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Abstract. Let α be a partial action, having globalization, of a finite group G over a unital
ring R. Let Rα denote the subring of the α-invariant elements of R and CR(Rα) the centralizer
of Rα in R. In this paper we show that there are one-to-one correspondences among sets of
suitable separable subalgebras of R, Rα and CR(Rα). In particular, we extend to the setting of
partial group actions similar results due to F. DeMeyer [4], and R. Alfaro and G. Szeto [2].

1. Introduction

DeMeyer [4], Kanzaki [10] and Harada [8] investigated central Galois algebras (Galois algebras
A over k such that k is the center of A) and Alfaro and Szeto [1] generalized this class of algebras
to the class of Galois Azumaya extensions (Galois extensions of an Azumaya algebra) as well
as characterized such extensions in terms of properties of the corresponding skew group ring [1,
Theorem 1] (see also [2, Theorem 1]). In [2] Alfaro and Szeto pushed ahead their study started
in [1] and presented two nice one-to-one correspondence theorems for Galois Azumaya extensions
[2, Theorems 2 and 3], the last one being a generalization of a similar result due to DeMeyer [4,
Lemma 2].

In this paper we will show that the Alfaro-Szeto’s results in [2] in fact hold in the more general
setting of the partial group actions having globalization.

Throughout, rings and algebras are always associative and unital. For any ring R, any non-
empty subset X of R and any subring Y of R we will denote by CY (X) the centralizer of X in Y .
If X = Y = R then CY (X) is the center of R and we will denote it simply by C(R).

Following [6], a partial action α of a group G on a ring R is a pair

α = ({Dg}g∈G, {αg}g∈G),

where for each g ∈ G, Dg is an ideal of R and αg : Dg−1 → Dg is an isomorphism of (non-necessarily
unital) rings, satisfying the following conditions:

(i) D1 = R and α1 is the identity automorphism of R;
(ii) αg(Dg−1 ∩Dh) = Dg ∩Dgh;
(iii) αg ◦ αh(r) = αgh(r), for every r ∈ Dh−1 ∩D(gh)−1 .

Notice that if Dg = R for every g ∈ G, then α is a global action of the group G on R, by
automorphisms of R.

For our purposes we will assume hereafter that every ideal Dg is unital, with its identity element
denoted by 1g (in particular, each 1g is a central idempotent of R). By [6, Theorem 4.5], this
condition is equivalent to say that α has a globalization (or an enveloping action), which means
that there exist a ring T and a global action of G on T , by automorphisms βg (g ∈ G), such that
R can be considered an ideal of T and the following conditions hold:

(i) T =
∑

g∈G βg(R);

(ii) Dg = R ∩ βg(R), for all g ∈ G;
(iii) αg = βg|Dg−1 .

In particular, under these conditions, we have

1g = 1Rβg(1R), αg(r1g−1) = βg(r)1R and αg(1h1g−1) = 1g1gh
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2 ANTONIO PAQUES, VIRGÍNIA RODRIGUES, AND ALVERI SANT’ANA

for every g, h ∈ G and r ∈ R.
Following [7] the subring of invariants of R under α is defined as

Rα = {r ∈ R : αg(r1g−1) = r1g},

and a finite set {xi, yi}m
i=1 of elements of R is called a partial Galois coordinate system of R over

Rα if
∑m

i=1 xiαg(yi1g−1) = δ1,g1R, for every g ∈ G.
Given any non-empty subset X of R, we say that X is α-invariant (or G-invariant, if α is

global) if αg(X1g−1) ⊆ X, for every g ∈ G. In particular, the centralizer CR(X) of a non-empty
α-invariant subset X of R is also α-invariant.

Given any α-invariant subring X of R, the restriction of α to X is also a partial action of G on
X given by α|

X
= ({X1g}g∈G, {αg|X1g−1}g∈G). If in addition such a subring X contains a partial

Galois coordinate system over Xα, then the restriction α|X is necessarily faithful, and we say that
X is an α-partial Galois extension of Xα whenever G is assumed to be finite.

A ring extension S ⊇ R is called separable (see [9]) if the multiplication map mS : S⊗RS → S is
a splitting epimorphism of S-bimodules or, equivalently, if there exists an element x ∈ CS⊗RS(S)
such that mS(x) = 1S . Such an element x is an idempotent in S⊗R S and it is called a separability
idempotent of S over R. If R ⊆ C(S) (resp., R = C(S)) we also say that S is a separable (resp., an
Azumaya) R-algebra. A ring R is called Azumaya if it is an Azumaya C(R)-algebra. Furthermore,
provided the existence of a partial action α of a finite group G on a ring R, we say that R is an
α-partial Galois Azumaya extension (of Rα) if R is an α-partial Galois extension of Rα, Rα is an
Azumaya ring and C(Rα) = C(R)α.

Our main purpose in these notes is to prove the following theorems.

Theorem 1.1. Let α be a partial action having globalization of a finite group G on a ring R.
Suppose that R is an α-partial Galois Azumaya extension of Rα. Then there exists a one-to-
one correspondence between the set of the separable C(Rα)-subalgebras X of Rα and the set of
the separable C(Rα)-subalgebras Y of R which are α-partial Galois Azumaya extensions of Y α

containing CR(Rα), given by X
µ7→ CR(X) with inverse Y

ν7→ CRα(Y ).

Theorem 1.2. Let α be a partial action having globalization of a finite group G on a ring R.
Suppose that R is an α-partial Galois Azumaya extension of Rα. Then there exists a one-to-one
correspondence between the set of the separable C(Rα)-subalgebras X of R containing Rα and
the set of the separable C(Rα)-subalgebras Y of CR(Rα), given by X

µ7→ CX(Rα) with inverse
Y

ν7→ RαY .

Theorem 1.3. Let α be a partial action having globalization of a finite group G on a ring R.
Suppose that R is an Azumaya ring and C(R) is an α-partial Galois extension of C(R)α. Then
there exists a one-to-one correspondence between the set of the separable C(R)α-subalgebras X of
R containing Rα and the set of the separable C(R)α-subalgebras Y of C(R), given by X

µ7→ C(X)
with inverse Y

ν7→ RαY .

We set their proofs in the section 3. In the proof of Theorem 1.1 we proceed by similar
arguments as those used in the proof of [2, Theorem 2]. For the proof of Theorem 1.2 we use the
corresponding global Alfaro-Szeto’s result [2, Theorem 3] and we give an explicit way to go, step
by step, from the partial case to the global one and conversely. The proof of Theorem 1.3 is done
in the same way, but in this case we simplify the procedures used before translating them in terms
of one-to-one correspondences between the partial and the global cases.

We will present in the next section some lemmas which are the necessary preparation to prove
the above theorems. In particular, Lemmas 2.6 and 2.7 below are generalizations to the partial
case of [2, Lemmas 1 and 2] respectively.
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2. Prerequisites

From now on, G will denote a finite group and α = ({Dg}g∈G, {αg}g∈G) a partial action of G on
a given ring R, with globalization (T, β). As usually, we will also denote the subring of invariants
of T under β by TG.

Since T =
∑

g∈G βg(R), putting G = {g1 = 1, g2, . . . , gn}, we have that 1T = e1⊕ e2⊕ · · · ⊕ en,
where e1 = 1R and ei = (1T − 1R) · · · (1T − βgi−1(1R))βgi(1R), for every 2 ≤ i ≤ n, (see [7]). Also
in [7] the authors introduced a (left and right) TG-linear and multiplicative map ψ : T → T given
by

ψ(x) =
n∑

i=1

βgi
(x)ei =

∑

1≤l≤n

∑

i1<···<il

βgi1
(1R) · · ·βgil−1

(1R)βgl
(x),

for every x ∈ T . It was showed in [3, Proposition 2.5] that the restriction ψ|Rα gives a ring
isomorphism from Rα onto TG, whose inverse is given by the map x 7→ x1R, for every x ∈ TG.
We will see in the first lemma bellow a generalization of this result.

Lemma 2.1. The following statements hold.
(i) Let X (resp., X ′) be a non-empty subset of R (resp., T ) and Y (resp., Y ′) a subring of R

(resp., T ) such that X ′1R = X (resp., Y ′1R = Y ). Then, CY (X) = CY ′(X ′)1R.

(ii) Let X be a non-empty subset of R and Y a subring of R. Then, the map

ψ|CY (X) : CY (X) → Cψ(Y )(ψ(X))

is a ring isomorphism with inverse induced by t 7→ t1R, for all t ∈ T .

(iii) Let X be an α-invariant subring of R and Y a G-invariant subring of T such that Y 1R =
X, then the map

ψ|Xα : Xα → Y G

is a ring isomorphism with inverse induced by t 7→ t1R, for all t ∈ T .

(iv) Let X and Y be subrings of R such that Y is α-invariant and C(Y α) ⊆ X. Then the map

θ : X ⊗C(Y α) X → ψ(X)⊗C(ψ(Y α)) ψ(X)

given by x ⊗ x′ 7→ ψ(x) ⊗ ψ(x′) is a ring isomorphism with inverse induced by t 7→ t1R,
for all t ∈ T .

(v) Let X and Y be subrings of R such that Y is α-invariant and C(Y )α ⊆ X. Then the map

γ : X ⊗C(Y )α X → ψ(X)⊗ψ(C(Y )α) ψ(X)

given by x ⊗ x′ 7→ ψ(x) ⊗ ψ(x′) is a ring isomorphism with inverse induced by t 7→ t1R,
for all t ∈ T .

(vi) Consider X and Y as given in (iv). Then the map

θ|CA(X) : CA(X) → CB(ψ(X))

is a ring isomorphism, where A = X ⊗C(Y α) X and B = θ(A).

(vii) Consider X and Y as given in (v). Then the map

γ|CU (X) : CU (X) → CV (ψ(X))

is a ring isomorphism, where U = X ⊗C(Y )α X and V = γ(U).

(viii) Consider X and Y as given in (iv). Then X is C(Y α)-separable if and only if ψ(X) is
C(ψ(Y α))-separable.

(ix) Consider X and Y as given in (v). Then X is C(Y )α-separable if and only if ψ(X) is
ψ(C(Y )α)-separable.
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Proof. (i) It is straightforward.

(ii) Clearly ψ|CY (X) is a well-defined ring isomorphism from CY (X) onto Cψ(Y )(ψ(X)), with
inverse induced by the multiplication by 1R.

(iii) The inclusion ψ(Xα) ⊆ Y G can be proved by a similar way as in the proof of [3, Proposition
2.5]. Moreover, Y G1R ⊆ Xα. Indeed, αg(y1R1g−1) = βg(y1R)1R = yβg(1R)1R = (y1R)1g for
every y ∈ Y G and g ∈ G. Since ψ is (right and left) TG-linear, we have ψ(y1R) = yψ(1R) =
y1T = y for any y ∈ Y G, and ψ(x)1R = x for all x ∈ Xα.

(iv) Note that X is a C(Y α)-module and consequently ψ(X) is a ψ(C(Y α))-module. Besides
this, from (ii) we have ψ(C(Y α)) = C(ψ(Y α)) and therefore ψ(X) is an C(ψ(Y α))-module.

Now putting Q = C(Y α) and P = C(ψ(Y α)) it is clear that the maps

X ×X → ψ(X)⊗P ψ(X)
(x, x′) 7→ ψ(x)⊗ ψ(x′) and ψ(X)× ψ(X) → X ⊗Q X

(ψ(x), ψ(x′)) 7→ x⊗ x′

are bi-additive, multiplicative and balanced over P and Q, respectively.
Thus, we have the respective induced ring homomorphisms:

θ : X ⊗Q X → ψ(X)⊗P ψ(X)
x⊗ x′ 7→ ψ(x)⊗ ψ(x′) and θ′ : ψ(X)⊗P ψ(X) → X ⊗Q X

ψ(x)⊗ ψ(x′) 7→ x⊗ x′

which satisfy θ ◦ θ′ = Iψ(X)⊗P ψ(X) and θ′ ◦ θ = IX⊗QX .

(v) The proof is similar to that of (iv).

(vi) It is an immediate consequence of (iv).

(vii) It is an immediate consequence of (v).

(viii) Notice first that by (ii) C(Y α) ⊆ C(X) if and only if C(ψ(Y α)) ⊆ C(ψ(X)). The rest of
the proof follows from (vi) and the definition of separability.

(ix) The proof is similar to that of (viii) and it follows from (ii), (vii) and the definition of
separability. ¤

Lemma 2.1 has some immediate consequences, which we put in the next two corollaries.

Corollary 2.2. The following statements hold:
(i) Rα = TG1R.
(ii) C(R) = C(T )1R.
(iii) C(Rα) = C(TG)1R.
(iv) C(R)α = C(T )G1R.

Proof. (i) It follows from Lemma 2.1(iii).

(ii) It follows from Lemma 2.1(i).

(iii) It follows from (i) and Lemma 2.1(i).

(iv) It follows from (ii) and Lemma 2.1(iii). ¤

Corollary 2.3. The following statements are equivalent:
(i) T is a Galois Azumaya extension of TG.
(ii) R is an α-partial Galois Azumaya extension of Rα.

Proof. By [7, Theorem 3.3], T is a Galois extension of TG if and only if R is an α-partial Galois
extension of Rα. By Lemma 2.1(viii), TG is C(TG)-separable if and only if Rα is C(Rα)-separable.
And from (iii)-(iv) of Corollary 2.2, we have C(TG) = C(T )G if and only if C(Rα) = C(R)α. The
proof is complete. ¤

Lemma 2.4. Let X ′ be an α-invariant subring of R. Then, the following statements hold:
(i) α′ = ({X ′

g = X ′1g}g∈G, {α′g = αg|X′
g−1
}g∈G) is a partial action of G on X ′.
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(ii) (Y ′ =
∑

g∈G βg(X ′), β′), with β′ : G → Aut(Y ′) given by β′g = βg|Y ′ , is a globalization of
(X ′, α′).

If in particular X ′ = CR(X) for some non-empty subset X of Rα, then CT (ψ(X)) = Y ′.

Proof. (i) Under the assumptions on X ′ it is immediate that each X ′
g is an ideal of X ′ and each

α′g : X ′
g−1 → X ′

g is an isomorphism of unital rings. Now, since

α′g(X
′
g−1 ∩X ′

h) = αg(X ′1g−11h) = αg(X ′1g−1)αg(1h1g−1) = (X ′1g)1g1gh = X ′1g1gh = X ′
g ∩X ′

gh,

for any g, h ∈ G, and
(α′gα

′
h)(x) = αg(αh(x)) = αgh(x) = α′gh(x),

for any x ∈ X ′
h−1 ∩X ′

(gh)−1 , the required follows.

(ii) Since βg(X ′)X ′ = βg(X ′)1RX ′ = αg(X ′1g−1)X ′ ⊆ X ′ and X ′βg(X ′) ⊆ X ′ as well, for
every g ∈ G, it follows that X ′ is an ideal of Y ′. In particular X ′ = Y ′1R and hence X ′∩βg(X ′) =
Y ′1R ∩ βg(Y ′)βg(1R) = Y ′1Rβg(1R) = X ′

g. Finally, α′g(x) = αg|X′
g−1

(x) = βg|X′
g−1

(x) = β′g(x) for
every g ∈ G and x ∈ X ′

g−1 .

For the last statement notice first that X ′ = CR(X) = CT (ψ(X))1R by Lemma 2.1(i). More-
over, because X ⊆ Rα we have ψ(X) ⊆ TG and from this it easily follows that CT (ψ(X)) is
G-invariant. Thus, βg(X ′) = βg(CT (ψ(X))1R) = βg(CT (ψ(X)))βg(1R) = CT (ψ(X))βg(1R) ⊆
CT (ψ(X)), for any g ∈ G, and consequently Y ′ ⊆ CT (ψ(X)).

Indeed, Y ′ is an ideal of CT (ψ(X)). To see this, take t ∈ CT (ψ(X)), g ∈ G and set t′ = βg−1(t).
Then, for any r ∈ X ′ and any x ∈ X we have (t′r)x = t′xr = βg−1(t)ψ(x)r = βg−1(tψ(x))r =
βg−1(ψ(x)t)r = ψ(x)βg−1(t)r = ψ(x)t′r = x(t′r). Therefore, t′r ∈ X ′ and tY ′ =

∑
g∈G tβg(X ′) =∑

g∈G βg(t′X ′) ⊆ ∑
g∈G βg(X ′) = Y ′. We also get Y ′t ⊆ Y ′ by similar arguments.

Finally, 1T = ψ(1R) =
∑

1≤l≤n

∑
i1<···<il

βgi1
(1R) · · ·βgil

(1R) ∈ Y ′ and the result follows. ¤

Remark 2.5. For the globalization (Y ′, β′) of (X ′, α′), both constructed in Lemma 2.4, one can
consider, by restriction to Y ′, the same map ψ also from Y ′ into Y ′. In particular, all the
statements of Lemma 2.1 and Corollaries 2.2 and 2.3 remain valid when we replace (R,α) (resp.,
(T, β)) by (X ′, α′) (resp., (Y ′, β′)).

Following [6], the partial skew group ring R ?α G is defined as the direct sum
⊕

g∈G

Dgδg,

where the δ′gs are symbols, with the usual sum and the multiplication defined by the rule

(rδg)(sδh) = rαg(s1g−1)δgh

for all g, h ∈ G, r ∈ Dg and s ∈ Dh. Since every Dg is unital by assumption, then R ?α G is
associative (see [6, Proposition 2.5 and Theorem 3.1]) and unital, with the identity element given
by 1Rδ1.

Lemma 2.6. Suppose that R is an α-partial Galois Azumaya extension of Rα. Let X be a
separable C(Rα)-subalgebra of Rα, X ′ = CR(X) and α′ = ({X ′

g = X ′1g}g∈G, {α′g = αg|X′
g−1
}g∈G)

the partial action of G on X ′ constructed in Lemma 2.4. Then the following statements hold.
(i) X ′ is an α′-partial Galois Azumaya extension of X ′α′ .
(ii) X ′ is a C(Rα)-separable algebra.
(iii) R ∗α G is an Azumaya ring and C(R ∗α G) = C(R)α = C(Rα).

Proof. To prove this lemma we need some preparation. First of all, by Corollary 2.3 we have that
T is a Galois Azumaya extension of TG and so, it follows that C(T ∗β G) = C(TG) = C(T )G by
[2, Theorem 1]. Corollary 2.2(i) implies that ψ(X) ⊆ ψ(Rα) = TG and by Lemma 2.1(viii) we
have that ψ(X) is a separable C(TG)-subalgebra of TG. Therefore, it follows from [2, Lemma 1]
that
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(1) CT (ψ(X)) is a Galois Azumaya extension of CT (ψ(X))G and
(2) CT (ψ(X)) is a separable C(TG)-subalgebra of T .

From (1), [4, Theorem 1] and [5, Theorem II.3.4] we have, in particular, that CT (ψ(X)) is a finitely
generated projective C(CT (ψ(X))G)-module. Hence, from (2) and [11, Proposition III.2.4(c)] it
follows that

(3) C(CT (ψ(X))G) is a separable C(TG)-subalgebra of T .

Moreover, it follows from Lemma 2.4 that

(4) (CT (ψ(X)), β′), with β′ given by β′g = βg|CT (ψ(X)), is a globalization of (X ′, α′).

Now, we are able to conclude this proof.

(i) It follows from (1), (4) and Corollary 2.3.

(ii) It follows from (i) that X ′ is C(X ′α′)-separable. From (3), (4), Remark 2.5 and the state-
ments (i)-(iii) and (viii) of Lemma 2.1 we have that C(X ′α′) is C(Rα)-separable. So the claim
follows by [11, Proposition III.2.4(b)].

(iii) By assumption we have that: (a) R is an α-partial Galois extension over Rα; (b) Rα is an
Azumaya algebra and (c) C(Rα) = C(R)α. By arguments similar to those used in the proof of
[7, Theorem 4.1], it follows from (a) that R is a finitely generated projective right Rα-module and
R ∗α G ' End(RRα) as C(R)α-algebras. It follows from (b), (c) and [5, Theorem II.3.4] that R is
a finitely generated projective C(R)α-module. Thus, EndC(R)α(R) is an Azumaya C(R)α-algebra
by [5, Proposition II.4.1]. Since End(RRα) = CEndC(R)α (R)(Rα), the result follows by [5, Theorem
II.4.3]. ¤

Lemma 2.7. Suppose that R is an α-partial Galois Azumaya extension of Rα and let W be
a separable C(Rα)-subalgebra of R which is α-invariant. Assume that CR(Rα) ⊆ W and W

is an αW -partial Galois Azumaya extension of WαW

, with αW = ({Wg = W1g}g∈G, {αW
g =

α|Wg−1 }g∈G). Then, there exists a separable C(Rα)-subalgebra V of Rα such that W = CR(V )
and V = CRα(W ).

Proof. By Lemma 2.4 we have that (W ′ =
∑

g∈G βg(W ), β′), with β′ given by β′g = βg|W ′ , g ∈ G,
is a globalization of (W,αW ). Note that W ′ is a subring of T . In the sequel we will show that T
and W ′ satisfy all the conditions listed in [2, Lemma 2]. We will proceed by steps.

Step 1: W ′ ⊇ CT (TG).
We start by observing that T =

⊕
1≤j≤n βgj (R)ej because this direct sum is clearly an

ideal of T that contains 1T . Now, take y ∈ CT (TG) and recall that TG = ψ(Rα). Then,
y =

∑
1≤j≤n βgj (rj)ej , with rj ∈ R, and for any r ∈ Rα we have yψ(r) = ψ(r)y, which eas-

ily implies that rjβg−1
j

(ej)r = rrjβg−1
j

(ej), for every 1 ≤ j ≤ n. Therefore rjβg−1
j

(ej) ∈ CR(Rα)
for all 1 ≤ j ≤ n, and so y ∈ ∑

1≤j≤n βgj (CR(Rα)) ⊆ ∑
1≤j≤n βgj (W ) = W ′.

Step 2: T and W ′ are Galois Azumaya extensions of TG and W ′G, respectively.
This is clear by Corollary 2.3 and Remark 2.5.

Step 3: C(T ?β G) = C(TG).
This is an immediate consequence of Step 2 and Lemma 2.6 (or [2, Theorem 1]).

Step 4: W ′ is a separable C(TG)-algebra.
It follows from Remark 2.5, Corollary 2.2(iii) and Lemma 2.1(viii) that ψ(W ) is a separable

C(TG)-algebra. Hence, there exist elements xi, yi ∈ ψ(W ) ⊆ W ′, 1 ≤ i ≤ m, such that
∑

i xiyi =
1ψ(W ) = 1W ′ and

∑
i ψ(w)xi ⊗ yi =

∑
i xi ⊗ yiψ(w), for every w ∈ W . From this second equality

we have that
⊕

1≤j≤n

(∑

i

βgj (w)ejxi ⊗ yi

)
=

⊕

1≤j≤n

(∑

i

xi ⊗ yiβgj (w)ej

)
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which implies ∑

i

βgj
(w)ejxi ⊗ yi =

∑

i

xi ⊗ yiβgj
(w)ej

for every 1 ≤ j ≤ n. On the other hand, W ′ =
⊕

1≤i≤m βgj
(W )ej (by the same arguments used

in the proof of Step 1) and, consequently,
∑

i w′xi ⊗ yi =
∑

i xi ⊗ yiw
′, for every w′ ∈ W ′, which

proves the required.
Now, it follows from [2, Lemma 2] that there exists a separable C(TG)-subalgebra V ′ of TG

such that V ′ = CT G(W ′) and W ′ = CT (V ′). Put V = V ′1R and notice that W = W ′1R. Then
ψ(V ) = V ′ and so V is a separable C(Rα)-subalgebra of Rα by Corollary 2.2(iii) and Lemma
2.1(viii). Moreover, V = CT G(W ′)1R = CRα(W ) and W = W ′1R = CT (V ′)1R = CR(V ) by
Lemma 2.1(i). The proof is complete. ¤

3. The proofs

Proof of Theorem 1.1:

Let X be a separable C(Rα)-subalgebra of Rα. It is clear that CR(X) contains CR(Rα) and
it follows from Lemma 2.6 that CR(X) is an α-partial Galois Azumaya extension and a separable
C(Rα)-subalgebra of R. Thus, µ is well-defined. From Lemma 2.7, it follows that µ is surjective
and ν is well-defined.

To show that µ is one-to-one, it is enough to prove that (νµ)(X) = CRα(CR(X)) = X, for
any separable C(Rα)-subalgebra X of Rα. By Lemma 2.6 R ∗α G is an Azumaya algebra with
C(R ∗α G) = C(Rα). Thus, it follows from [5, Theorem II 4.3] that X = CR∗αG(CR∗αG(X)).
Noting that CR(X) is α-invariant, it is easy to check that CR∗αG(X) = CR(X) ∗α G. Obviously
X ⊆ CRα(CR(X)) and CRα(CR(X)) ⊆ CR∗αG(CR(X) ∗α G) = CR∗αG(CR∗αG(X)) = X. The
proof is complete. ¤

Proof of Theorem 1.2:

By Corollary 2.3 and Lemma 2.6 (or [2, Theorem 1]) we have that T is a Galois Azumaya
extension of TG and C(T ∗β G) = C(TG) = C(T )G.

Let X be a separable C(Rα)-subalgebra of R containing Rα. It follows from Corollary 2.2 and
Lemma 2.1(viii) that TG = ψ(Rα) ⊆ ψ(X) and ψ(X) is a separable C(TG)-subalgebra of T . By
[2, Theorem 3], Cψ(X)(TG) is a separable C(TG)-subalgebra of CT (TG). By Lemma 2.1(i) we have
that CX(Rα) = Cψ(X)(TG)1R and again by Lemma 2.1(viii) it follows that CX(Rα) is a separable
C(Rα)-subalgebra of CR(Rα). So, µ is well-defined.

Conversely, let Y be a separable C(Rα)-subalgebra of CR(Rα). Then, it follows from (ii) and
(viii) of Lemma 2.1 that ψ(Y ) is a separable C(TG)-subalgebra of Cψ(R)(TG) ⊆ CT (TG). Thus,
TGψ(Y ) is a separable C(TG)-subalgebra of T that contains TG by [2, Theorem 3]. Again by (ii),
(iii) and (viii) of Lemma 2.1 we get that RαY = TGψ(Y )1R is a separable C(Rα)-subalgebra of
R containing Rα. Hence, ν is well-defined.

Finally, we observe that

CX(Rα)Rα = Cψ(X)(TG)TG1R
(∗)
= ψ(X)1R = X

and
CRαY (Rα) = Cψ(RαY )(TG)1R = CT Gψ(Y )(T

G)1R
(∗)
= ψ(Y )1R = Y,

where the equalities (∗) follow from [2, Theorem 3] and the others are ensured by Lemma 2.1. ¤

Proof of Theorem 1.3:

Note that R is a separable C(R)α-algebra, by assumption and [7, Theorem 4.2]. Thus, by
Lemma 2.1(ix) and Corollary 2.2(iv) we have that ψ(R) is a separable C(T )G-algebra, and by the
same argumentation used in the step 4 of the proof of Lemma 2.7 we have that T is a separable
C(T )G-algebra. Consequently, T is Azumaya by [5, Proposition II.3.8].
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Following [3, Proposition 2.4], (C(T ), β|C(T )
) is a globalization of (C(R), α|C(R)

) and so, by
assumption and [7, Theorem 3.3], we get that G acts faithfully on C(R) and C(T ) is a Galois
extension of C(T )G. Therefore, from [2, Corollary 1] we have the one-to-one correspondence
between the set A′ of the separable C(T )G-subalgebras of T containing TG and the set B′ of the

separable C(T )G-subalgebras of C(T ), given by U
µ′7→ C(U) with inverse V

ν′7→ TGV .
Let A denote the set of the separable C(Rα)-subalgebras of R containing Rα and B the set of

the separable C(Rα)-subalgebras of C(R). As a consequence of Lemma 2.1, the map ψ induces
a one-to-one correspondence, denoted by ψA′

A (resp., ψB′
B ), between the sets A (resp., B) and A′

(resp., B′), with inverse given by the multiplication by 1R.
The required one-to-one correspondence between the sets A and B is given by the composition

µ = 1Rµ′ψA′
A , with inverse ν = 1Rν′ψB′

B . ¤
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