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A nonmonotone Levenberg–Marquardt-based algorithm is proposed for minimization
problems on closed domains. By preserving the feasible set’s geometry throughout the
process, the method generates a feasible sequence converging to a stationary point
independently of the initial guess. As an application, a specific algorithm is derived for
minimization on Stiefel manifolds and numerical results involving a weighted orthogonal
Procrustes problem are reported.
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1. Introduction

Constrained optimization problems play an important role in numerous applications in science and engineering. All
practical methods for these problems are iterative and generate a (feasible) sequence of iterates hopefully approximating a
(local) extremum of the objective function. In this paper, we are concerned with the problem

minimize f (x)
s.t. x ∈ Γ ,

(1)

whereΓ is closed and f : Rn
→ R is a continuously differentiable function defined on an open convex setΓc that containsΓ .

We introduce a new algorithm for (1), which can be viewed as a Levenberg–Marquardt variation of the method devised
by Birgin et al. in [1] for the case when Γ is convex. The idea behind the algorithm presented here is to compute a trial point
by solving the subproblem

minimize Qρ(x) ≡ ⟨∇f (y), x− y⟩ +
1
2
(x− y)T (B+ ρA)(x− y)

s.t. x ∈ Γ ,
(2)

where ρ > 0 is a regularization parameter and A, B ∈ Rn×n are symmetric matrices which may vary at every iteration,
and A is positive definite. Once the subproblem (2) is solved, the decision to accept or reject the trial point will depend
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on whether the decrease of the objective function (with respect to a proper iterated) is meaningful when compared to the
predicted reduction of the quadraticmodel. A globally convergent algorithm for the electronic structure calculation problem
which solves (2) at each iteration within a monotone trust-region framework is proposed in [2]. In the present work, our
algorithm extends the ideas of [2] to more general optimization problems and convergence to stationary points is obtained
by incorporating a nonmonotone trust-region-like framework into the scheme. Besides, we include a rigorous globally
convergence proof which does not require a regularity assumption used in [2]. As far as we know, nonmonotone line search
approaches were first introduced in [3] in connection with a Newton-like method. Afterward, several more papers have
appeared highlighting the efficacy of the procedure for unconstrained and constrained problems. For further contributions
concerning nonmonotone strategies the reader is referred to [1,4–8] and references therein. Despite the extensive literature,
we emphasize that nonmonotone schemes for minimization on arbitrary closed sets have not been sufficiently investigated
so far.

Summarizing, our algorithm generates a feasible sequence such that all of its accumulation points are stationary points
of (1) irrespective of the initial approximation chosen. With respect to its potentiality, a globally convergent nonmonotone
gradient-like scheme for minimization on Stiefel manifolds is proposed and verified through numerical tests involving a
weighted orthogonal Procrustes problem.

This paper is organized as follows. In Section 2 we include preliminary material and describe our algorithm. Section 3
is concerned with the theoretical analysis of the method; a global convergence proof is done there. Section 4 states a
globally convergent method for minimization on Stiefel manifolds including numerical results on the weighted orthogonal
Procrustes problem that verify the theoretical properties of the algorithm. The paper ends with some conclusions in
Section 5.

Notation. The gradient of f will be denoted by g , that is, g(x) = ∇f (x). For all function β : [a, b] → Rn, β ∈ C1
[a, b]means

that β is a continuously differentiable function in the interval [a, b]. N = {0, 1, 2, . . .}. Assuming K ⊆ N is an infinite subset
of N, K1⊆

∞ K means that K1 is an infinite set as well. Additionally, if {xk}k∈K1 is an infinite sequence, limk∈K1 x
k denotes

limk→∞ xk restricted to k ∈ K1. Throughout this paper ∥ · ∥ denotes the euclidean norm in Rn, ⟨·, ·⟩ the euclidean inner
product and ∥ · ∥F the Frobenius norm in Rm×n. Assuming A ∈ Rn×n, Tr(A) means the trace of matrix A and diag(A) ∈ Rn

means its diagonal.

2. Preliminaries and model algorithm

We start by recalling the well-known definition of stationary points through feasible arcs.

Definition 1. Given x ∈ Γ and b > 0, α : [0, b] → Rn is said to be a feasible arc emanating from x if α(t) ∈ Γ for all
t ∈ [0, b], α ∈ C1

[0, b], α(0) = x and α′(0) ≠ 0. Furthermore, a point x∗ ∈ Γ is a stationary point of (1) if and only if all
feasible arc α emanating from x∗ satisfies ⟨∇f (x∗), α′(0)⟩ ≥ 0.

The following result provides a connection between local minimizers of (1) and the definition above. Its proof can be
easily checked and is omitted.

Theorem 1. If x∗ ∈ Γ is a local minimizer of (1), it is a stationary point.

Throughout the paper we denote:
Sn = {A ∈ Rn×n

| AT
= A}, S+n = {A ∈ Sn | xTAx > 0 for all x ∈ Rn

}.

In addition g is assumed to be Lipschitz continuous in Γc , that is, there exists Lf > 0 such that

∥g(y)− g(x)∥ ≤ Lf ∥y− x∥, ∀x, y ∈ Γc . (3)
Hence

|f (y)− f (x)− ⟨g(x), y− x⟩| =
 1

0
⟨g(x+ t(y− x))− g(x), y− x⟩dt

 ≤ Lf
2
∥y− x∥2,

and thus

f (y) ≤ f (x)+ ⟨g(x), y− x⟩ +
Lf
2
∥y− x∥2, ∀x, y ∈ Γc . (4)

We note that assumption (3) can be verified in a wide class of applications, for instance, when the Hessian of f is bounded
or twice continuously differentiable and Γ compact.

Since our algorithm works within a nonmonotone framework, we consider M ∈ N,m(0) = 0 and, for every k ≥ 1, we
set

0 ≤ m(k) ≤ min{m(k− 1)+ 1, M}.

Therefore, assuming {xk−j}m(k)
j=0 ⊆ Γ , we define

f kmax = max{f (xk−j) | j ∈ {0, 1, . . . ,m(k)}} (5)

and ν(k) ∈ {k−m(k), . . . , k− 1, k} such that f (xν(k)) = f kmax.
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The proposed algorithm is described as follows.

Algorithm 1. Let x0 ∈ Γ be an arbitrary initial point. The parameters set for the execution of the algorithm are: η ∈
(0, 1], M ∈ N, β1 ∈ (0, 1

2 ], Lu ≥ Lf , ρbound > 0, 0 < ρmin ≤ ρmax < +∞ and 1 < ζ1 ≤ ζ2 < +∞.
Set k← 0.

Step 1. Compute f (xν(k)) as in (5), g(xk) and set ρ ∈ [ρmin, ρmax].
Step 2. If ρ ≤ ρbound, pick Bk

ρ ∈ Sn and Ak
ρ ∈ S+n ; otherwise, set Bk

ρ = LuI and Ak
ρ = I .

Step 3. Compute x̄kρ , the global solution of

minimize Q k
ρ (x)

s.t. x ∈ Γ ,
(6)

where Q k
ρ (x) denotes the quadratic defined in (2) with y = xk, B = Bk

ρ and A = Ak
ρ .

Step 4. Compute xkρ ∈ Γ such that Q k
ρ (xkρ) ≤ ηQ k

ρ (x̄kρ).
If Q k

ρ (xkρ) = 0, terminate the execution setting xkρ as a stationary point of (1).
Step 5. Define

Ψk(x) = ⟨g(xk), x− xk⟩ +
1
2
(x− xk)TBk

ρ(x− xk), (7)

Aredk
ρ = (f (xν(k))− f (xkρ)) and Predk

ρ = −Ψk(xkρ).
If

Aredk
ρ

Predk
ρ

≥ β1, (8)

define ρk
= ρ, xk+1 = xkρ , set k← k+ 1 and go back to Step 1.

Else, choose ρnew ∈ [ζ1ρ, ζ2ρ], set ρ = ρnew and go back to Step 2.

It is worth mentioning that the choice η < 1 in Algorithm 1 corresponds to the case when subproblem (6) is solved
inexactly. This choice, firstly introduced in [1], is suitable for problemswhere global solutions of (6) are difficult to compute.
Independently of which η is chosen, we shall assume that x̄kρ computed at Step 3 is well defined for each k and ρ. Such an
assumption clearly will depend on the set Γ and the choice of matrices Bk

ρ and Ak
ρ . Also, note that if Hk

= (Bk
ρ + ρAk

ρ) is
assumed to be symmetric definite positive (which holds for ρ large enough), there exists a invertible matrix G such that
Hk
= GGT (e.g., the Cholesky factorization of Hk). Hence, subproblem (2) reduces to the more friendly constrained least

squares problem

min ∥GT x− (GT xk − G−1∇f (xk))∥2 subject to x ∈ Γ , (9)

which can be handled efficiently in several cases. For example, if Γ = On, the set of n × n orthogonal matrices, using the
thin SVD of (HkXk

− ∇f (Xk)) one can determine a closed-form solution to (9) (see, e.g., [9]) and the proposed algorithm
can be employed to minimize functions over the set of orthogonal matrices. Another example for which (9) has a known
closed-form solution is when Γ = Sn, (the set of symmetric matrices); the reader is referred to [10] for details.

3. Convergence analysis

In this section we will discuss the theoretical properties of Algorithm 1. Specifically, we will show convergence of the
iterated sequence to stationary points of (1), irrespective of the starting point chosen. Let the subsets of matrices chosen at
Step 2 be denoted by B = {Bk

ρ} and A+ = {Ak
ρ} respectively. Our analysis relies on the following assumptions:

A1. Γ 0
= {x ∈ Γ | f (x) ≤ f (x0)} is a bounded subset.

A2. The subsets B and A+ are uniformly bounded, that is, there exists M > 0 such that ∥Bk
ρ∥F ≤

M and ∥Ak
ρ∥F ≤

M , for all
k and ρ.

A3. There exists γ > 0 such that xTAx ≥ γ ∥x∥2 for all A ∈ A+ and x ∈ Rn.

Assumption A1 is a standard hypothesis used in nonlinear programming to ensure that a minimum value is reached in
Γ 0 as well as to ensure that any sequence in Γ 0 possesses at least one accumulation point. As for A2 and A3, they are mild
user-controlled assumptions introduced to maintain stability of the iterates, that is essential for our convergence result.

Lemma 1. If A ∈ A+, then A is a symmetric positive definite matrix and γ ∥x∥2 ≤ xTAx ≤ M∥x∥2 ∀x ∈ Rn.

Proof. The proof follows from the spectral decomposition of matrix A. �
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Since Q k
ρ has the same gradient as f at xk and since Q k

ρ (xkρ) ≤ ηQ k
ρ (x̄kρ) ≤ 0, it follows that Q k

ρ (xkρ) < 0 whenever xk is not
a stationary point of (1). Therefore, either Algorithm 1 stops at Step 4 in a stationary point of (1) or infinitely many iterates
xk are generated. Therefore, without loss of generality, from now on we assume {xk} to be an infinite sequence.

Lemma 2. Sequence {f (xν(k))}k∈N is monotone nonincreasing.

Proof. From the definition of f (xν(k)) it follows that

f (xν(k+1)) = max{ f (xk+1−j) | j ∈ {0, 1, . . . ,m(k+ 1)}}
= max{ f (xk+1),max{ f (xk−j) | j ∈ {0, . . . ,m(k+ 1)− 1}}}
≤ max{ f (xk+1), f (xν(k))}.

Also, since Aredk
ρk/Predk

ρk ≥ β1, we have that f (xk+1) ≤ f (xν(k)) + β1Ψk(xk+1) < f (xν(k)), which leads to f (xν(k+1)) ≤

f (xν(k)), and the lemma is proved. �

Lemma 3. Sequence {xk} ⊂ Γ 0.

Proof. Wewill prove by induction on k. Note that for all k ∈ N,Aredk
ρk ≥ β1Predk

ρk , leads to f (xk+1) ≤ f (xν(k))+β1Ψk(xk+1).
Thus, f (x1) ≤ f (x0) + β1Ψ1(x1) ≤ f (x0), that is, x1 ∈ Γ 0. If by inductive hypothesis we assume f (xi) ∈ Γ 0, for 0 ≤ i ≤ j,
then we obtain f (xj+1) ≤ f (xν(j)) + β1Ψk(xj+1) < f (xν(j)). But, since j − m(j) ≤ ν(j) ≤ j, then f (xj+1) < f (xν(j)) ≤ f (x0).
Therefore, xj+1 ∈ Γ 0 and the proof is complete. �

Using Lemma 3 and Assumption A1 we note that the sequence {xk} admits at least one accumulation point.
The next result deals with the well-definiteness of the Algorithm 1. More precisely, it states that a single iteration of the

algorithm finishes after a finite number of cycles.

Theorem 2. If xk ∈ Γ is not a stationary point and ρ > ρbound, then condition (8) is fulfilled.

Proof. Assume ρ > ρbound. From Step 2 we have that Q k
ρ (x) = ⟨g(xk), x − xk⟩ + (Lu + ρ)/2∥x − xk∥2 and Ψk(x) =

⟨g(xk), x− xk⟩ + Lu/2∥x− xk∥2. Hence, from (4) and recalling xkρ from (1), it follows that

f (xkρ) ≤ f (xk)+ ⟨g(xk), xkρ − xk⟩ + Lf /2∥xkρ − xk∥2

≤ f (xk)+ Ψk(xkρ) ≤ f (xν(k))+ Ψk(xkρ).

Now since x̄kρ solves (6) and β1 ∈ (0, 1), we have that Ψk(xkρ) ≤ ηΨk(x̄kρ) < 0 and thus f (xkρ) ≤ f (xν(k)) + β1Ψk(xkρ).
Therefore, Aredk

ρ ≥ β1Predk
ρ whenever ρ > ρbound. �

Lemma 4. Sequence {ρk
} is bounded.

Proof. From Theorem 2, for all ρ > ρbound condition (8) is fulfilled and then the loop finishes after a finite number of cycles.
Hence, the largest ρ possible at Step 2 is ζ2ρbound and, consequently, 0 ≤ ρk

≤ ζ2ρbound for all k. �

The main result of this section comes in the following theorem.

Theorem 3. Let x∗ be an accumulation point of the sequence generated by Algorithm 1. Then, x∗ is a stationary point of (1).

For the proof of this theorem we need some technical results.

Lemma 5. Assume that K ⊆∞ N and limk∈K Ψk(xk+1) = 0. Then, limk∈K ∥xk+1 − xk∥ = 0.

Proof. Since Q k
ρk(xk+1) ≤ ηQ k

ρk(x̄kρk), where x̄k
ρk is the global minimizer of subproblem (6), then Q k

ρk(xk+1) = ⟨g(xk), xk+1 −

xk⟩ + 1/2(xk+1 − xk)T (Bk
ρk + ρkAk

ρk)(xk+1 − xk) < 0. Consequently, from Lemma 1,

0 <
1
2
ρminγ ∥xk+1 − xk∥2 ≤

ρk

2
(xk+1 − xk)TAk

ρk(xk+1 − xk)

< −⟨g(xk), xk+1 − xk⟩ −
1
2
(xk+1 − xk)TBk

ρk(xk+1 − xk) = −Ψk(xk+1).

Since limk∈K Ψk(xk+1) = 0, it follows that limk∈K ∥xk+1 − xk∥ = 0, and the proof is complete. �

Lemma 6. Assume that K ⊆∞{ν(k)}k∈N. Then, for any j ∈ N,

lim
k∈K ∥xk−(j−1)

− xk−j∥ = 0 and lim
k∈K f (xk−j) = lim

k→∞
f (xν(k)). (10)
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Proof. From Lemma 2, {f (xν(k))}k∈N is a monotone nonincreasing bounded sequence. Then, limk→∞ f (xν(k)) exists and
limk∈K f (xk) = limk→∞ f (xν(k)). In a proof by induction, we note that for any k ∈ K , f (xk) ≤ f (xν(k−1)) + β1Ψk−1(xk),
and consequently, limk∈K Ψk−1(xk) = 0. From Lemma 5, it follows that limk∈K ∥xk − xk−1∥ = 0. Furthermore, since f is a
uniformly continuous function in Γ 0, then limk∈K f (xk−1) = limk∈K f (xk) = limk→∞ f (xν(k)). Now assume that (10) holds
for a fixed j and note that f (xk−j) ≤ f (xν(k−(j+1)))+β1Ψk−(j+1)(xk−j). Also, by induction hypothesis we have limk∈K f (xk−j) =
limk→∞ f (xν(k)) = limk∈K f (xν(k−(j+1))). Hence, since Ψk−(j+1)(xk−j) < 0, we have that limk∈K Ψk−(j+1)(xk−j) = 0. Thus, from
Lemma 5, limk∈K ∥xk−j − xk−(j+1)

∥ = 0. Hence, by using the induction hypothesis and the uniform continuity of f in Γ 0 we
complete the proof. �

The next lemma is proved by arguments analogous to those given in [3].

Lemma 7. limk→∞ f (xk) = limk→∞ f (xν(k)).

Proof. We defineν(k) = {ν(k +M + 2)}k∈N and K = {ν(k)}k∈N⊆
∞
{ν(k)}k∈N. Furthermore, xk+1 = xν(k)

+
ν(k)−(k+1)

i=1

(xν(k)−i
− xν(k)−(i−1)). Therefore, ∥xk+1− xν(k)

∥ ≤
ν(k)−(k+1)

i=1 ∥xν(k)−i
− xν(k)−(i−1)

∥. Sinceν(k)− (k+ 1) = ν(k+M+ 2)−
(k + 1) ≤ M + 1, it follows from Lemma 6 that limk→∞ ∥xk+1 − xν(k)

∥ = 0, and, by the uniform continuity of f in Γ 0, we
have that limk→∞ f (xk) = limk→∞ f (xν(k)) = limk→∞ f (xν(k)). �

We are now in a position to prove Theorem 3.

Proof of Theorem 3. Let K ⊆∞ N such that limk∈K xk = x∗. From Lemma 4, there exists ρ̄ (ρ̄ = ζ2ρbound) such that ρk
≤ ρ̄

for all k ∈ K . Additionally, from Assumptions A2 and A3, both {Ak
ρk} and {Bk

ρk} are uniformly bounded subsequences.

Therefore there exists K1⊆
∞K such that limk∈K1 A

k
ρk = Ā and limk∈K1 B

k
ρk = B̄. Now, for every k ∈ K1, f (xk+1) ≤

f (xν(k)) + β1Ψk(xk+1), and so, from Lemma 7, limk∈K1 Ψk(xk+1) = 0. On the other hand, for all k ∈ K1, Ψk(xk+1) ≤
Q k

ρk(xk+1) ≤ ηQ k
ρk(x̄kρk) ≤ 0. Consequently, limk∈K1 Q

k
ρk(x̄kρk) = 0.

Now let us define Q ∗(x) = ⟨g(x∗), x − x∗⟩ + 1/2(x − x∗)T (B̄ + ρ̄Ā)(x − x∗) and let x be the solution of
minimize Q ∗(x) subject to x ∈ Γ . Hence, since ρk

≤ ρ̄,

0 ≥ Q ∗(x) ≥ lim
k∈K1
[⟨g(xk),x− xk⟩ + 1/2(x− xk)T (Bk

ρk + ρkAk
ρk)(x− xk)]

≥ lim
k∈K1

Q k
ρk(x̄kρk) = 0.

Therefore, Q ∗(x) = 0 and, since ∇Q ∗(x∗) = g(x∗), it follows that x∗ is a stationary point. �

4. Application: minimization on Stiefel manifolds

This section deals with a method for a class of optimization problems whose feasible set is the set of matrices with
orthogonal columns, which is straightforwardly related to Stiefel manifolds. Minimizing on Stiefel manifolds appears in
a number of applications such as eigenvalue problems, electronic structure calculations, factor analysis and body rigid
movements. For details on Stiefel manifolds the reader is referred to [11,12] and references therein. Define G : Rm×n

→

Rn×n, m ≥ n, so that G(X) = XTX − I . Let f : Rm×n
→ R be a twice continuously differentiable function and Ω =

{X ∈ Rm×n
| G(X) = 0}. We are concerned with the problem

minimize f (X)
s.t. X ∈ Ω.

(11)

Note that ∇f (X) = [∂ f (X)/∂X1, . . . , ∂ f (X)/∂XN ] ∈ Rm×n, where Xi ∈ Rm is the ith column of X . Also, since ∥X∥F =√
n∀X ∈ Ω , note that Ω is a compact set and thus there exists Lf such that ∥∇f (X)−∇f (Y )∥F ≤ Lf ∥X − Y∥F∀X, Y ∈ {Z ∈

Rm×n
| ∥Z∥F ≤

√
n} ⊃ Ω . That is, condition (3) is satisfied. Although the optimization problem (11) is stated in a matrix

framework, note that it can be rewritten in terms ofmn real variables, and therefore within the context of Algorithm 1.
Since our goal is solving problem (11), wemust be able to stop the iterative process when its Karush–Kuhn–Tucker (KKT)

conditions are fulfilled within a given tolerance. In the following, using projections onto the tangent subspace of Ω , we will
characterize these conditions into the context of minimization problems on Stiefel manifolds.

4.1. A first order optimality condition

Based on the ideas of [11], we will calculate the orthogonal projector onto the tangent subspace of Ω including some
details that do not appear in [11] and are included here for completeness. We start by noting that (by a Taylor series
expansion) the null-space of G′(Y )T is N(G′(Y )) = {X ∈ Rm×n

| XTY + Y TX = 0}, that is, the tangent subspace of Ω

in Y is N(G′(Y )) = {X ∈ Rm×n
| Y TX is antisymmetric}.
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Lemma 8. Let Y ∈ Ω and A ∈ Rm×n. Then the solution of

minimize ∥A− X∥2F
s.t. X ∈ N(G′(Y ))

(12)

is given byX = A− Y (Y TA+ ATY )/2.

Proof. Let Y⊥ ∈ Rm×(m−n) have orthogonal columns such that V = [Y Y⊥] ∈ Rm×m is orthogonal, i.e., YY T
+ Y⊥(Y⊥)T = I .

DefineI = [In 0]T ∈ Rm×n where In is the identity matrix of order n and note that Y = VI . Then (12) is equivalent to

minimize ∥A− X∥2F
s.t. ITV TX + XTVI = 0, X ∈ Rm×n.

(13)

Now denoting Z = [ZT
1 ZT

2 ]
T
≡ V TX , with Z1 ∈ Rn×n and Z2 ∈ R(m−n)×n, it follows thatITV TX + XTVI = 0 if and only if

Z1 = −ZT
1 . Consequently (13) is equivalent to

minimize
V TA−


0
Z2

2

F
≡ ∥Y TA− Z1∥2F + ∥(Y

⊥)TA− Z2∥2F

s.t. Z2 ∈ R(m−n)×n, Z1 ∈ Rn×n and Z1 + ZT
1 = 0,

the solution of which isZ1 = (Y TA − ATY )/2 andZ2 = (Y⊥)TA. In addition, since Y has orthogonal columns and X = VZ ,
the solution isX = Y (Y TA− ATY )/2+ (I − YY T )A = A− Y (Y TA+ ATY )/2. �

The next theorem states equivalent conditions for a matrix X∗ ∈ Ω to be a stationary point of (11).

Theorem 4. Assume X∗ ∈ Ω . Then following statements are equivalents:

(i) X∗(XT
∗
∇f (X∗)+∇f (X∗)TX∗)− 2∇f (X∗) = 0;

(ii) X∗ satisfies KKT conditions of (11);
(iii) ∇f (X∗) = X∗S for some symmetric matrix S ∈ Rn×n.

Proof. Statement (i) is equivalent to statement (ii) since problem (11) has only equality constraints and, then, its KKT
conditions are equivalent to say that the projection of ∇f (X∗) onto the tangent subspace N(G′(Y )) vanishes. Furthermore,
from Lemma 8, we have that ∇f (X) is orthogonal to N(G′(X)) if and only if ∇f (X) = X(XT

∇f (X)+∇f (X)TX)/2.
Assume that statement (i) holds so that X∗(XT

∗
∇f (X∗) − ∇f (X∗)TX∗)/2 + (I − X∗XT

∗
)∇f (X∗) = 0. Pre-multiplying this

equation by XT
∗
and using the fact that XT

∗
X∗ = I , it turns out that XT

∗
∇f (X∗) is symmetric and thus (I − X∗XT

∗
)∇f (X∗) = 0.

Then statement (iii) holds with S = XT
∗
∇f (X∗). Now, differentiation of the Lagrangian function L(X, Θ) = f (X) +

Tr(Θ(XTX − I)) of (11) with respect to X shows that its KKT conditions are XT
∗
X∗ = I and ∇f (X∗) = X∗(Θ + ΘT ), where

Θ ∈ Rn×n is thematrix containing the Lagrangemultipliers. This implies that (ii) is equivalent to (iii)with S = (Θ+ΘT ). �

A by-product of statement (i) is a stopping criterion for minimization on Stiefel manifolds at the cost of some matrix
multiplications. The reason is that since Lagrange multipliers are not used at all, (i) leads to an easy-to-compute expression
which measures ‘‘the optimality’’ of a point X ∈ Ω . In other words, a matrix X∗ ∈ Ω is a stationary point of (11) if and
only if

∥X∗(XT
∗
∇f (X∗)+ (XT

∗
∇f (X∗))T )− 2∇f (X∗)∥F = 0. (14)

This condition will be used in our tests in Section 4.3.

4.2. The spectral projected gradient method for minimization on Stiefel manifold

From here on we will concentrate on the application of Algorithm 1 to solving problem (11). In this case we take Ak
ρ = I

and Bk
ρ = σ k

ρ I , where

σ k
ρ =


σ k
spc/2, if 0 < ρ ≤ Lu,

Lu, otherwise,
(15)

with σ k
spc ∈ [σmin, σmax], 0 < σmin < σmax <∞ and Lu ≥ Lf . Thus Q k

ρ : R
m×n
→ R becomes

Q k
ρ (X) = Tr(∇f (Xk)T (X − Xk))+

σ k
ρ + ρ

2
∥X − Xk

∥
2
F . (16)
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Only for practical purpose (that means enhance the convergence behavior), σ k
spc will be assumed to be the

Barzilai–Borwein parameter [13]. Thus, for two consecutive iterates, Xk−1 and Xk, we define

σ k
bb =

Tr

∇f (Xk)−∇f (Xk−1)

T
(Xk
− Xk−1)


∥Xk − Xk−1∥2F

, (17)

and take σ k
spc = min


max


σ k
bb, σmin


, σmax


for k ≥ 1 and σ k

spc = 1 for k = 0. With this choice our algorithm turns out to
be a variation of the nonmonotone spectral projected gradient method for minimization on Stiefel manifolds. In this case,
the problem to be solved at Step 3 of Algorithm 1,

minimize Q k
ρ (X) subject to XTX = I and X ∈ Rm×n,

can readily be seen to be equivalent to,

minimize ∥X −W k
∥
2
F , with W k

= (Xk
− 1/(ρ + σ k

ρ )∇f (Xk)),

s.t. XTX = I, X ∈ Rm×n,
(18)

whose solution is analytically obtained via a singular value decomposition (SVD). In fact, ifW k has a thin SVD,W k
= UΣV T

(i.e., U is the matrix containing the n left-singular vectors associated with the n largest singular values), then the global
solution of (18) is X̄k

= UV T [9].
Our proposed scheme for minimization with orthogonality constraints can be stated as follows.

Algorithm 2. Let X0
∈ Ω be an arbitrary initial point. The parameters set for the execution of the algorithm are: η ∈

(0, 1], M ∈ N, β1 ∈ (0, 1/2], σmin, σmax, ζ1, ζ2 ∈ R such that 0 < σmin < σmax <∞ and 1 < ζ1 ≤ ζ2 < +∞.
Set k← 0 andm(0)← 0.
Step 1. Compute ∇f (Xk), f (Xν(k)) as in (5) and set ρ ← σ k

spc/2.
Step 2. Set σ k

ρ as in (15) and compute the thin SVD ofW k given in (18):W k
= UΣV T .

Step 3. Define X̄k
ρ = UV T (solution of (16)) as mentioned before and compute Xk

ρ ∈ Ω such that Q k
ρ (Xk

ρ) ≤ ηQ k
ρ (X̄k

ρ).
If Q k

ρ (Xk
ρ) = 0, terminate the execution declaring Xk

ρ as stationary.
Step 4. Let Ψk(X) = Tr(∇f (Xk)T (X − Xk))+ σ k

ρ/2∥X − Xk
∥
2
F . If

f (Xk
ρ) ≤ f (Xν(k))+ β1Ψk(Xk

ρ), (19)

define ρk
= ρ, Xk+1

= Xk
ρ , set k← k+ 1 and go back to Step 1.

Else, choose ρnew ∈ [ζ1ρ, ζ2ρ], set ρ = ρnew and go back to Step 2.

The choice η < 1 is appropriate for problemswithm≫ n inwhich case a recursive approachwhich relies on inexact SVD
decompositions can be used, see [14] for instance. This is not pursued here because we will address only small to medium
size problems.

As for global convergence of Algorithm 2, it is guaranteed by Theorem 3 (i.e., {Xk
}k∈N converges globally to a stationary

point of (11)) because in this case Assumptions A1, A2 and A3 are straightforwardly fulfilled. Furthermore, it is not hard to
prove that Ω satisfies the Constant Rank Constraint Qualification (CRCQ) [15] and thus all local minimizer of (11) is a KKT
point, which justifies our interest in finding stationary points.

Wemention in passing that a great deal ofwork has been done onmethods for optimization problems like (11). A globally
convergent algorithm for constrained optimization overmatrixmanifolds based on line searchmethods can be found in [16].
Given both a feasible iterate Xk and a tangent descent direction ηk from Xk (with ηk e.g., being the projection of −∇f (Xk)
onto the tangent set), the method computes Xk+1 = Rk(tkηk), where Rk is a retraction on the Stiefel manifold and tk comes
from an Armijo’s sufficient decrease condition:

f (Rk(tkηk)) ≤ f (Xk)+ σ tk⟨∇f (Xk), ηk⟩, (20)
with σ ∈ (0, 1). A gradient descent type method based on curvilinear line search which results in a nonmonotone SVD-
free scheme for minimization with orthogonality constraints is provided in [17]. There, given a feasible iterate Xk and
Ak = Xk∇f (Xk)

T
−∇f (xk)XT

k , the method computes

Xk+1 = Y (tk) =

I +

tk
2
Ak

−1 
I −

tk
2
Ak


Xk,

where tk > 0 satisfies the Armijo’s sufficient decrease condition (20) with ηk = AkXk and Rk(tηk) = Y (t) = (I +
t
2Ak)

−1(I − t
2Ak)Xk being a feasible descent path. Besides a global convergence proof to stationary points, a nonmonotone

Barzilai–Borwein based choice of tk which reduces the number of steepest descent iterations can be found in [17]. As
opposed to our proposal, the Barzilai–Borwein parameter in [17] is computed using gradients in the tangent set and the
nonmonotone technique introduced in [18].Weemphasize that there is a crucial difference between themethodology of [17]
and Algorithm 2 above: while the algorithms in [17] are based on steepest descent methods over tangent sets that adjust
the Armijo’s parameter tk to decrease the cost function, Algorithm 2 is a variation of the projected gradient method with
orthogonality constraints which adjusts parameter ρ up to a nonmonotone trust-region-like sufficient decrease condition
is fulfilled.
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4.3. Numerical experiments

For fixed matrices A ∈ Rp×m, C ∈ Rn×q (m ≥ n) and B ∈ Rp×q, we are concerned with the following problem:

minimize ∥AXC − B∥2F
s.t. XTX = I, X ∈ Rm×n,

(21)

also calledweighted orthogonal Procrustes problem (WOPP). Following [19], ifm = n and C = I the case will be referred to as
balanced, while if n < m, the case will be refereed to as unbalanced. The problem has attracted the attention of numerous
researchers, mainly due to its wide diversity of applications (multivariate data analysis, global positioning systems, neuro
and brain imaging and others). Concerning recent numerical approaches for (21), we cite the Successive Projection (SP)
algorithm of [20] and the Left/Right Relaxation (LSR/RSR) methods devised in [21]. Roughly speaking, the cost of SP at every
iteration involves the solution of n constrained least squares problems followed by a balanced Procrustes problem, whereas
the cost of LSR and RSR require the computation of a finite sequence of SVD decompositions of 2 × n matrices and m × 2
matrices, respectively. For a comparative study on the performance of these and other algorithms on WOPP the reader is
referred to [20]. For theoretical results on optimality conditions and other theoretical properties on WOPP the reader is
referred to [19] and references therein.

It is worth mentioning that whereas the balanced case has analytical solution (given by X∗ = UV T , where U and V
come from the SVD of ATB = UΣV T [9]), the unbalanced case, with A ≠ I , needs to be solved by an iterative scheme
capable of handling difficulties such as several stationary points and nonconvex constraints. Further, as far as we know, the
determination of a closed-form solution to the unbalanced case is still a challenge, even if C = I , which justifies our interest
in the problem.

Let f : Rm×n
→ R be defined by f (X) = ∥AXC−B∥2F . Then it is easy to see that f is twice continuously differentiable, that

∇f (X) = 2AT (AXC−B)CT , and that∇f is Lipschitz continuouswith Lipschitz constant satisfying Lf ≤ 2∥ATA∥F∥CCT
∥F ≡ Lu.

In this case (17) reads

σ k
bb = 2

∥A(Xk
− Xk−1)C∥2F

∥Xk − Xk−1∥2F
,

from which we conclude that σ k
bb ≤ 2Lu. Hence, if 0 < σmin < σ k

bb < σmax and we set ρ = σ k
spc/2 = σ k

bb/2 in (16), then

Q k
ρ (Xk
+ t(Xk

− Xk−1)) = 2tTr(2AT (AXkC − B)CT (Xk
− Xk−1))+ t2∥A(Xk

− Xk−1)C∥2F
= ∥A(Xk

+ t(Xk
− Xk−1))C − B∥2F − f (Xk)

= f (Xk
+ t(Xk

− Xk−1))− f (Xk).

Consequently, since ρ = σ k
spc/2 at Step 1 of Algorithm 2, the first loop (Step 2–Step 3–Step 4) is equivalent tominimizing

a quadratic model of f restricted to Ω that coincides with f along the direction (Xk
− Xk−1).

We shall now illustrate the effectiveness of Algorithm 2 on some test problems from [20]. The following starting
parameters are used in Algorithm 2: M = 10, β1 = 10−4, ζ1 = ζ2 = 5, σmin = 10−10 and σmax = Lu. Based on (14)
we will declare convergence of the iterative process when

max{|[Xk(XkT
∇f (Xk)+∇f (Xk)TXk)− 2∇f (Xk)]ij|, 1 ≤ i, j ≤ m} ≤ 10−3.

Our experiments were carried out using Matlab 7.6 in an AMD Athlon 64 X2 dual Core 5600+with 2 GB of RAM. In all cases
n = q, p = m, C = I with A of the type A = PSRT , where both P and R are randomly generated orthogonal matrices and S is
diagonal. Four examples are considered:

Example 1. The elements on the main diagonal of S are randomly and normally distributed in the interval [10, 12]. This is
a well-conditioned problem.

Example 2. The diagonal elements are Sii = i+2ri, where ri are randomnumbers from a uniformdistribution on the interval
[0, 1]. In this case the singular values of A are more and more distant each other asm grows.

Example 3. In this case Sii = (1+ 99(i− 1)/(m− 1)+ 2ri) and ri are random numbers chosen from a uniform distribution
on the interval [0, 1].

Example 4. Matrix S is defined using theMatlab functions ones and rand by diag(S) = ([10∗ones(1,m1)+rand(1,m1),
5∗ones(1,m2)+rand(1,m2), 2∗ones(1,m3)+rand(1,m3), rand(1,m4)/1000]), withm1+m2+m3+m4 = m. Thus,
A has several small singular values and it is ill-conditioned.

Since the solution for the balanced case without weights is an orthogonal basis for the column subspace of ATB, the initial
guess X0 was chosen as the n first columns of R. Further, in order to monitor the behavior of the iterates Xk with respect to
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Table 1
Performance of the method.

q NT NV TM RES. ERR NT NV TM RES. ERR

Example 1 (m = 50) Example 1 (m = 500)

10 8 13 0.07 1.3e−12 9.6e−08 7 12 0.59 1.3e−11 2.9e−07
20 10 11 0.07 8.9e−14 2.8e−08 7 12 0.99 2.7e−11 3.9e−07
44 10 11 0.08 1.9e−14 7.9e−09 8 13 2.28 1.2e−12 8.7e−08
70 – – – – – 8 13 3.70 1.4e−12 9.4e−08

Example 2 (m = 50) Example 2 (m = 500)

10 219 297 0.39 7.8e−09 2.9e−05 1344 1942 98.10 3.2e−09 1.3e−05
20 184 240 0.59 6.9e−09 2.8e−05 1207 1729 157.74 2.9e−09 1.2e−05
44 197 260 1.54 3.5e−09 2.3e−05 1436 2101 382.26 4.1e−09 1.3e−05
70 – – – – – 2237 3256 945.95 2.1e−09 1.3e−05

Example 3 (m = 50) Example 3 (m = 500)

10 70 78 0.15 5.6e−11 3.9e−07 84 97 5.06 5.7e−10 3.5e−07
20 111 128 0.32 4.2e−11 4.0e−07 92 107 9.88 1.2e−10 7.1e−07
44 60 62 0.41 1.8e−11 2.2e−07 94 111 21.84 2.4e−10 1.0e−06
70 – – – – – 97 110 33.07 7.2e−12 1.7e−07

Fig. 1. Plot of ∥AXkC − B∥F (left) and ∥Xk
−Q∗∥F (right) for Example 3 with m = 500 and q = 44. The y-axis is on a logarithmic scale.

the exact solution of problem (21), we generate a known solutionQ∗ by taking B = AQ∗C , whereQ∗ ∈ Rm×n has orthogonal
columns generated at random. We remark that if the SVD of A, A = ŪΣ̄ V̄ T , is available, problem (21) is equivalent to

minimize ∥Σ̄ZC − B̄∥2F
s.t. ZTZ = In×n, Z ∈ Rm×n,

where Z = V̄ TX and B̄ = ŪTB. Thus after an initial calculation of the SVD of A, in our experiments we use Σ̄ instead of A and
B̄ instead of B, which improves performance (a bit).

In Table 1 we summarize the results corresponding to Examples 1–3 for several values of q and m. Although we do
not feel important to compare our algorithmwith other ones because our goal is just to verify its robustness and theoretical
properties, in order to give some idea about its performancewe consider some values of qused in [20] form = 50.WeuseNT,
NV and TM to denote, respectively, the number of iterations, the number of evaluations of f (X) needed to reach convergence
and the CPU time in seconds (usingMatlab’s cputime function). The Frobenius normof the residual at approximate solution
X∗, ∥AX∗C − B∥F , is denoted by RES and its respective error, ∥X∗ −Q∗∥F , by ERR.

As for these results, we observe that the number of evaluations is relatively close to the number of iterations and that the
residual decays significantly in the first half of the process, see Fig. 1. This behavior is likely a straightforward consequence
of the initial ρ satisfying the condition (19) and the use of the spectral parameter choice combined with the nonmonotone
trust-region rule. Another fact that must be mentioned here is that our method provided a solution close to the global
minimum within an acceptable number of iterations, mainly for well-conditioned problems, as in Example 1 where the
singular values are clustered. In order to illustrate the overall behavior of our method, the residual at Xk and corresponding
error for Example 3 withm = 500 and q = 44, are displayed in Fig. 1.

A brief comparison between monotone (M) and nonmonotone (NM) cases (for M = 10) is displayed on Table 2. In
order to highlight the performance of the nonmonotone approach, we took C = Q1ΛQ T

1 , where Q1 ∈ Rn×n is a random
Householder matrix and Λ ∈ Rn×n is a diagonal matrix with {Λii}

n
i=1 being uniformly distributed random values in the

interval [1/2, 2]. This test was ran in a Intel Core 2 Duo 3000 Ghz with 2 Gb of RAM. Row TMR shows the CPU time reduction
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Table 2
Comparison of monotone and nonmonotone cases form = 50 and C = Q1ΛQ T

1 .

q Example 1 Example 2 Example 3
4 10 20 44 4 10 20 44 4 10 20 44

M NT 18 23 39 38 236 303 336 443 117 195 202 252
NV 26 32 60 55 450 512 581 746 182 314 337 416

NM
NT 16 24 32 38 270 278 268 408 109 173 177 156
NV 21 29 37 43 357 383 348 553 130 204 217 195
TMR(%) 0 0 14 10 10 34 45 23 25 47 26 49

Fig. 2. Plot of ∥AXkC − B∥F for Example 4. Case 4A (left) and case 4B (right).

(in percent) in the nonmonotone case with relation to the monotone one. Note that the variation was between 0 and 49%.
We also note that in general NT and NV are significantly large in the monotone case. This suggests using the nonmonotone
approach mainly when evaluation of the objective function is expensive.

For Example 4, we follow [20] and consider two set of parameters:

(4A) q = 10,m1 = m2 = 15,m3 = 12 and m4 = 8, and thusm = 50;
(4B) q = 10,m1 = m2 = m3 = 30 andm4 = 5, and thusm = 95.

For this example we only display in Fig. 2 the residual Frobenius norm along the iterations, with the observation that
even in this ill-conditioned example, the proposed algorithm declared convergence in an acceptable number of iterations,
as we have already noticed in previous examples.

We end the section with the observation that the same experiments were carried out using distinct initialization
parameters. Our experience concerning this is that slight variations of the initialization parameters used in this work do
not change significantly the values of NT, NV and TM.

5. Conclusions

Combining a regularization approach and nonmonotone trust-region rules we proposed an algorithm for minimizing
differentiable functions restricted to an arbitrary closed set. Themethod iswell suited for constrained optimization problems
whose feasible set has a special geometry such that a global solution of a quadratic constrained subproblem is easy
to compute. In addition, it has the property of computing accumulation points that are stationary, irrespective of the
initial approximation chosen. As a consequence, an algorithm for minimization on Stiefel manifolds was presented and
its theoretical properties numerically verified. Numerical experiments on small and medium sized weighted orthogonal
Procrustes problems show that our technique is a reliable optimization tool for minimization problems with orthogonality
constraints.
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