

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

SEMESTRE 2013/1

I. IDENTIFICAÇAO	DA DISCIPLINA:
------------------	----------------

Código	Nome da Disciplina	Horas/aula Semanais		Horas/aula Semestrais
_	_	Teóricas	Práticas	
MTM 5801	H-CÁLCULO I	6	0	108

II. PROFESSOR (ES) MINISTRANTE (S)

Gilles Gonçalves de Castro

III. PRÉ-REQUISITO (S)

III. PRE-REQUISITO (S)				
Código	Nome da Disciplina			
	IV. CURSO (S) PARA O QUAL (IS) A DIS CIPLINA É OFERECIDA			

Todos os Cursos do CTC e CFM, alunos admitidos por seleção

V. EMENTA

Números, Funções Reais de Variável Real, Derivada, Integral.

VI. OBJETIVOS

- Apresentar ao aluno, com rigor, os fundamentos do cálculo Diferencial e Integral de funções de uma variável real, seus desenvolvimentos e aplicações.
- Propiciar ao aluno condições de:
 - o 1. Desenvolver sua capacidade de dedução.
 - o 2. Desenvolver sua capacidade de raciocínio lógico e organizado.
 - o 3. Desenvolver sua capacidade de formulação e interpretação de situações matemáticas.
 - o 4. Desenvolver seu espírito crítico e criativo.
 - o 5. Perceber e compreender o inter-relacionamento dos assuntos apresentados no curso.
 - o 6. Organizar, comparar e aplicar os conhecimentos adquiridos.
- Incentivar o aluno ao uso da biblioteca.

VII. CONTEÚDO PROGRAMÁTICO

- 1. **Conjuntos:** Noções da teoria de conjuntos. Operações com conjuntos.
- 2. **Números:** Os números naturais, princípio da boa ordem e princípio da indução. Propriedades básicas, Valor absoluto, desigualdades; números naturais, inteiros, racionais, reais.
- 3. **Funções:** O conceito de função; domínio, contradomínio e imagem. Funções injetoras, sobrejetoras. Composição de funções; função inversa; operações com funções. Gráficos de funções; funções pares e ímpares, funções monótonas, função periódicas. Funções polinomiais, algébricas e racionais.
- 4. **Limites e continuidade:** O conceito de limite. Exemplos. Limites laterais. Propriedades dos limites. Cálculo de limites de funções elementares. Alguns limites notáveis. Funções contínuas, propriedades. Operações com funções contínuas. Composição e inversão de funções contínuas. Teorema do valor intermediário, da limitação superior, valor máximo. Continuidade uniforme.
- 5. **Derivadas:** Motivações: A taxa de variação, a velocidade instantânea. A tangente a uma curva. Diferenciabilidade. A relação entre diferenciabilidade e continuidade. Cálculo de derivadas de funções elementares. Teoremas de diferenciação. Regra da cadeia. Derivadas de ordem superior. Funções crescentes e decrescentes. Máximos e mínimos locais, pontos críticos e valores críticos. Pontos de inflexão, concavidade e

convexidade. Teorema de Rolle. Teorema do valor médio. Funções inversas e diferenciabilidade da inversa. Diferenciação implícita. Aplicações das derivadas: Regra de L'Hopital. Problemas de máximos e mínimos.

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

O conteúdo será desenvolvido através de aulas expositivas e dialogadas, exercícios individuais e em grupos, resolução de exercícios no quadro, atendimento individual ao aluno, pesquisa em bibliotecas e outros.

IX. METODOLOGIA DE AVALIAÇÃO

A avaliação será feita através de 3 provas escritas e individuais além de 1 trabalho.

X. AVALIAÇÃO FINAL

A média final consistirá da média aritmética simples das quatro notas.

Estará aprovado o aluno que tiver nota final igual ou superior a 6,0 e freqüência suficiente.

O aluno com frequência suficiente e média final entre 3 e 5,5 terá direito a uma prova final versando sobre todo conteúdo da disciplina. Sua nota final será, então, a média aritmética entre a nota final do semestre e a nota da prova final.

XI. CRONOGRAMA TEÓRICO				
Data	Atividade			
	 Conjuntos e números: 18 horas/aula Funções: 18 horas/aula Limites e continuidade: 36 horas/aula Derivadas: 36 horas/aula 			
	XII. CRONOGRAMA PRÁTICO			
Data	Atividade			

XIII. BIBLIOGRAFIA BÁSICA

- M. Spivak, "Calculus", Publish or Perish, 1994.
- J. Stewart, "Cálculo Volume 1", Tradução da 6ª edição norte-americana. Cengage Learning, 2010.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- R. Courant e F. John, "Introduction to Calculus and Analysis I", Reimpressão da edição de 1989.
- E. L. Lima, "Análise Real", 8a. ed., Coleção Matemática Universitária, Rio de Janeiro: IMPA, CNPq, 2006.
 E. L. Lima, "Curso de Análise", Projeto Euclides, IMPA, 1989.
 P. Halmos, "Teoria ingênua dos conjuntos", Ciência Moderna, 2001. 2.
- 3.

Florianópolis, 06 de março de 2013.

Prof. Gilles Gonçalves de Castro Coordenador (a) da disciplina

2