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a b s t r a c t

Kirsch’s factorization method is a fast inversion technique for visualizing the profile
of a scatterer from measurements of the far-field pattern. We present a Tikhonov
parameter choice approach based on a maximum product criterion (MPC) which provides
a regularization parameter located in the concave part of the L-curve on a log–log scale.
The performance of the method is evaluated by comparing our reconstructions with those
obtained via the L-curve, Morozov’s discrepancy principle and the SVD-tail. Numerical
results that illustrate the effectiveness of the MPC in reconstruction problems involving
both simulated and real data are reported and analyzed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The linear sampling method introduced in [1] and further clarified in [2] is one of the major visualization algorithms for
solving inverse obstacle scattering problems in the resonance region. Themethod involves the solution of a linear Fredholm
equation of the first kind, the far-field equation, which is written for each point inside the scatterer and whose integral
kernel is the far-field pattern, i.e. far-field data that are usually contaminated with significant noise. In addition, it works
independently of the kinds of boundary conditions involved and requires no a priori knowledge of the physical properties
of the scatterer. Further, unlike for nonlinear methods, factors that can compromise robustness such as local minima and
an inaccurate choice of the initial guess are not present. A difficulty with the linear sampling method is that the far-field
equation in general is not solvable; however the problem of what happens when the sampling point z is in the exterior of
the scatterer was addressed in [3]. This difficulty was remedied by [4] who introduced a new linear samplingmethod named
the factorization method. A rigorous convergence analysis for the case of acoustic scattering by sound-soft obstacles can be
found in [4]. For more recent contributions, the reader is referred to [5] and references therein.

It is well known that every numerical implementation of an inverse scattering method requires at some point
regularization in order to cope with the ill-posedness of the problem, and the factorization method is not an exception. In
most numerical applications of the factorizationmethod, Tikhonov regularization has been employed and the regularization
parameter was computed via Morozov’s generalized discrepancy principle, which involves the computation of the zeros of
the discrepancy function at each point of the grid [2]. In addition, the noise level in the data should be known a priori,
something that in real life applications is not the case in general. There exist some alternative parameter selection criteria
that avoid knowledge of the noise level and consequently give rise to the so-called heuristic parameter choice rules;
these include the generalized cross-validation introduced in [6], the fixed-point method in [7] and the L-curve in [8]; an
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application of the L-curve method in inverse elastic scattering can be found in [9]. More recently, Fares et al. [10] developed
a new heuristic algorithm, the SVD-tail one, based on the combined presence of error in the operator and eigenvalue
clusters corresponding to a singular subspace associated with a few small singular values. The main feature of the SVD-
tail procedure is that the pointwise solution of the far-field equation is never explicitly constructed, and hence the method
is computationally efficient; one of its disadvantages though is that the quality of the reconstruction depends on the chosen
dimension of the singular subspace. For a fast reconstruction algorithm that rejects the smallest singular values of the finite
far-field operator and applies the fixed-point method for selecting the regularization parameter, the reader is referred to
Leem et al. [11].

In this work we propose a new Tikhonov parameter choice rule for Kirsch’s factorization method named the maximum
product criterion (MPC). The new criterion needs computation of the regularized solution norm and the corresponding
residual norm and selects the parameter which maximizes the product of these norms as a function of the regularization
parameter; its main virtue is that it constructs regularized solutions of either large or small norm depending on whether
a certain inclusion condition is satisfied or not. In addition, it does not depend on user specified input parameters (like
subspace dimension or truncating parameter) and requires no a priori knowledge of the noise level.

Weorganize our paper as follows. Section2will be devoted to the formulation of the problemand abrief description of the
factorizationmethod. Subsequently, Section 3will dealwith the description ofMPC as a parameter choice rule, concentrating
on certain properties of the L-curve that explainwhy the criterion is expected toworkwell. In Section 4,wewill be concerned
with theoretical properties onwhichMPC relies aswell aswith its implementationwithin the framework of the factorization
method. In order to show the effectiveness of our method, in Section 5, we will present numerical examples for the case of
impenetrable and penetrable scatterers and we will compare the reconstructions obtained via MPC with the ones obtained
by means of the L-curve criterion, the Morozov generalized discrepancy principle and the SVD-tail. In our experiments
we will use simulated data obtained by means of the Nyström method [12] as well as real data. The real data are made
available by the Electromagnetics Technology Division, Sensors Directorate, Air Force Research Laboratory, Hanscom Air Force
Base, Massachusetts, and are known by the name of The Ipswich Data [13]. We will finally list our conclusions in Section 6.

2. A brief description of Kirsch’s factorization method

It is well known that the propagation of time-harmonic acoustic fields in a homogeneous medium, in the presence of a
sound-soft obstacle D, is modeled by the exterior boundary value problem (direct obstacle scattering problem)

△2 u(x) + k2u(x) = 0, x ∈ R2
\ D̄ (1)

u(x) + ui(x) = 0, x ∈ ∂D (2)

where k is a real positive wavenumber and ui is a given incident field, that in the presence of D will generate the scattered
field u. In addition, the scattered field u will satisfy the Sommerfeld radiation condition

lim
r→∞

√
r


∂u
∂r

− iku


= 0 (3)

where r = |x|, x ∈ R2
\ D̄, and the limit is taken uniformly for all directions x̂ = x/|x|.

The Green’s formula implies that the solution u of the direct obstacle scattering problem above has the asymptotic
behavior [12]

u(x) = u∞(x̂)
eikr
√
r

+ O(r−3/2) (4)

for some analytic function u∞, called the far-field pattern of u, given by

u∞(x̂) =
−eiπ/4

√
8πk


∂D

∂u
∂n

(y)e−ikx̂·y ds(y) (5)

for x̂ = x/|x| on the unit sphere Ω . In the case of the inverse problem, it represents the measured data. In particular, the
inverse problem that will be considered here is the problem of finding the shape of D from a complete knowledge of the
far-field pattern.

We now define the far-field equation

(Fgz)(x̂) =
eiπ/4

√
8πk

e−ikx̂·z, z ∈ R2 (6)

where the right hand side is the far-field pattern of the fundamental solution of the Helmholtz equation given by

Φ(x, z) =
i
4
H(1)

0 (k|x − z|), x ≠ z (7)
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in which H(1)
0 is the Hankel function of order zero and of the first kind. Moreover F : L2(Ω) → L2(Ω) is given by

(Fg)(x̂) =


Ω

u∞(x̂; d̂) g(d̂) ds(d̂), d̂ ∈ Ω. (8)

It is well known that the first version of the linear sampling method [1] solves the linear operator Eq. (6) on the basis of
the numerical observation that its solution will have a large L2-norm outside and close to ∂D. Hence, reconstructions are
obtained by plotting the norm of the solution. However, the problem is that the right hand side does not in general belong
to the range of the operator F . Kirsch [4] was able to overcome this difficulty with the introduction of a new version of the
linear sampling method based on appropriate factorization of the far-field operator F . In this method, Kirsch elegantly uses
the spectral properties of the operator F to characterize the obstacle. In particular, the following linear operator equation is
now used in place of Eq. (6):

(F ⋆F)1/4gz =
eiπ/4

√
8πk

e−ikx̂·z (9)

and the spectral properties of F are used for the reconstructions. To be more specific, since F is normal and compact, which
guarantees the existence of a singular system {σ c

j , uc
j , v

c
j }, j ∈ N, of F with vc

j = sjuc
j and sj ∈ C with |sj| = 1, then the

characterization of the object depends on a range test as described in the following theorem due to Kirsch [4].

Theorem 2.1. For any z ∈ R2 let Φz denote the right hand side of Eq. (9). Assume that k2 is not a Dirichlet eigenvalue of −∆2
in D, i.e. the corresponding homogeneous problem has only the trivial solution. Then a point z ∈ R2 belongs to D if and only if the
series

∞
j=1

|(Φz, v
c
j )|

2

σ c
j

(10)

converges, or equivalently, z ∈ D if and only if Φz belongs to the range of the operator (F∗F)1/4.

Moreover, from themain result of [14], if one considers the partial sum of the first n terms of the series, it follows that for
large n the partial sum must be large for z outside D and small for z inside. Hence, the characterization of the object can be
done by inspecting those z forwhich the partial sums are large; the same idea is followedwhenKirsch’s factorizationmethod
is implemented in a finite dimensional framework, i.e., in the finite case we deal with a finite dimensional counterpart of
(9):

(F ⋆
q
Fq)1/4g = rz, (11)

and the object is identified by computing the finite series (or equivalently the squared solution norm of (11))
n

j=1

|(rz, vj)|
2

σj
, (12)

separating large values from small ones. Here Fq is a perturbation of a finite dimensional approximation to the far-field
operator:Fq = Fq + E ∈ Cn×n, where Fq has singular values decaying quickly to zero, n denotes the number of observed
incident fields and the number of outgoing directions, and {σj, uj, vj}

n
j=1 denotes a singular system ofFq.

However, since the far-field data are corrupted by noise, the approachmay lead to a significant loss of accuracy when the
method is applied without regularization. In the next section, we will show that we can overcome this difficulty by using
Tikhonov regularization in conjunction with an appropriate parameter choice rule.

3. The maximum product criterion for the selection of the Tikhonov regularization parameter

We start with some notation concerning the Tikhonov method for finite dimensional problems of the form

min
f∈Cn

∥b − Af ∥2, A ∈ Cm×n (m ≥ n), b ∈ Cm, (13)

where A is ill-conditioned and has singular values decaying to zero without a particular gap in the singular value spectrum.
In its simplest form, Tikhonov’s method amounts to replacing problem (13) by

min
f∈Cn

{∥b − Af ∥2
2 + λ2

∥f ∥2
2} (14)

where λ > 0 is the regularization parameter. Solving (14) is equivalent to solving the regularized normal equations

(A∗A + λ2In)f = A∗b, (15)

from which we obtain the so-called regularized solution fλ = (A∗A + λ2In)−1A∗b. Here In is the n × n identity matrix and ∗

denotes the complex conjugate transpose.
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Let the singular value decomposition (SVD) of A be

A = UΣV ∗

where U = [u1, . . . , um], V = [v1, . . . , vn] are orthonormal matrices, and Σ = diag(σ1, . . . , σn), with σ1 ≥ σ2 · · · ≥ σp >

σp+1 = · · · = 0, p = rank(A) ≤ n. Define αi = |u∗

i b|
2 (the squared Fourier coefficient of b), and δ0 = ∥(I−UU∗)b∥2 (the size

of the incompatible component of b that lies outside the column space of A). Define also y(λ) = ∥fλ∥2
2, and x(λ) = ∥b−Afλ∥2

2.
Then

x(λ) =

p
i=1

λ4αi

(σ 2
i + λ2)2

+ δ2
0, y(λ) =

p
i=1

σ 2
i αi

(σ 2
i + λ2)2

, (16)

and the derivative with respect to λ of these (for λ > 0) is

x′(λ) = 4λ3
p

i=1

σ 2
i αi

(σ 2
i + λ2)3

> 0, y′(λ) = −4λ
p

i=1

σ 2
i αi

(σ 2
i + λ2)3

< 0. (17)

Thus

dy/dx = −1/λ2. (18)

We now turn our attention to Tikhonov regularization in connection with Kirsch’s method in a finite dimensional
framework. In this case, the problem to be solved is (see (11))

min
g∈Cn

{∥rz −Aq g∥2
2 + λ2

∥g∥2
2} (19)

for a proper regularization parameter, whereAq = (F∗
q
Fq)1/4. The choice of λ has been made via Morozov’s generalized

discrepancy principle (GDP) [1,2,4] where the regularization parameter is shown to depend on the noise in the data; the
difficulty with GDP is that in real world problems such a noise level is not always available. In these cases, GDP may lead to
significant loss of accuracy when the noise level is not correctly estimated.

Our goal is thus to propose a method for the determination of a regularization parameter without relying on any
knowledge concerning the noise level. It is obvious that for a selection parameter rule to be successful in our context, the
corresponding regularized solution norm should behave similarly to the solution norm of (11) in the casewhere the far-field
matrix is free of noise. That is, it would be important to select the regularization parameter in such a way that

For z outside and close to D the regularized solution gλ,z of (19) has
a large norm (12), while for z inside D, gλ,z has a small norm. (P)

Our method, to be stated below, relies on the following assumptions:

A1. All singular values ofFq are distinct andFq is non-singular.
A2. The available data contain reliable information in the sense that

∥Aq −Aq∥2 ≪ ∥Aq∥2.

Assumption A1 is supported by the fact that perturbedmatrices are rarely singular and rarely havemultiple singular values.
A2 essentially means that the noise is much smaller than the signal, a practically necessary condition for any successful
calculation.

In order to proceed we shall now introduce some definitions and notation. In fact, for fixed z and λ ≥ 0, let the squared
residual norm and the squared solution norm be denoted by x(λ) and y(λ), respectively, that is,

x(λ) = ∥rz −Aq gλ,z∥
2
2, y(λ) = ∥gλ,z∥

2
2. (20)

These functions are monotonic (by virtue of (17)) and satisfy [8]

(i) 0 < y(λ) ≤ ∥gz∥2
2, (ii) 0 ≤ x(λ) ≤ ∥rz∥2

2. (21)

Heregz is the unregularized solution of (11). Consider now the function

Ψ (λ) = x(λ)y(λ), λ ≥ 0 (22)

and observe that because x(0) = 0 due to A1 and that limλ→∞ y(λ) = 0 due to (16), it holds that

Ψ (0) = 0 = lim
λ→∞

Ψ (λ).

Since y(λ) is decreasing and x(λ) is increasing, a consequence of the result above concerning Ψ is that there exists a point λ
at which Ψ is maximized. An analysis concerning optimality conditions for maximizing Ψ is postponed to the next section;
here we restrict ourselves to formally stating/discussing our parameter choice rule, called the maximum product criterion
(MPC), which consists of selecting as the regularization parameter the maximizer of the function Ψ .
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Fig. 1. The L-curve for an inverse scattering problem for a grid point z outside D (left), curve (λ, Ψ (λ)) for a grid point z outside D (center), and curve
(λ, Ψ (λ)) for a grid point z inside D (right). The point corresponding to the maximum of Ψ is denoted by a small circle.

As we will see later, the main virtue of MPC is that it delivers small regularization parameters for z outside D (which
results in regularized solutions of large norm) and relatively large regularization parameters for z inside (which results in
regularized solutions of small norm), that is, the main virtue of MPC is that it enjoys property (P). This can be explained by
the fact that there is a close relationship between the curve (λ, Ψ (λ)) and the L-curve on a log–log scale. Let mL(λ) denote
the slope of the L-curve at the point (u(λ) = log x(λ), v(λ) = log y(λ)). Then it is easy to see that [7]

mL(λ) =
dv
du

=

−
x(λ)

λ2y(λ)
if λ > 0,

0 if λ = 0

where mL(0) = 0 because of assumption A1. As a consequence, the L-curve will be flat when |mL(λ)| is small and almost
vertical when |mL(λ)| becomes large. Indeed, for the problem under consideration it can readily be proved that the L-curve
is concave and flat for λ ranging from zero to the smallest singular value ofAq, and concave for λ larger than or equal to
∥Aq∥2—see, e.g., [15]; a typical L-curve for our problem for z outside D is shown in Fig. 1.

Due to the behavior of the slopemL it is therefore clear that for values of λ corresponding to the flat part, relatively small
changes in the solution norm correspond to relatively large changes in the residual norm,while for values ofλ corresponding
to the vertical part, large changes in the solution norm correspond to small changes in the residual norm. Hence, the choice
of a reasonable regularization parameter should be focused on the region of the L-curvewhere the slope of the graphs begins
to decrease more rapidly and the L-curve becomes vertical, or equivalently, on the region where both norms remain almost
unchanged or equilibrated. Our criterion relies on the observation that these norms remain almost unchanged in the region
whereΨ is maximized; see Fig. 1. Note that themaximum is relatively large for z outsideD and ofmoderate size for z inside.
In addition, note that while the maximizer of Ψ depicted in the center gets small, the maximizer of Ψ depicted on the right
gets large.

On the basis of the discussion above, we see that two qualitatively similar imaging parameters can be used in order to
identify the scatterer. The first one is given by the mapping

z → λ(z) (23)
and the second one is given by the mapping

z → W (z) = 1/∥gλ,z∥
2. (24)

Both imaging parameters are small for z outside D and large for z inside. Hence, the identification of the object is done by
plotting the imaging parameters looking for those z for which the parameters are large. A typical behavior of the parameter
λ determined according to MPC for an inverse scattering problem, to be discussed in detail later, is shown in Fig. 2.

4. Analysis of MPC

In this section we analyze some supporting properties of MPC. The assertions of following lemma are a consequence of
(18) and differentiation with respect to λ.

Lemma 4.1. For fixed z and λ ≥ 0 define the functions φ and ϕ by

φ(λ) =
∥rz −Agλ,z∥2

∥gλ,z∥2
, ϕ(λ) = −λ2y(λ) + x(λ).

Then the function Ψ in (22) satisfies

Ψ ′(λ) = ϕ(λ)y′(λ), (25)

Ψ ′′(λ) = [−2λ + 2φ(λ)φ′(λ)]y(λ)y′(λ) + [−λ2
+ φ2(λ)][y(λ)y′(λ)]′. � (26)

This results in necessary and sufficient conditions for a maximum of Ψ .
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Fig. 2. MPC regularization parameter (in columnwise form) for an inverse scattering problem.

Theorem 4.2. Let the far-field matrixFq have a finite singular system {σj, uj, vj}. Then the following assertions hold:

(a) Function Ψ has at least one critical point inside (
√

σn,
√

σ1) and at most one critical point inside (
√
3
3

√
σ1,

√
σ1).

(b) There exists a local maximum of Ψ at λ if and only if ϕ(λ) = 0 and φ′(λ) > 1.

Proof. Note that becauseAq depends onFq, its singular system is of the form {
√

σj, vj}. Hence, the squared solution norm of
the Tikhonov problem (19) and the corresponding squared residual norm are (see (16))

y(λ) =

p
i=1

σiαi

(σi + λ2)2
, x(λ) =

p
i=1

λ4αi

(σi + λ2)2
, (27)

where αi = |v∗

i rz |
2. Thus

ϕ(λ) = −λ2y(λ) + x(λ) =

n
j=1

λ2(λ2
− σi)αi

(σi + λ2)2
.

But since the squared solution norm y(λ) decreases with λ, which implies that y′(λ) ≠ 0, λ > 0, by virtue of (17), it turns
out that the critical points of Ψ , if any, are roots of ϕ due to (25). Now note that ϕ(λ) ≥ 0 if λ ≥

√
σ1 and ϕ(λ) ≤ 0 if

λ ≤
√

σn. Note also that
√

σ1 and
√

σn, respectively, cannot be roots of ϕ since by assumption A1 all singular values are
distinct. This implies that ϕ must have at least a root inside (

√
σn,

√
σ1). On the other hand, using (18) and (27) we get

ϕ′(λ) = −2λy(λ) − λ2y′(λ) + x′(λ)

= −2[λy(λ) + x′(λ)] = −2
n

j=1

λσi(3λ2
− σi)αi

(σi + λ2)3
,

where the last equality is obtained by computing x′(λ) using (27) and then rearranging the terms. This shows that ϕ′(λ)

does not change sign inside (
√
3
3

√
σ1,

√
σ1). Thus, ifΨ has a critical point inside this interval, this critical point is unique and

the proof of (a) is complete.
To prove assertion (b), observe from (25) thatλ is a critical point of Ψ if and only if ϕ(λ) = 0, this being true if and only

if φ(λ) = λ. Therefore, at the pointλ, by (26) we have Ψ ′′(λ) < 0 iff φ′(λ) > 1, and (b) is proved. �

Corollary 1. Assume that Ψ has a local maximum at λ. Then there exists a vicinity of λ on which the L-curve on a log–log scale
is locally concave.

Proof. We know from [16] that the L-curve is locally concave at λ if and only if φ′(λ) >
φ(λ)

λ
. Now observe that since Ψ has

a local maximum atλ, then φ(λ) = λ (as ϕ(λ) = 0) and φ′(λ) > 1 =
φ(λ)λ , which proves the corollary. �

For problem (14) with general matrix A satisfying δ0 = 0, it is known that the associated L-curve is concave on (0, σn) ∪

(σ1, ∞) [15]; nothing very specific can be said about concavity/convexity when λ ∈ [σn, σ1] [16,15]. However, for the
inverse scattering problem under consideration, Corollary 1 indicates that the L-curve is concave on (0,

√
σn)∪ (

√
σ1, +∞)

and locally concave on [
√

σn,
√

σ1]. This suggests that in inverse scattering the L-curve may be concave in all domains and
justifies the behavior of the L-curve plot displayed in Fig. 1.

We now state a theorem that relates the regularized solution norm associated with MPC and the one determined by the
generalized discrepancy principle. For this, set ϵ = ∥Aq − Aq∥2 and use singular value perturbation theory [17] to obtain

σ
(e)
i − ϵ ≤

√
σi ≤


σ

(e)
i + ϵ, i = 1, . . . , n
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where σ
(e)
i denotes the ith singular value of Fq. Next, since σ

(e)
n usually vanishes for moderate n, deduce that a reasonable

lower bound for ϵ is
√

σn ≤ ϵ. Finally, on the basis of Theorem 4.2-(a) conclude that, if
√

σn < ϵ then the maximizer of Ψ

belongs either to (
√

σn, ϵ] or to [ϵ,
√

σ1).

Theorem 4.3. For fixed z let λ
(z)
MPC and λ

(z)
GDP denote the regularization parameter associated with MPC and GDP, respectively.

Assume that
√

σn < ϵ. Then

∥g
λ
(z)
MPC

∥2 ≤ ∥g
λ
(z)
GDP

∥2 ≤ ∥gz∥2, if λ
(z)
MPC ≥ ϵ, (28)

where gz denotes the solution of (11)when the far-fieldmatrix is free of noise, while if λ
(z)
MPC < ϵ, there exists a number K = K(z),

K > 1, such that

∥g
λ
(z)
GDP

∥2 ≤ ∥g
λ
(z)
MPC

∥2 ≤


1 + K 2

2
∥gz∥2. (29)

Proof. The right inequality in (28) is a well-known result attributed to Morozov’s discrepancy principle that holds
independently of the condition λ

(z)
MPC ≥ ϵ [4]. So it remains to prove the left inequality. For this, observe that while for

DPwe have [4] φ(λ
(z)
GDP) = ∥Aq −Aq∥2, for MPCwe have φ(λ

(z)
MPC) = λ

(z)
MPC. Thus φ(λ

(z)
MPC) ≥ φ(λ

(z)
GDP), where we have used the

assumption that λ
(z)
MPC ≥ ϵ. But since φ is an increasing function [16], then λ

(z)
MPC ≥ λ

(z)
GDP and the required inequality follows

on noting that the regularized solution norm is decreasing.
We now prove the right inequality in (29). In fact, since ϕ(λ

(z)
MPC) = 0 implies

[λ
(z)
MPC]

2
∥g

λ
(z)
MPC

∥
2
2 = ∥rz −Aq gλ

(z)
MPC

∥
2
2,

and since the Tikhonov functional (19) is minimized at g
λ
(z)
MPC

, we have

2[λ(z)
MPC]

2
∥g

λ
(z)
MPC

∥
2
2 = ∥rz −Aq gλ

(z)
MPC

∥
2
2 + [λ

(z)
MPC]

2
∥g

λ
(z)
MPC

∥
2
2

≤ ∥rz −Aq gz∥2
2 + [λ

(z)
MPC]

2
∥gz∥2

2

= ∥(Aq −Aq)gz∥2
2 + [λ

(z)
MPC]

2
∥gz∥2

2,

which implies

2[λ(z)
MPC]

2
∥g

λ
(z)
MPC

∥
2
2 ≤ (ϵ2

+ [λ
(z)
MPC]

2)∥gz∥2
2. (30)

Thus, if λ(z)
MPC < ϵ, there exists a constant K > 1 such that ϵ = Kλ

(z)
MPC, and the required inequality follows from (30). Finally,

if ϵ > λ
(z)
MPC = φ(λ

(z)
MPC), asφ is an increasing functionλ

(z)
MPC ≤ λ

(z)
GDP, and the left inequality in (28) follows from themonotonic

behavior of the regularized solution norm. �

Recall that the identification of the object via Kirsch’s method depends on a separation of large imaging parameters
from small ones. Hence, if we consider the imaging parameters (23) and (24) associated with MPC and GDP, respectively,
a consequence from Theorem 4.3 is that such a separation is more appealing in the MPC case than in the GDP case. To be
more precise, assume first that λ

(z)
MPC < ϵ (which is likely to occur for z outside D). Then it follows from (29) that the MPC’s

imaging parameters are smaller than those corresponding to GDP. On the other hand, if λ(z)
MPC > ϵ (which is likely to occur

for z insideD), then inequality (28) indicates that theMPC’s imaging parameters are larger than those corresponding to GDP.
A typical behavior of the imaging parameters (23) for MPC and GDP, respectively, obtained when reconstructing a kite, to
be described later, is illustrated in Fig. 3.

We end the section with the observation that the maximizer of Ψ can be determined as a root of the function ϕ(λ)
introduced in Lemma 4.1 by using, e.g., the Newton method, the secant method or another approach. Alternatively, as the
maximizer ofΨ is a fixed point ofφ, thismaximizer can be determined by using the improved fixed-pointmethod described
in [16]. A further alternative is to use optimizationmethods in several ways. For example, if we define for each z the function

h(λ) = (λ − φ(λ))2,
√

σn ≤ λ ≤
√

σ1, (31)

then the maximizer of Ψ can be determined by finding the minimum of h. We will always rely on the assumption that the
L-curve is strictly concave in all domains, as illustrated in Fig. 1; when this is the case, following the analysis in [16] it is easy
to prove thatΨ has a uniquemaximizer that is a nonzero fixed point ofφ. For further details concerning convexity/concavity
properties of the L-curve, the reader is referred to [16].
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Fig. 3. Regularization parameters (in columnwise form) for an inverse scattering problem.

5. Numerical applications

In this sectionwe shall illustrate the effectiveness of an implementation ofMPCwhere themaximizer ofΨ is determined
as a root of ϕ(λ) by using the regula falsi method.

5.1. Reconstructions using synthetic data

In order to simulate perturbed data, we generate Gaussian randommatrices E1, E2 and use a far-field matrix defined byFq = Fq + δ(E1 + i E2)∥Fq∥2 δ > 0,

where δ is given and where Fq is constructed by using the Nyström method [12]. As indicated in [12], the Nyström method
not only requires less computational effort compared to collocation and Galerkin methods but also is generically stable in
the sense that it preserves the condition of the integral equation. We first report an image reconstruction experiment of
a sound-soft obstacle. In this case the object to be reconstructed is a kite located in a grid of 50 × 50 points, the far-field
matrixFq is 21× 21 (i.e., we use 21 incident and observed directions), and the relative noise level inFq is 1% (which implies
a relative noise level inAq of approximately 8%).

The profile of the kite and its reconstructed version obtained by the L-curve method are shown in Fig. 4(a) and (b). The
regularization parameter for the L-curve is determined via the function l− curve which is included in the Regularization
Toolbox in [18]. Reconstructions of the kite via MPC are also shown in Fig. 4(c) and (d), in which, for comparison purposes,
we have included reconstructions obtained through the imaging parameters (23) and (24). Note that the only difference
between the two objects shown at the bottom of Fig. 4 is their size, whereas the qualities of the reconstructions are
essentially the same.

We also illustrate the effectiveness of MPC when noise contamination is high. To this end we consider the same
reconstruction problem butwith the noise level inFq increased to 20% (which implies a relative noise level inAq of 38%). This
example is also useful for illustrating that Morozov’s discrepancy principle (GDP) can fail if the noise level is not correctly
estimated. The results of the experiment displayed in Fig. 5 show that GDP leads to a significant loss of accuracy, as expected,
a result that does not occur with MPC which still manages to deliver a reasonable reconstruction.

So far we have presented numerical experiments in which MPC was compared with relatively old parameter selection
algorithms like the L-curve and theMorozov discrepancy principle. For the sake of completeness wewill now compareMPC
with the recently proposed SVD-tail procedure [10]. For the convenience of the reader and ease of presentation of the results
we will start with a brief review of the SVD-tail procedure. Essentially, the SVD-tail procedure selects the dimension d of a
subspace spanned by the d left singular vectors ofFq corresponding to the d smallest singular values, and uses an imaging
parameter defined by the map

z → τ(z) = 1/∥θ1(z), . . . θd(z)∥2, (32)

where the θj(z) are the Fourier coefficients of rz with respect to the basis of the chosen subspace. In order tomotivate the use
of τ(z) as an imaging parameter, Fares et al. [10] argue that the discrete Picard condition cannot be assumed in this case and
proceed by remarking that for large j the values of |θj(z)| stabilize, remaining small for z inside the object and significantly
nonzero for z outside; see Figure 1 in [10].

Fig. 6 shows the reconstruction of the kite from 300 observed incident directions and data contaminated by 5% noise. We
illustrate the method for d = 5, 10, 15, 20, 25. It becomes apparent that the SVD-tail procedure does not yield satisfactory
results. In order for the SVD-tail procedure to work it is important for the Fourier coefficients θj for z inside the object to
differ significantly in magnitude from those for z outside. In particular, the Fourier coefficients for interior points should be
very close to zero but significantly larger for exterior ones [10]. A closer look at the Fourier coefficients for the kite problem
(see Fig. 7) reveals that there is no significant change in their magnitude for either interior or exterior z. In addition, the
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Fig. 4. (a) Profile of a kite. (b) Image of the map z → 1/∥g
λ
(z)
LC

∥
2
2 . (c) Image of the map z → λ

(z)
MPC . (d) Image of the map z → 1/∥g

λ
(z)
MPC

∥
2
2 .

Fig. 5. Results from Morozov’s generalized discrepancy criterion and MPC for highly noisy data. For GDP we use 0.15ϵ as an estimate of the noise level.

Fig. 6. Comparison of the SVD-tails for different values of the smallest d singular values of the coefficient matrix and MPC for the kite.

coefficients corresponding to an interior point z are a considerable distance from 0. This is what the authors believe is the
reason for the SVD-tail procedure not producing favorable reconstructions. We now continue our numerical experiments
by attempting to reconstruct two sound-soft obstacles. In this case the objects to be reconstructed are two circles located in
a grid of 50 × 50, the far-field matrixFq is again 21 × 21, and the relative noise level inFq is 25% (which implied a relative
noise level inAq of 38%). In this experiment we consider GDP in two distinct circumstances: (i) when the exact error norm
∥Aq−Aq∥2 = ϵ is used as input data and (ii) when the error norm is underestimated and set to 0.08ϵ. The results are depicted
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Fig. 7. Fourier coefficients θj = u⋆
j rz and σj as a function of j for a point external (left) or internal (right) with respect to the kite.

Fig. 8. (a) Image of the map z → 1/∥g
λ
(z)
LC

∥
2
2 . (b) Image of the map z → 1/∥g

λ
(z)
GDP

∥
2
2 (case (ii)) (c) Image of the map z → λ

(z)
GDP (case (i)). (d) Image of the

map z → λ
(z)
MPC .

Fig. 9. Images of the maps z → λ
(z)
MPC (left) and z → 1/∥g

λ
(z)
MPC

∥
2
2 (right).

in Fig. 8. We note that while both MPC and GDP (case (i)) produce reasonable reconstructions and outperform the L-curve
method (as expected), GDP (case (ii)) yields a reconstruction of poor quality due to the lack of prior information about the
noise level, and once more we see that MPC may outperform GDP if the noise level is not correctly estimated.

We end this sectionwith the observation that the SVD-tail was also used in the two-object case. The quality of the results
was very similar to that of those for the kite case, which explains why the results are not shown here.

5.2. Reconstruction using real data

Wewill now consider real data sets (The Ipswich Data) produced by using an echo-free chamber, a fixed transmitter and
a receiver rotating around the scatterer. The incident and observation angles number 36 for both experiments. Initially we
will attempt to reconstruct an aluminum triangle (IPS009) whose outer circle has radius equal to 6 cm using MPC and the
SVD-tail. Like in the above, we will illustrate the SVD-tail method for values of d = 5, 10, 15, 20, 25 and 30.

Examining the series of reconstructions that appear in the bottom of Fig. 10we see that the quality of the image improves
as we increase the dimension d; however. comparing those reconstructions with the ones obtained via MPC (see Fig. 9) it
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Fig. 10. Images obtained using the SVD-tail for different values of the smallest d singular values of the far-field matrix.

Fig. 11. Fourier coefficients θj = u⋆
j rz and σj as a function of j for a point external (left) or internal (right) with respect to the triangle.

Fig. 12. Top: images of the maps z → λ
(z)
MPC (left) and z → 1/∥g

λ
(z)
MPC

∥
2
2 (right).

becomes apparent that the reconstructions obtained via the MPC capture more details of the image. For example, the base
and the top side of the triangle appear more distinct in theMPC case. Examining the behavior of the Fourier coefficients (see
Fig. 11) we observe that for an interior point z the Fourier coefficients assume values significantly larger than zero, which
contradicts an essential requirement of the SVD-tail procedure. Moreover, the authors believe that for small size problems
(like the one above), eliminating Fourier coefficients corresponding to large singular values may result in losing significant
information, and hence the use of the SVD-tail may not be appropriate.

We finally attempt the reconstruction of the ‘‘mystery’’ object given by the data set (IPS007), with the a priori information
that the object is penetrable and lies inside a circle of radius 7.5 cm. The reconstruction results appear in Figs. 12 and 13 and,
as clearly indicated by the MPC, the object was a circular tube, with a smaller one in its interior. Unfortunately, the SVD-
tail approach failed to clearly reconstruct the profiles of the two circles. It is worth mentioning here that reconstructions
via Morozov’s discrepancy principle are difficult to obtain for real data cases due to the fact that the level of error in the
experimental far-field matrix is not available or difficult to estimate.

6. Conclusions

We have introduced a new technique for determining the regularization parameter for Kirsch’s factorization method
that works well without any a priori information on the noise level in the far-field matrix. Numerical experiments indicate
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Fig. 13. Images obtained using the SVD-tail for different values of the smallest d singular values of the far-field matrix.

that the computing cost is modest (comparing to that for the L-curve) whereas the quality of reconstructions is very good.
In particular, we showed that our approach outperforms that based on Morozov’s discrepancy principle if the noise level
is not correctly estimated, a situation which is very likely in real world problems. In addition, reconstructions from real
data were presented and the results compared with the ones obtained via the SVD-tail. Future research will include further
modifications of the MPC such that it can be applied to three-dimensional reconstructions.
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