-points
for the multi-parameter case and their classification as done in [4] for one-parameter problems is rather involved and there-
fore postponed to a future work.
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