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Preface

1 What is a Local Field?

Historically, the first local field, the field of p-adic numbers Qp, was introduced in 1897 by Kurt Hensel,
in an attempt to borrow ideas and techniques of power series in order to solve problems in Number
Theory. Since its inception, local fields have attracted the attention of several mathematicians, and have
found innumerable applications not only to Number Theory but also to Representation Theory, Division
Algebras, Quadratic Forms and Algebraic Geometry. As a result, local fields are now consolidated as
part of the standard repertoire of contemporary Mathematics.

But what exactly is a local field? Local field is the name given to any finite field extension of either
the field of p-adic numbers Qp or the field of Laurent power series Fp((t)). Local fields are complete
topological fields, and as such are not too distant relatives of R and C. Unlike Q or Fp(t) (which are
global fields), local fields admit a single valuation, hence the tag ‘local’. Local fields usually pop up as
completions of a global field (with respect to one of the valuations of the latter).

2 What are Local Fields good for?

Local fields help us better understand the arithmetic of global fields, much in the same way R helps us
better understand inequalities in Q. In this context local fields are like playing drums: they are not too
hard to play with, yet all the major phenomena of global fields already appear in some way or other in
local fields.

In some fortuitous instances, this interaction between global and local fields assumes a particularly
strong form, the so-called local-global or Haße principle, which completely reduces a global problem
to its local counterparts. The classical example is the famous Haße-Minkowski theorem: a quadratic
form over Q is isotropic (i.e. represents zero non-trivially) if and only if it is isotropic over R and over
Qp for each prime p. Here is another example: a (finite dimensional) central simple algebra D over Q
is trivial (i.e. isomorphic to a matrix ring over Q) if and only if D ⊗Q R and D ⊗Q Qp are trivial for all
primes p.

3 Should I read these Notes?

Well, the answer to this question is of course up to you. But here are some of the “lollipops” that you may
miss if you decide not to. In the first chapter, after covering the basic theorems of the subject, we show
that every quadratic form over Qp in at least 5 variables is isotropic. Combined with the Haße-Minkowski
theorem above, this proves that a quadratic form over Q in at least 5 variables is isotropic if and only
if it is isotropic over R! Still in the first chapter we show that every Galois extension of Qp is solvable!
In the second chapter, we give a description of all abelian extensions of Qp. In particular we prove that
every abelian extension of Qp is contained in some cyclotomic extension. This is a local version of the
celebrated Kronecker-Weber theorem, which states that any abelian extension of Q is contained in some
cyclotomic extension.

Unfortunately, due to restrictions of time and space (= laziness of the author), it was not possible
to cover the interactions between global and local fields systematically. But we do include an important
example: the proof of the global Kronecker-Weber theorem from the local one, assuming just a few basic
facts about global fields, which can easily be found in standard texts on Algebraic Number Theory.

All in all, this text is more or less self-contained in that we do not require much beyond what is
usually covered in regular Algebra courses. For convenience of the reader, the “less standard” topics are
briefly reviewed (or viewed, depending on the reader) in the Appendix.
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4 Where to go next?

There are plenty of good books about local fields, varying in difficulty and scope. The first part of Serre’s
“A course in Arithmetic” is particularly recommended, with many important applications that are not
covered in this text. Several books on Number Theory contain good introductions to local fields, such
as the those by Borevich-Shafarevich, Neukirch and Milne. And everyone should eventually look at the
two books “Local Fields,” the one by Cassels and the one by Serre.

Since local fields are a prelude to global ones, one should also start learning about global fields.
Besides the Number Theory books quoted above, Cassels-Fröhlich’s book is a must, specially the articles
by Serre and by Tate. Milne’s “Class Field Theory” is also extremely helpful. Finally the authoritative
book (= if it’s not there it’s wrong) “Cohomology of Number Fields” by Neukirch-Schimdt-Wingberg
cannot be forgotten.

5 Some Commonly Used Terms

• CLEARLY: I don’t want to write down all the “in-between” steps.

• RECALL: I shouldn’t have to tell you this, but. . .

• WLOG (Without Loss Of Generality): I’m not about to do all the possible cases, so I’ll do one and let you
figure out the rest.

• CHECK or CHECK FOR YOURSELF: This is the boring part of the proof, so you can do it on your own
time.

• SKETCH OF A PROOF: I couldn’t verify all the details, so I’ll break it down into the parts I couldn’t
prove.

• HINT: The hardest of several possible ways to do a proof.

• SIMILARLY: At least one line of the proof of this case is the same as before.

• BY A PREVIOUS THEOREM: I don’t remember how it goes (come to think of it I’m not really sure we
did this at all), but if I stated it right (or at all), then the rest of this follows.

• PROOF OMITTED: Trust me, it’s true.
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Chapter 1

LocalFields: Basics

1 Two basic examples: Fp((t)) and Qp

Let p be a prime and let Fp be the finite field with p elements. Consider the ring Fp[[t]] of formal power
series with coefficients in Fp:

a0 + a1t+ a2t
2 + · · · , ai ∈ Fp

Addition and multiplication are performed in the usual way as with polynomials. For instance, one has

(1− t) · (1 + t+ t2 + t3 + · · ·) = 1

The principal ideal (t) is a maximal ideal of Fp[[t]] with residue field Fp[[t]]/(t) ∼= Fp. Also the group of
units of Fp[[t]] is given by

Fp[[t]]
× =

{
a0 + a1t+ a2t

2 + · · · ∈ Fp[[t]]
∣
∣ a0 6= 0

}

In fact, if

(a0 + a1t+ a2t
2 + · · ·)(b0 + b1t+ b2t

2 + · · ·) = 1

has a solution in the bi’s, one must have a0b0 = 1 and hence a0 6= 0, and conversely if a0 6= 0 then one
can recursively set b0 = a−1

0 and bn = −a−1
0 (anb0 + an−1b1 + · · ·+ a1bn−1) for n ≥ 1.

In other words, the complement of the maximal ideal (t), namely the set of power series a0 + a1t+
a2t

2 + · · · with nonzero constant term a0 6= 0, consists solely of units, and therefore (t) is the unique
maximal ideal of Fp[[t]], which is thus a local ring. The ring Fp[[t]] is also a UFD and, even better,
a discrete valuation ring (dvr for short; see appendix for the definition), as every nonzero element
f ∈ Fp[[t]] admits a rather simple prime factorisation

f = tn
︸︷︷︸

power of
uniformiser t

× (an + an+1t+ an+2t
2 + · · ·)

︸ ︷︷ ︸

unit in Fp[[t]]

, an 6= 0

for some n ≥ 0. As a consequence, the nonzero elements of the fraction field Fp((t))
df
= FracFp[[t]] also

admit a similar factorisation with n ∈ Z, and thus elements of Fp((t)) can be identified with “Laurent
power series” f =

∑

i≥i0
ait

i, i0 ∈ Z. The discrete valuation v on Fp((t)) associated to the dvr Fp[[t]]
is given by

v(f) = n ∈ Z such that f has prime factorisation f = tn · u, u ∈ Fp[[t]]
×

= min{n ∈ Z | an 6= 0}

for f =
∑

i≥i0
ait

i ∈ Fp((t))
×, and v(0) = ∞ if f = 0. The discretely valued field Fp((t)) is our first

example of a local field.

Being a discretely valued field, Fp((t)) is also a normed field with norm given by (see appendix)

|f |v = 2−v(f) for f ∈ Fp((t))
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(Here 2 denotes your favourite real number greater than 1) One has the following rule of the thumb for
the topology defined by | − |v: the power series a0 + a1t + a2t

2 + · · · converges (to itself) and thus its
general term should approach zero. Hence

lim
n→∞

tn = 0

For example, for any f ∈ Fp((t)) one has the following “derivative rule”

lim
n→∞

(f + tn)5 − f5

tn
= 5f4

Observe that Fp((t)) contains Fp(t) = FracFp[t] as a dense subfield since any power series f =
∑

i≥i0
ait

i can be written as a limit of rational functions (for instance, of the “truncations”
∑

i0≤i≤n ait
i

of f), much in the same way as R contains Q as a dense subfield since any real number is a limit of
rational ones. As you can see, much of the intuition from Analysis can be borrowed for the study of
Fp((t)) (and other local fields). The good news is that, thanks to the strong triangle inequality (see
appendix)

|f + g|v ≤ max{|f |v, |g|v},
Analysis on Fp((t)) turns out to be much easier than on R or C! For instance, one has the following
amazing

Lemma 1.1 (Calculus Student’s Psychedelic Dream) Let fn ∈ Fp((t)), n ≥ 0. Then the series

f0 + f1 + f2 + f3 + · · ·

converges in Fp((t)) if and only if limn→∞ fn = 0.

Proof The “only if” is clear (it works for any metric space). Now assume that limn→∞ fn = 0, i.e.,
that v(fn) → ∞ as n → ∞. This means that for a fixed n there are only finitely many terms in the
infinite sum f0 +f1 +f2 + · · · that actually contribute to the coefficient of tn, and hence f0 +f1 +f2 + · · ·
is a well-defined element of Fp((t)). Now a routine check (using the definitions) shows that this element
is indeed the limit of the partial sums f0 + · · ·+ fm.

The above lemma turns out to be quite useful in explicit computations. For instance, one can find
the multiplicative inverse of 1 + t + t2, say, by applying the usual formula for the sum of a geometric
progression:

1

1 + t+ t2
= 1− (t+ t2) + (t+ t2)2 − (t+ t2)3 + · · ·

This series converges since the general term has valuation v
(
(t+ t2)n

)
= n→∞.

Now we show that Fp((t)) is actually a complete discretely valued field. In other words, we show
that every Cauchy sequence in Fp((t)) converges. In fact, if {fn}n≥0 is Cauchy then limn→∞(fn+1−fn) =
0 and therefore

lim
n→∞

fn = f0 +
∑

n≥0

(fn+1 − fn)

converges by the Calculus Student’s Psychedelic Dream, proving that Fp((t)) is indeed complete.

Remark 1.2 Conversely, any complete discretely valued field K with valuation v satisfies the Calculus
Student’s Psychedelic Dream: if limn→∞ fn = 0 then

∣
∣
∑

M≤n≤N fn

∣
∣
v
≤ max

{
|fn|v

∣
∣ M ≤ n ≤ N

}
can

be made arbitrarily small by choosing M sufficiently large, hence the partial sums
∑

0≤n≤N fn form a

Cauchy sequence and therefore
∑

n≥0 fn converges.

Before leaving the realm of Fp((t)), we wish to give an alternative but rather useful description of
Fp[[t]] as a projective limit of the discrete rings Fp[t]/(t

n) (check the appendix if you are unfamiliar
with limits). Namely, we have an algebraic and topological isomorphism

Fp[[t]] ≈ lim←−
n∈N

Fp[t]

(tn)

df
=

{

(fn) ∈
∏

n∈N

Fp[t]

(tn)

∣
∣
∣ fm = fn mod tm for all n ≥ m

}
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given by

a0 + a1t+ a2t
2 + · · · 7→ (a0 mod t, a0 + a1t mod t2, a0 + a1t+ a2t

2 mod t3, . . .)

Under this isomorphism the projection maps φn: Fp[[t]]→ Fp[t]/(t
n) become just the “truncation maps”

given by a0 + a1t+ · · · 7→ a0 + · · ·+ an−1t
n−1 mod tn.

A good way to picture this projective limit (or any other for the matter) is as the set of infinite paths
in an infinite rooted tree. For instance, for p = 2, one has the tree in the illustration, whose vertices in
the n-th level are labelled by elements of F2[t]/(t

n) and an element of the n-th level is connected by an
edge to its image in the (n− 1)-th level. Then an element a0 + a1t+ a2t

2 + · · · ∈ F2[[t]] corresponds to
the path given by (a0 mod t, a0 + a1t mod t2, a0 + a1t+ a2t

2 mod t3, . . .) ∈ lim←−
n∈N

F2[t]/(t
n).

...
↓

F2[t]/(t3)

↓
F2[t]/(t2)

↓
F2[t]/(t)

↓
0

...
...

...
...

...
...

...
...

0

0 mod t 1 mod t

0 mod t2 t mod t2 1 mod t2 t+1 mod t2

F2[[t]] as a projective limit

Observe that
∏

n∈N Fp[t]/(t
n) is compact by Tychonoff’s theorem and hence that Fp[[t]], as a closed

subspace of this product, is also compact (this can also be proven by the original description of Fp[[t]],
try!). Therefore any element f ∈ Fp((t)) has a compact neighbourhood f + Fp[[t]] = {g ∈ Fp((t)) |
|g− f |v < 2}, i.e., we have that Fp((t)) is a locally compact complete discretely valued field with
finite residue field Fp (image how this would look if written in German!).

Enough about Fp((t)) for now. Next we introduce the second main example of a local field. By
analogy with the above, we define the ring of p-adic integers Zp as the projective limit of the discrete
rings Z/(pn):

Zp
df
= lim←−

n∈N

Z

(pn)
=

{

(fn) ∈
∏

n∈N

Z

(pn)

∣
∣
∣ fm = fn mod pm for all n ≥ m

}

We may choose unique integers Fn with 0 ≤ Fn < pn representing fn ∈ Z/(pn). Writing Fn in base p

Fn = a0 + a1p+ a2p
2 + · · ·+ an−1p

n−1, 0 ≤ ai < p

we find that form ≤ n we must have Fm = a0+a1p+· · ·+am−1p
m−1, i.e., one obtains Fm by “truncating”

Fn. Hence a p-adic integer corresponds uniquely to a sequence of integers of the form

(a0, a0 + a1p, a0 + a1p+ a2p
2, . . .) 0 ≤ ai < p

which is usually written as an “infinite base p representation”

a0 + a1p+ a2p
2 + · · · with 0 ≤ ai < p

Computations with this “infinite series” can be done as with Fp[[t]], except that one has to pay
attention to the “carry 1”. For instance in Z2 one has that

1 + 2 + 22 + 23 + · · · = 1

1− 2
= −1
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by the usual formula for the sum of a geometric series! From a different perspective, adding 1 to
1 + 2 + 22 + 23 + · · · we obtain

1 + (1 + 2 + 22 + 23 + · · ·) = 2 + 2 + 22 + 23 + · · ·
= 22 + 22 + 23 + · · ·
= 23 + 23 + · · ·
= · · · = 0

We obtain an “infinite” sequence of “carry 1’s” and the end result is zero! But wait, is that licit or sheer
nonsense? If we go back to the original definition, there is no doubt that the above computations are
indeed correct: 1 corresponds to the constant tuple (1 mod 2, 1 mod 22, 1 mod 23, . . .) while 1 + 2 + 22 +
23 + · · · corresponds to the tuple (1 mod 2, 1+2 mod 22, 1+2+22 mod 23, . . .), hence their sum is indeed
zero. The punchline is: if a computation with the “infinite base p representation” works modulo pn for

all n then it works. For obvious reasons, we shall mostly work with the more intuitive infinite base p
representation, and leave it to the sceptical reader the chore of translating the statements back into the
projective limit definition of Zp.

Observe that in the same way that Fp[t] is contained in Fp[[t]] we have that Z is contained in Zp via
the “diagonal embedding” Z →֒ Zp given by a 7→ (a mod pn)n∈N (or a finite base p representation is a
special case of an infinite one). Also, as with Fp[[t]], there is a very simple description of the units of Zp

as those p-adic integers with “non-zero constant term”:

Z×

p =
{
a0 + a1p+ a2p

2 + · · · ∈ Zp

∣
∣ a0 6= 0, 0 ≤ ai < p

}

This is clear since a0 + a1p + · · · + an−1p
n−1 mod pn, 0 ≤ ai < p, is invertible in Z/(pn) if and only if

a0 6= 0. Therefore Z×

p consists exactly of those elements in the complement of the principal ideal (p),
which is maximal since Zp/(p) = Fp. Hence, as with Fp[[t]], Zp is also a local ring with finite residue
field Fp. And it is also a discrete valuation ring, since any element f ∈ Zp has a prime factorisation

f = pn

︸︷︷︸
power of

uniformiser p

× (an + an+1p
n+1 + an+2p

n+2 + · · ·)
︸ ︷︷ ︸

unit in Zp

an 6= 0

for some n ≥ 0, with 0 ≤ ai < p. Hence elements of the field of fractions Qp
df
= FracZp can be written

as “Laurent power series”
∑

i≥i0
aip

i, 0 ≤ ai < p, and the valuation on Qp associated to the dvr Zp is
given by

v(f) = n ∈ Z such that f has prime factorisation f = pn · u, u ∈ Z×

p

= min{n ∈ Z | an 6= 0}

for a nonzero element f =
∑

i≥i0
aip

i, 0 ≤ ai < p.

The topology on Qp is now expressed by the rule of the thumb

lim
n→∞

pn = 0

It is easy to check that this topology on Zp, given by the valuation v, coincides with the one induced from
the compact product

∏

n∈N Z/(pn), hence Zp is compact and thus Qp is a locally compact. And since any
element of Qp is a limit of rational numbers (for instance of the truncations of its base p expansion), we
have that Q is contained as a dense subfield of Qp. Finally, Calculus Student’s Psychedelic Dream holds
in Qp and Qp is a complete, virtually by the very same proofs for Fp((t)). To sum up, Qp is a locally
compact complete discretely valued field with finite residue field Fp, and it is our second main
example of a local field. Note that while char Fp((t)) = p we have that charQp = 0.
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2 Hensel’s lemma and applications

An amazing feature of local fields such as Fp((t)) or Qp is that, arithmetically speaking, they lie in
between finite fields such as Fp and global fields such as Fp(t) or Q. That is exactly what makes the
study of local fields so attractive: it allows us to obtain information about global fields at a cheaper
price. For instance, we may often reduce finding the solution to a system of polynomial equations over
Fp((t)) or Qp to the much simpler similar task over Fp. The main tool for that is the very important
Hensel’s lemma, whose punchline is

Hensel: “Smooth points in the residue field lift”

Precisely, we have

Lemma 2.1 (Hensel) Let K be a complete valued field with valuation ring A. Let m be the maxi-
mal ideal of A and k = A/m be its residue field. Let m ≤ n and consider polynomials f1, . . . , fm ∈
A[x1, . . . , xn]. Write f̄i for the image of fi in A[x1, . . . , xn]/mA[x1, . . . , xn] = k[x1, . . . , xn].

Suppose that we are given a smooth point c = (c1, . . . , cn) ∈ kn in the variety cut out by the
system of equations f̄i(x) = 0, i.e.,

1. f̄i(c) = 0 for all i and

2. m = rk
(

∂f̄i

∂xj
(c)

)

1≤i≤m
1≤j≤n

(in other words the codimension of the variety equals the rank of the

Jacobian matrix)

Then c lifts to a point a = (a1, . . . , an) ∈ An of the the variety cut out by the system of equations
fi(x) = 0, i.e., fi(a) = 0 for all 1 ≤ i ≤ m and cj = aj mod m for all 1 ≤ j ≤ n.
Proof The proof is based on the classical Newton’s method for numerically finding the roots of a
polynomial equation (see picture).

f

ci−1ci

Newton’s method: ci = ci−1 − f(ci−1)
f ′(ci−1)

As with Newton’s method, we inductively construct a sequence of “approximate” roots ci =
(ci1, . . . , cin) ∈ (A/mi)n, i = 1, 2, . . ., such that

(a) the point ci ∈ (A/mi)n belongs to the variety cut out by the fr, that is, fr(ci) = 0 for all r (here
and in the following we will indistinctively write fr for its image in A[x1, . . . , xn]/miA[x1, . . . , xn]
as it will be clear from the context in which ring we are working);

(b) for all i ≤ j, we have that ci = cj mod m
i (which of course means that cit = cjt mod m

i holds
for each coordinate, 1 ≤ t ≤ n)

The sequence ci will then define a point a ∈ An = lim←−(A/mi)n in the variety cut out by the fr. We

begin by setting c1 = c. For i ≥ 2, let c̃i−1 ∈ (A/mi)n be any lift of ci−1 ∈ (A/mi−1)n and consider the
system in yi = (y1, . . . , yn)






∂f1

∂x1
(c̃i−1) . . . ∂f1

∂xn
(c̃i−1)

...
...

∂fm

∂x1
(c̃i−1) . . . ∂fm

∂xn
(c̃i−1)











y1
...
yn




 =






f1(c̃i−1)
...

fm(c̃i−1)




 (∗)
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Modulo m the Jacobian matrix has full rank m and thus by relabelling the xj we may assume that the
first m columns are, modulo m, linearly independent over k. Hence the determinant of the m×m minor
given by the first m columns is a unit in A/mi, and therefore we may set ym+1 = · · · = yn = 0 and solve
for the first m variables. Now define

ci = c̃i−1 − yi

Notice that when m = n = 1 this reduces to the formula of Newton’s method.

Now we need to show that the ci’s satisfy our requirements (a) and (b). Assume by induction that
fr(ci−1) = 0 for all r. Since c̃i−1 lifts ci−1, to show (b) we have to show that yi mod m

i−1 = (0, . . . , 0).
But this is clear since ym+1 = · · · = yn = 0 and modulo m

i−1 the system (∗) is homogeneous and
non-singular in the first m variables. This proves that ci−1 = ci (mod m

i−1). Finally, to show (a),
from Taylor’s formula we have that






f1(ci)
...

fm(ci)




 =






f1(c̃i − yi)
...

fm(c̃i − yi)






=






f1(c̃i)
...

fm(c̃i)




−






∂f1

∂x1
(c̃i−1) . . . ∂f1

∂xn
(c̃i−1)

...
...

∂fm

∂x1
(c̃i−1) . . . ∂fm

∂xn
(c̃i−1)











y1
...
yn




 + q(y)

= q(y) by (∗)

where q(y) is a vector whose components are sums of forms in y1, . . . , yn of degree at least 2. But
yi mod m

i−1 = (0, . . . , 0) and since i ≥ 2 this implies that q(y) vanishes in (A/mi)n.

Remark 2.2 Given some extra hypotheses, we can also lift some “singular points”. We have the
following stronger version of Hensel’s lemma, due to Tougeron, and whose proof is a variant of the above
(left as an exercise for the reader, of course!)

With the above notation, suppose that there is a point a0 ∈ An such that

fr(a0) ≡ 0 (mod m · δ2)

for all r = 1, . . . ,m, where δ ∈ A denotes the determinant of the m×m minor
(

∂fi

∂xj
(a0)

)

1≤i,j≤m
of the

Jacobian. Then there exists a point a ∈ An in the variety cut out by the fr with a0 ≡ a (mod m · δ2).

Example 2.3 (Squares in Local Fields) Let K be either Qp or Fp((t)) with p an odd prime. Denote
by A its valuation ring and let π be a uniformiser. Let a ∈ A be a nonzero element and write it a = πnu
with u ∈ A×. Then a is a square in A if and only if n is even and u mod π is a square in Fp. This
condition is clearly necessary: any square has even valuation, therefore if a is a square n must be even
and u be a square, and thus so must u mod π. Conversely, considering the polynomial f(x) = x2 − u, if
there exists v0 ∈ Fp such that u mod π = v2

0 then f(v0) = 0 and f ′(v0) = 2v0 6= 0 in Fp (remember that
p 6= 2) and hence by Hensel’s lemma we may lift v0 to a root of f(x) in A, showing that u is a square.
Therefore a is a square too since n is even.

From the above characterisation of squares in A one immediately obtains that K×/(K×)2 is a finite group
isomorphic to Z/2 × Z/2; representatives of elements in K×/(K×)2 are given for instance by 1, u, π, uπ
where u ∈ A× is such that u mod π is not a quadratic residue in Fp. In particular, we conclude that there
are exactly 3 quadratic extensions of K (in some fixed algebraic closure of K). This is in stark contrast
with a global field, such as Q or Fp[t], which have infinitely many non-isomorphic quadratic extensions
(obtained, for instance, by adjoining the square roots of different prime elements).

A more careful analysis (exercise!) shows that the group Q×

2 /(Q
×

2 )2 is isomorphic to Z/2 × Z/2 × Z/2,
with generators given by the images of −1, 2, 3.

Next we give an application of Hensel’s lemma to quadratic forms. First we need some background
in quadratic forms over finite fields.

Example 2.4 (Quadratic Forms over Finite Fields) Let q be a power of an odd prime. Then any
quadratic form with at least 3 variables over Fq is isotropic, i.e., it represents zero non-trivially. In fact,
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we may assume that the quadratic form is of the form ax2 + by2 + z2 with a, b 6= 0. Since F×

q is cyclic,
there are exactly (q − 1)/2 squares in F×

q and therefore the sets

{ax2 | x ∈ Fq} and {−by2 − 1 | y ∈ Fq}

have both cardinality (q + 1)/2. Hence they must intersect non-trivially, yielding a nontrivial solution
of ax2 + by2 + z2 = 0. On the other hand, there exist anisotropic quadratic forms in 2 variables: just
take any non-square u ∈ Fq, and consider the quadratic form x2 − uy2.

Now we use Hensel’s lemma to derive a similar result over a local field.

Example 2.5 (Quadratic Forms over Local Fields) Let K be either Qp or Fp((t)) with p an odd
prime. Let A be its valuation ring and π be a uniformiser. Let u be a non-square unit so that {1, u, π, uπ}
are representatives of the elements in K×/(K×)2. We claim that the quadratic form

φ(w, x, y, z) = w2 − u · x2 − π · y2 + uπ · z2

is anisotropic. In fact, suppose that φ(w, x, y, z) = 0 has a nontrivial solution (w0, x0, y0, z0). Multiplying
this solution by a convenient power of π we may assume that w0, x0, y0, z0 ∈ A and at least one of them
is a unit. Now we have two cases. If either w0 or x0 is a unit, then reducing mod π, we obtain that the
quadratic form w2 − ūx2 over Fp is isotropic, a contradiction. On the other hand, if both w0 and x0 are

multiples of π, say w0 = πw′
0 and x0 = πx′0 with w′

0, x
′
0 ∈ A, then π(w′

0
2 − ux′02

)− (y2
0 − uz2

0) = 0. But
now either y0 or z0 is a unit, and we get a contradiction as in the previous case.

Now we show that every quadratic form φ(x1, . . . , xn) = a1x
2
1 + · · ·+ anx

2
n over K in n ≥ 5 variables is

isotropic. Since {1, u, π, uπ} represent the elements in K×/(K×)2, in order to show that φ is isotropic
we may assume that each ai ∈ {1, u, π, uπ}. Hence we may write φ = ψ1 + π · ψ2 where ψ1 and ψ2 are
quadratic forms whose coefficients are units in A. Hence it is enough to show that any quadratic form
in 3 variables whose coefficients are units is isotropic.

Wlog let ψ(x, y, z) = ux2 + vy2 + z2 be such a quadratic form where u, v ∈ A× are arbitrary units. By
the previous example, we have that the congruence ψ(x, y, z) ≡ 0 (mod π) has a nontrivial solution
(x0, y0, z0) 6≡ (0, 0, 0) (mod π). But then

(∂ψ

∂x
(x0),

∂ψ

∂y
(y0),

∂ψ

∂z
(z0)

)

= (2x0, 2y0, 2z0) 6≡ (0, 0, 0) (mod π)

and therefore Hensel’s lemma implies that ψ(x, y, z) = 0 has a nontrivial solution, as required.

A more careful analysis (left to the reader, of course!) shows that for K = Q2 the result still holds: every
quadratic form over Q2 in 5 or more variables is isotropic.

Example 2.6 (Quaternion Algebras) In the preceding example, the fact that φ(w, x, y, z) = w2 −
u · x2− π · y2 + uπ · z2 is anisotropic allows us to construct a nontrivial quaternion algebra over the local
field K: just take

(u, π

K

)
df
= {a+ bi+ cj + dij | a, b, c, d ∈ K, i2 = u, j2 = π, ij = −ji}

This is a division algebra since the reduced norm of a+ bi+ cj + dij is

φ(a, b, c, d) = (a+ bi+ cj + dij)(a− bi− cj − dij) = a2 − ub2 − πc2 + uπd2

which is never zero for a+bi+cj+dij 6= 0 as we have seen. Therefore we have that any a+bi+cj+dij 6= 0
is invertible:

(a+ bi+ cj + dij)−1 =
a− bi− cj − dij
φ(a, b, c, d)

Later we will see that this the only nontrivial quaternion algebra over K up to isomorphism. Again, this
is in stark contrast with the global field case, for which there are always infinitely many non-isomorphic
quaternion algebras (but is close to the real case: there is just one nontrivial quaternion algebra over R).
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Example 2.7 (Roots of Unity) Here we show that the group of roots of unity of Qp has order p− 1
for p odd. Consider f(x) = xp−1 − 1 ∈ Zp[x]. Since the image f̄(x) ∈ Fp[x] of f(x) splits completely

and f̄ ′(r0) = −rp−2
0 6= 0 for any root r0 ∈ Fp of f̄(x) = 0 (namely any r0 ∈ F×

p ), by Hensel’s lemma
each element of F×

p lifts to a root of f(x) (these are called Teichmüller lifts), and hence f(x) splits
completely in Zp[x]. Hence Qp contains all the (p− 1)-th roots of unity.

Next we show that Qp does not contain any primitive n-th root of unity with p | n. It is enough to show
that the cyclotomic polynomial g(x) = xp−1 + xp−2 + · · · + 1 is irreducible over Qp[x], but this follows
from the usual combination of Gauß’ lemma and Eisenstein’s criterion applied to g(x+ 1).

Finally, assume that p ∤ n and that there exists a primitive n-th root of unity ζ ∈ Qp. We show that
n | (p − 1). First, observe that ζ has valuation 0 and hence ζ ∈ Z×

p . Second, we claim that reduction

modulo p is injective when restricted to the subgroup of Z×

p generated by ζ. In fact, if ζi ≡ 1 (mod p)

but ζi 6= 1 then we would get a contradiction 0 = ζi(n−1) +ζi(n−2) + · · ·+ζi +1 ≡ n (mod p). Therefore
ζ mod p has order n in F×

p . But by “Fermat’s little theorem” we also have ζp−1 ≡ 1 (mod p), and it
follows that n | (p− 1).

A variation of the above argument (again left to the reader) shows that ±1 are the only roots of unity
in Q2.

Example 2.8 (Automorphisms of Qp) It is easy to show that any continuous field automorphism φ
of Qp has to be the identity: since φ restricts to the identity on Q, if (an)n≥1 is a sequence of rational
numbers converging to any given a ∈ Qp we have that φ(a) = limn→∞ φ(an) = limn→∞ an = a. However
it is not so easy to show that any field automorphism of Qp is in fact trivial. To prove that, we first show
that a ∈ Z×

p if and only if the equation xn = ap−1 can be solved in Qp for infinitely many n ≥ 1. In fact,

if a is a unit then ap−1 ≡ 1 (mod p) and Hensel’s lemma shows that x0 = 1 mod p lifts to a solution of
xn = ap−1 for all n not divisible by p. Conversely, denote by v the p-adic valuation. Since xn = ap−1

implies that n | (p−1)·v(a), if this equation can be solved for infinitely many n then necessarily v(a) = 0.

Hence if φ is a field automorphism of Qp it must take units to units. Writing an element a ∈ Q×

p as
a = pnu with u ∈ Z×

p and using the fact that φ restricts to the identity on Q, we have that φ(a) = pnu′

for some unit u′. Hence φ preserves the valuation and is therefore continuous, and so it has to be the
identity.

Finally we show how one may refine Hensel’s lemma in order not only to lift roots but also factori-
sations. The punchline is:

Hensel: “Separable factorisations in the residue field lift”

Lemma 2.9 (Hensel, revisited) Let K be a complete valued field with valuation ring A. Let m be
the maximal ideal and k = A/m be the residue field of A. Denote the image of a polynomial p ∈ A[x] in
A[x]/mA[x] = k[x] by p̄. Let f(x) ∈ A[x] with f̄ 6= 0 and suppose that f̄ factors as

f̄(x) = g0(x)h0(x) with gcd
(
g0(x), h0(x)

)
= 1

Then there exist polynomials g(x), h(x) ∈ A[x] with deg g(x) = deg g0(x) lifting the above factorisation:
f(x) = g(x)h(x) with ḡ(x) = g0(x) and h̄(x) = h0(x).

Proof Write f(x) = anx
n + an−1x

n−1 + · · · + a0, g(x) = brx
r + br−1x

r−1 + · · · + b0 and h(x) =
csx

s +cs−1x
s−1 + · · ·+c0 where the bi, ci are indeterminates and r = deg g0(x) and s = n−r. Expanding

f(x) = g(x)h(x) we obtain n+ 1 equations
∑

i+j=d bicj = ad, 0 ≤ d ≤ n, in the (r+ 1) + (s+ 1) = n+ 2

variables bi, cj. The Jacobian matrix of this system is the (n+ 1)× (n+ 2) matrix















b0 0 0 · · · 0 c0 0 0 · · · 0
b1 b0 0 · · · 0 c1 c0 0 · · · 0
b2 b1 b0 · · · 0 c2 c1 c0 · · · 0
...

...

0 0 0 · · · b0 0 0 0 · · ·
...

...
0 0 0 · · · br 0 0 0 · · · cs














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Now the coefficients of g0(x) and h0(x) give a solution to this system modulo m, which is a smooth
point since the rank of Jacobian matrix evaluated at this point is n + 1: the determinant of the first
n + 1 columns is non-zero since br assumes a non-zero value (recall that r = deg g0(x)) and the n × n
matrix obtained by suppressing the r-th column and the last line is the resultant of the relatively prime
polynomials g0(x) and h0(x).

Corollary 2.10 Keep the above notation and let v be the valuation of K. If

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

is an irreducible polynomial in K[x] then

min
0≤i≤n

v(ai) = min{v(a0), v(an)}

In particular, if an = 1 and a0 ∈ A then ai ∈ A for all i.

Proof Choose the smallest integer i for which v(ai) is minimal and let us show that 0 < i < n yields

a contradiction. We have that p(x)
df
= a−1

i · f(x) ∈ A[x] is such that p̄ 6= 0 in k[x]. But then we have
a factorisation p̄(x) = xig0(x) with g0(0) = 1 and hence xi and g0(x) are relatively prime. By Hensel’s
lemma p(x) factors in A[x] non-trivially (since 0 < i < n), which is impossible since f(x) = ai · p(x) is
irreducible in K[x].

3 Local fields in general

By now you may be wondering: what is a local field after all?

Definition 3.1 A finite field extension L of either Fp((t)) or Qp is called a local field.

Example 3.2 Let q be a power of a prime p. Then Fq((t)) is a local field. By example 2.3 there are
exactly 3 local fields of degree 2 over Qp when p is odd, and 7 for p = 2.

Example 3.3 Although we won’t cover global fields in these notes, it is instructive to show how local
fields arise from them. For instance, take the ring of Gaußian integers Z[i] and the maximal ideal (3),
with residue field Z[i]/(3) ∼= F9. Then

A = lim←−
n∈N

Z[i]

(3n)
=

{

(an) ∈
∏

n∈N

Z[i]

(3n)

∣
∣
∣ am = an mod 3m for all n ≥ m

}

is a local domain with a principal maximal ideal (3). Moreover Z[i] ⊂ A by “diagonal embedding”
a 7→ (a, a, . . .). The unit group of A is A× = A− (3), i.e. the subset of A consisting of tuples (a1, a2, . . .)
with a1 6= 0 mod 3, and for f ∈ A one has a prime factorisation f = 3nu with u ∈ A× so that setting
w(f) = n defines a valuation w on the fraction field K = FracA. As with Qp, this makes K into
a complete valued field. Moreover, choosing a set of representatives S of Z[i]/(3) ∼= F9, for instance
S = {a + bi | 0 ≤ a, b < 3}, we may uniquely write each element of K as a convergent power series
∑

n≥n0
sn3n with sn ∈ S.

We now show that K is a local field, actually a quadratic extension of Q3. First observe that A contains
a copy of Z3 since Z/3n is a subring of Z[i]/(3n) for all n. Hence K ⊃ Q3. Besides A = Z3[i] (recall
that Z[i] ⊂ A). But i2 = −1 and i /∈ Q3 since the image of x2 + 1 is irreducible in F3[x], so x2 + 1 is
irreducible in Z3[x] and hence in Q3[x] by Gauß’ lemma. Therefore K = Q3(i) is the quadratic extension
of Q3 generated by a root of x2 + 1.

The reason why we spent so much time looking at the two basic examples of the previous section
is that virtually all the difficulty in the study of a general local field is already present in those two
particular instances. This is no accident: we now show that a general local field L is structurally similar
to K = Fp((t)) or K = Qp in that it is a complete discretely valued field. The first step is to show how
to extend the valuation v of K to a valuation w of L. In fact, there is no wiggle room: the extension is
unique (Valuative Highlander’s Philosophy: “there can be only one [valuation]”). Granting this result,
we can easily “guess” a formula for w. For simplicity, assume that L is Galois over K (the general case
can be reduced to this one by considering the Galois closure of L). Then for any σ ∈ Gal(L/K) we have
that w ◦ σ = w since both are valuations extending v. But then for x ∈ L we have that

w
(
NL/K(x)

)
= w

(∏

σ

σx
)

= [L : K] · w(x)⇒ w(x) =
1

[L : K]
· v

(
NL/K(x)

)

Our approach in proving the theorem below will be the opposite one: we will use the “guessed” formula
to show the existence of an extension.
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Theorem 3.4 (Valuative Highlander’s Philosophy) Let K be a complete discretely valued field
with valuation v, and L be a finite extension of K. Then there is a unique valuation w on L extending
v. It is given by

w(x) =
1

[L : K]
· v

(
NL/K(x)

)
for x ∈ L

Moreover L is complete with respect to w.

Proof Let A be the valuation ring of K and let B be the integral closure of A in L (check the appendix
for a list of basic results about integral extensions). We first show that

B = {x ∈ L | NL/K(x) ∈ A} = {x ∈ L | v
(
NL/K(x)

)
≥ 0}

Since A is a UFD, it is normal, and hence NL/K(b) ∈ A for b ∈ B, i.e., B ⊂ {x ∈ L | NL/K(x) ∈ A}. To

prove the opposite inclusion, take x ∈ L with NL/K(x) ∈ A and let f(t) = tn +an−1t
n−1 + · · ·+a0 ∈ K[t]

be its minimal polynomial. Since NL/K(x) = ±am
0 for some m > 0 we must have v(a0) ≥ 0 ⇐⇒ a0 ∈ A.

By corollary 2.10 we conclude that f(t) ∈ A[t], i.e., that x ∈ B, as required.

Next we show that the above formula for w defines a valuation on L (with valuation ring equal
to B). Clearly w(xy) = w(x) + w(y) and w(x) = ∞ ⇐⇒ x = 0, so we just have to show that
w(x + y) ≥ min{w(x), w(y)} for x, y ∈ L. First observe that we already know the special case w(x) ≥
0⇒ w(1 + x) ≥ 0. In fact:

w(x) =
v
(
NL/K(x)

)

[L : K]
≥ 0⇒ x ∈ B ⇒ 1 + x ∈ B ⇒ w(1 + x) =

v
(
NL/K(1 + x)

)

[L : K]
≥ 0

The general case now follows easily: wlog w(x) ≥ w(y) and hence w(x/y) ≥ 0 ⇒ w(1 + x/y) ≥ 0, i.e.,
w(x + y) ≥ w(y) = min{w(x), w(y)}.

Now we show that w is unique. Suppose that w′ is another valuation of L extending v. Since w
and w′ are distinct but agree on K, they must be inequivalent and hence there exists an element b ∈ L
such that w(b) ≥ 0 but w′(b) < 0 (see appendix). Then b ∈ B. Let f(t) = tn + an−1t

n−1 + · · · + a0

be its minimal polynomial over K. Since A is normal, f(t) ∈ A[t]. But since w′(b) < 0 we obtain a
contradiction:

0 ≤ v(a0) = w′(a0) = w′(−bn − an−1b
n−1 · · · − a1b) = w′(bn) < 0

Finally we show that L is complete with respect to w. Let ω1, . . . , ωn be a basis of L over K. Let
(xi)i≥1 be a Cauchy sequence in L and write xi in terms of the chosen basis: xi = yi1ω1 + · · · + yinωn,
yij ∈ K. Since K is complete and L is finite dimensional over K, we have that all norms on L are
equivalent (exercise!) and hence using for instance the sup norm we conclude that, for each j, (yij)i≥1

is a Cauchy sequence in K. Hence this sequence converges to an element yj ∈ K and (xi)i≥1 converges
to y1ω1 + · · ·+ ynωn in L, completing the proof that L is complete!

Thanks to the Valuative Highlander’s Philosophy, the results of the previous section hold mutatis
mutandis for any local field, for their proofs were based solely on properties of general complete valued
fields. In particular we still have at our disposal Calculus Student’s Psychedelic Dream and Hensel’s
lemma and all their wonderful consequences in our more general setting.

Definition 3.5 Let K be a local field with valuation v. Let L be a finite field extension of K and w
be the unique extension of v to L. Let π and Π be uniformisers of K and L, and denote by k and l
the residue fields of K and L respectively. We define the ramification degree eL/K of the extension
L ⊃ K to be the index of the value group of v in the value group of w:

eL/K = [w(L×) : v(K×)]

In other words, we have the factorisation π = uΠeL/K for u ∈ L with w(u) = 0.

Observe that since w restricts to v in K we may view k as a subfield of l. We define the inertia degree
fL/K of the extension L ⊃ K to be the degree of the corresponding extension of residue fields:

fL/K = [l : k]
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Since index of groups and degree of extensions are multiplicative, the same holds for the ramification
and the inertia degrees: given finite extensions M ⊃ L ⊃ K of local fields we have that

eM/K = eM/L · eL/K and fM/K = fM/L · fL/K

Definition 3.6 A finite extension of local fields L ⊃ K is unramified if its ramification degree is
eL/K = 1. In other words, L ⊃ K is unramified if a uniformiser of K is still a uniformiser of L. On the
other hand, if the ramification degree is as large as possible, i.e., eL/K = [L : K], then the extension is
said to be totally ramified.

Example 3.7 Let e and f be positive integers and write K = Fp((t)) and L = Fpf ((t))(t1/e) where t1/e

denotes an e-th root of t (in some algebraic closure of K). Let w be the unique valuation on L extending
the valuation v on K. Then w(t1/e) = 1/e and using the fact that L is basically a “power series ring”
in t1/e it is easy to show that the valuation ring of w is Fpf [[t]][t1/e] with residue field Fpf . Therefore
L ⊃ K has inertia degree f and ramification degree e. Observe that L ⊃ K breaks into two parts: an
unramified extension M ⊃ K where M = Fpf ((t)) and a totally ramified extension L ⊃M .

L = Fpf ((t1/e))

totally ramified e

M = Fpf ((t))

unramified f

K = Fp((t))

Later we will show that any extension of local fields admits such a decomposition.

Example 3.8 Let p be an odd prime and u ∈ Fp be a non-square. By example 2.3, there are 3 quadratic

extensions of K = Fp((t)), namely L1 = K(
√
u), L2 = K(

√
t) and L3 = K(

√
ut). Since Fp(

√
u) = Fp2

we have that L1 = Fp2((t)) and t is a uniformiser for both K and L1, that is, L1 ⊃ K is unramified with
inertia degree fL1/K = [Fp2 : Fp] = 2. On the other hand, if w2 and w3 are the extensions of the valuation

v of K to L2 and L3 respectively we must have that w2(
√
t) = w3(

√
ut) = 1/2 since w2(t) = w3(ut) = 1,

showing that both L2 ⊃ K and L3 ⊃ K are totally ramified. By the proof of the Valuative Highlander’s
Philosophy, the valuation rings of w2 and w3 are the integral closures of Fp[[t]] in L2 and L3, which can

easily be shown to be Fp[[t]](
√
t) and Fp[[t]](

√
ut) respectively and thus can be viewed as the rings of

“power series” in the uniformisers
√
t and

√
ut with residue field Fp. Therefore the inertia degrees of

L2 ⊃ K and L3 ⊃ K are both 1.

A similar computation shows that Qp has exactly 1 unramified quadratic extension and 2 totally ramified
quadratic extensions. For Q2, of its 7 quadratic extensions, exactly 1 is unramified and the other 6 are
totally ramified.

Observe that for each extension in the last example the product of the ramification and inertia
degrees was always 2, the degree of the extension. Magic? Coincidence? Or would it be

Theorem 3.9 Let L ⊃ K be a degree n extension of complete discretely valued fields. Let v be the
valuation of K and w be its unique extension to L. Denote by A and B the valuation rings of v and w,
π and Π be uniformisers of A and B, and k = A/(π) and l = B/(Π) be their residue fields respectively.

Then the ramification and inertia degrees e and f of L ⊃ K are finite. Moreover B is the integral
closure of A in L and, as an A-module, it is free of rank n. A basis is given by {ωiΠ

j | 1 ≤ i ≤ f, 0 ≤
j < e}, where ω1, . . . , ωf ∈ B are representatives of a basis of l over k. In particular we have the relation

ef = n

Proof We normalise v(π) = w(π) = 1 and w(Π) = 1/e. We have already seen in the proof of the
Valuative Highlander’s Philosophy that B is the integral closure of A in L. Also it is clear from the
explicit formula for w that e ≤ n. Now we show that f is also finite and that ef ≤ n. Let ω1, . . . , ωr ∈ B
be elements whose images in l are linearly independent over k. Then it is enough to show that the
set {ωiΠ

j | 1 ≤ i ≤ r, 0 ≤ j < e} is linearly independent over K. Given any dependency relation
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∑

ij aijωiΠ
j = 0 with aij ∈ K, by clearing out the denominators we may assume that all aij ∈ A and

that at least one of them is a unit. Let j0 be the smallest integer such that aij0 ∈ A× for at least one i,
and thus

∑

i aij0ωi 6≡ 0 (mod Π) by the linear independence of the ωi mod Π. Then

w
(∑

i

aijωiΠ
j
)

> w
(∑

i

aij0ωiΠ
j0

)

=
j0
e

for all j 6= j0

This is clear for j > j0 and for j < j0 one has that
∑

i aijωi ∈ πB and therefore w(
∑

i aijωiΠ
j) ≥ 1 >

j0/e. From the strong triangle inequality, w(
∑

ij aijωiΠ
j) = j0/e and hence

∑

ij aijωiΠ
j cannot be zero,

a contradiction.

Next we show that any element b ∈ B can be written (uniquely by the above) as an A-linear
combination of {ωiΠ

j | 1 ≤ i ≤ f, 0 ≤ j < e}. For that we show that given any b ∈ B we can find
an A-linear combination c0 of the ωiΠ

j such that b = c0 + b1π for some b1 ∈ B. Granting this fact,
the proof then follows: by the same token b1 = c1 + b2π with c1 in the A-span of the ωiΠ

j and so
b = c0 + c1π+ b2π

2, and inductively we can write b = c0 + c1π+ c2π
2 + · · ·+ cnπ

n + bn+1π
n+1 where the

“error term” bn+1π
n+1 approaches zero. By the Calculus Student’s Psychedelic Dream, we have that

b = c0 + c1π + c2π
2 + · · ·, which is in the A-span of the ωiΠ

j again by the Psychedelic Dream, this time
applied to K.

We have thus to show that B/πB is generated over k = A/(π) by the images of the ωiΠ
j . Wlog

we may assume that b ∈ B − πB so that 0 ≤ w(b) < 1. Hence we may write b = Πju for j = e · w(b)
and some unit u ∈ B×. Now we can find aij ∈ A such that u ≡ ∑

i aijωi (mod Π) and therefore
b =

∑

i aijωiΠ
j + b′ with w(b′) > w(b). If w(b′) ≥ 1 ⇐⇒ b′ ∈ πB then we are done. Otherwise we

repeat the procedure with b′. Since the valuations of the “tails” are increasing, we must eventually stop.

So far we have shown that B is a free A-module of rank ef with basis {ωiΠ
j | 1 ≤ i ≤ f, 0 ≤ j < e},

which is also linearly independent over K. To finish the proof, we have to show that any c ∈ L is in the
K-span of this set. But cπm ∈ B for m sufficiently large, and we are done.

Remark 3.10 When L is separable over K, the above is a particular case of the well-known formula
n =

∑

i eifi for extensions of Dedekind domains (see any Number Theory book in the bibliography),
except that our situation is much simpler since there is just one prime to deal with.

Now we introduce some important notation that will be used throughout.

Definition 3.11 Let K be a local field with valuation v. For i ≥ 1 write

OK
df
= valuation ring of v = {x ∈ K | v(x) ≥ 0}

UK
df
= group of units of OK = {x ∈ OK | v(x) = 0}

mK
df
= maximal ideal of OK = {x ∈ OK | v(x) > 0}

U
(i)
K

df
= 1 + m

i
K = closed ball {x ∈ K | |x− 1|v ≤ 2−i} centred at 1

= open ball {x ∈ K | |x− 1|v < 2−i+1} centred at 1

We also extend the last definition to i = 0 by setting U
(0)
K = UK . Observe that the U

(i)
K are subgroups

of UK and that their translates form a topological basis of UK .

Fix a uniformiser π and let k = OK/mK be the (finite) residue field of K. Denote by k+ (respectively
k×) the additive (respectively multiplicative) group of k. For UK we have a filtration

UK = U
(0)
K ⊃ U (1)

K ⊃ U (2)
K ⊃ U (3)

K ⊃ · · ·

with quotients

UK

U
(1)
K

= k× (u mod U
(1)
K 7→ u mod mK)

and

U
(i)
K

U
(i+1)
K

∼= k+ (u = 1 + aπi+1 mod U
(i+1)
K 7→ a mod mK)
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The first isomorphism is canonical, but the second is not since it depends on the choice of the uniformiser

π. In any case, it can be made canonical if we consider instead the isomorphism U
(i)
K /U

(i+1)
K = m

i
K/m

i+1
K

given by u mod U
(i+1)
K 7→ u− 1 mod m

i+1
K .

Just to make sure we understand the notation above, take for instance K = Qp with uniformiser

π = p. Then OK = Zp, mK = (p), UK = Z×

p = Zp − (p), and U
(i)
K is the set of p-adic integers of the

form 1 + aip
i + ai+1p

i+1 + · · · with 0 ≤ aj < p. The isomorphism UK/U
(1)
K = k× takes the class of

a0 + a1p+ a2p
2 + · · ·, 0 ≤ aj < p, to a0 mod p, and the isomorphism U

(i)
K /U

(i+1)
K

∼= k+ takes the class of
1 + aip

i + ai+1p
i+1 + · · ·, 0 ≤ aj < p, to ai mod p.

It is easy to check that we have an isomorphism, both algebraic and topological,

UK = lim←−
i≥1

UK

U
(i)
K

and hence UK is a profinite group (that is, a projective limit of finite groups). In particular, we have
that UK is compact.

4 Structure of group of units

In this section we describe the structure of the multiplicative group of a local field K. First of all the
valuation v on K gives rise to an exact sequence

1 - UK
- K× v- Z→ 0

which admits a splitting s: Z→ K× given by a choice of a uniformiser π. Hence we have a non-canonical
isomorphism K× ∼= UK × Z and we are left to describe the structure of UK .

Let Fq be the residue field of K, where q is a power of a prime p. We have an exact sequence

1 - U
(1)
K

- UK
- F×

q
- 1

Here the last map is just the reduction modulo mK . This sequence splits canonically: in fact, by Hensel’s
lemma each element in F×

q lifts to a uniquely determined (q − 1)-th root of unity in K (the so-called

Teichmüller lifts, see example 2.7). Hence we may write UK = µq−1 × U (1)
K , where µq−1 denotes the

subgroup of (q− 1)-th roots of unity in K×. We have thus reduced the problem to finding the structure

of U
(1)
K .

First observe that U
(1)
K is a continuous Zp-module, with Zp acting by exponentiation. In fact, given

u ∈ U (1)
K and a ∈ Zp we may define

ua df
= lim

n→∞
uan

where (an)n≥1 is any sequence of integers converging to a. This makes sense because

UK = lim←−
i≥1

U
(1)
K

U
(i+1)
K

and Zp = lim←−
i≥1

Z

(qi)

and from the isomorphism U
(i)
K /U

(i+1)
K

∼= F+
q we conclude that U

(1)
K /U

(i+1)
K is a finite group of cardinality

qi, i.e., a Z/(qi)-module. Hence writing u = (u1, u2, . . .), ui ∈ U
(1)
K /U

(i+1)
K , and a = (a1, a2, . . .),

ai ∈ Z/(qi), we have that ua = (ua1
1 , u

a2
2 , . . .) under the above isomorphisms.

From now on we will concentrate on the case charK = 0 and leave the positive characteristic case

as an exercise. We show using “p-adic Lie Theory” that U
(1)
K is in fact finitely generated as a Zp-module.

Since Zp is a PID, U
(1)
K will break into a torsion part (roots of unity) and a free part, and then we will

be left to compute the rank of this free part. In order to “Lie-nearise” U
(1)
K , we make use of the p-adic

logarithmic and exponential functions:
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Lemma 4.1 Let K be a local field of char 0 with valuation v and residue field of char p. Consider the
power series

log(1 + x)
df
= x− x2

2
+
x3

3
− x4

4
+ · · ·

expx
df
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

Then log(1+x) converges for all x with v(x) > 0 while expx converges for all x with v(x) > v(p)/(p−1).
Hence for i sufficiently large we have a continuous isomorphism of Zp-modules

U
(i)
K

log−→←−
exp

m
i
K

Notice that while U
(i)
K is a multiplicative Zp-module with action given by exponentiation, m

i
K is an additive

Zp-module with action given by multiplication.

Proof Let n ≥ 1 and write n = pkm with p ∤ m. We have that

v(n) = v(p) · k ≤ v(p) · logp n

while

v(n!) = v(p) ·
(⌊n

p

⌋

+
⌊ n

p2

⌋

+
⌊ n

p3

⌋

+ · · ·
)

≤ v(p) · n/p

1− 1/p
=
v(p) · n
p− 1

Therefore if v(x) > 0 then

v
(xn

n

)

= n · v(x) − v(n) ≥ n− v(p) · logp n→∞

as n→∞, while if v(x) > v(p)/(p− 1) then

v
(xn

n!

)

= n · v(x)− v(n!) ≥ n ·
(

v(x) − v(p)

p− 1

)

→∞

as n → ∞. The convergence of log(1 + x) and expx now follows from Calculus Student’s Psychedelic
Dream.

Finally it is easy to show that for i sufficiently large the two functions log:U
(i)
K → m

i
K and exp: mi

K →
U

(i)
K are inverse of each other and are compatible with the Zp-action, so we are done.

The lemma shows that U
(i)
K
∼= m

i
K for i sufficiently large. But we have an isomorphism OK

∼= m
i
K of

Zp-modules given by multiplication by πi. On the other hand we know that OK is free over Zp of rank

[K : Qp] by theorem 3.9, and hence so is U
(i)
K .

Now since U
(i)
K /U

(i+1)
K = k+ for i ≥ 1, we have that [U

(1)
K : U

(i)
K ] is finite for all i ≥ 1. Therefore

U
(1)
K contains a finite index Zp-submodule which is free of rank [K : Qp]. This proves that U

(1)
K is finitely

generated as a Zp-module. The free part of U
(1)
K has rank [K : Qp] and its torsion part is a cyclic p-group

Zp/p
r = Z/pr for some r (it is cyclic because it is isomorphic to a torsion subgroup of K×). Putting

everything together, we have just shown

Theorem 4.2 (Structure of group of units) Let K be a local field with residue field Fq where q
is a power of a prime p. If charK = 0 then there is a non-canonical isomorphism, both algebraic and
topological,

K× ∼= Z× µK × Z[K:Qp]
p

where µK is the finite cyclic group of roots of units in K× with |µK | = (q − 1)pr for some r.

If charK = p then there is a non-canonical isomorphism, both algebraic and topological,

K× ∼= Z× µK × ZN
p

where µK is the finite cyclic group of roots of units in K× with |µK | = (q − 1).
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We (meaning of course I) won’t do the positive characteristic case, since it is a bit more involved.

But we indicate how to construct the isomorphism U
(1)
K
∼= ZN

p . Let ω1, . . . , ωf be a basis of Fq over Fp.

For any n not divisible by p define a continuous morphism gn: Zf
p → U

(n)
K by

gn(a1, . . . , af ) =
∏

1≤i≤f

(1 + ωit
n)ai

The required isomorphism g: ZN
p → U

(1)
K is then given by the convergent product

g =
∏

p∤n

gn:
∏

p∤n

Zf
p → U

(1)
K

The necessary verifications are left as an exercise to the reader (for the lazy one, the answer can be found
in the excellent book by Neukirch, page 140).

5 Extensions of Local Fields

We conclude this chapter with a study of extension of local fields. We begin with a result showing that
“unramified extensions are stable under base change”.

Theorem 5.1 Let K be a local field, L ⊃ K be a finite unramified extension and let K ′ be an arbitrary
finite extension of K. If L′ = LK ′ is the compositum of L and K ′ (in some algebraic closure of K) then
L′ ⊃ K ′ is also unramified.

Proof Denote by k, k′, l and l′ the residue fields of K, K ′, L and L′ respectively. By theorem 3.9, we
know that OL = OK [θ] where θ ∈ OL is such that its image θ̄ ∈ l is a primitive element over k. Since OL

is integral over OK , we have that θ is integral over the normal rings OK and OK′ and hence the minimal
polynomials p(x) and q(x) of θ over K and K ′ belong to OK [x] and OK′ [x] respectively. Also the image
p̄(x) ∈ k[x] is the minimal polynomial of θ̄ since l = k(θ̄) and deg p̄(x) = deg p(x) = [L : K] = [l : k].
Since q(x) | p(x) in OK′ [x], the image q̄(x) ∈ k′[x] of q(x) is such that q̄(x) | p̄(x) in k′[x]. But p̄(x)
is separable since k is perfect, hence q̄(x) is separable as well. Since q(x) is irreducible in K ′[x], we
conclude by Hensel’s lemma that q̄(x) is irreducible in k′[x] and hence it is the minimal polynomial of
θ̄ ∈ l′ over k′. Therefore, since L′ = K ′(θ), we have that

fL′/K′ ≥ [k′(θ̄) : k′] = deg q̄(x) = deg q(x) = [L′ : K ′]

On the other hand, fL′/K′ ≤ [L′ : K ′] in general, so we must have equality, proving that L′ ⊃ K ′ is
indeed unramified.

In particular, the last proposition shows that the compositum of unramified extensions is unramified.
Hence every extension L ⊃ K of local fields can be split into two extensions L ⊃ M ⊃ K where M is
the maximal unramified extension of K in L. We have that M ⊃ K is unramified while L ⊃ M is
totally ramified, hence [L : M ] | eL/K and [M : K] | fL/K . On the other hand, eL/K · fL/K = [L : K] =
[L : M ] · [M : K], therefore we conclude that [L : M ] = eL/K and [M : K] = fL/K . This shows that the
picture in example 3.7 holds in general.

Remark 5.2 The compositum of two totally ramified extensions need not be totally ramified. Hence
there is not such a thing as a “maximal totally ramified extension.”

Next we concentrate on Galois extensions. We begin with a

Definition 5.3 Let L ⊃ K be a Galois extension of local fields with G = Gal(L/K). Note that since
any σ ∈ G preserves the valuation of L, σ(OL) ⊂ OL and σ(mi+1

L ) ⊂ m
i+1
L , hence σ acts on OL/m

i+1
L for

i ≥ 0. We define the i-th higher ramification group to be the subgroup Gi of G consisting of those
automorphims σ ∈ G having trivial action on OL/m

i+1
L . The group G0 is called inertia group.

The higher ramification groups give a filtration

G−1
df
= G ⊃ G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ · · ·

of the Galois group G. Observe that this filtration is exhaustive (i.e. Gi is trivial for i sufficiently
large): if ω1, . . . , ωn ∈ OL is a basis of L over K, if σ 6= 1 then σ(ωj) 6= ωj for some j and hence

σ(ωj) 6≡ ωj (mod m
i+1
L ) ⇐⇒ σ /∈ Gi for i sufficiently large. Also observe that Gi+1 E Gi for all i: for

τ ∈ Gi, σ ∈ Gi+1 and b ∈ OL, we have that σ
(
τ−1(b)

)
≡ τ−1(b) (mod m

i+2
L ) and hence τστ−1(b) ≡ b

(mod m
i+2
L ), i.e., τστ−1 ∈ Gi+1.

We study the beginning of this filtration a bit closer.
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Theorem 5.4 (Galois Group and Maximal Unramified Extension) Let L ⊃ K be a Galois
extension of local fields with G = Gal(L/K) and let l ⊃ k be the corresponding extension of residue
fields. Let G0 be the inertia group of this extension. Denote by σ̄ ∈ Gal(l/k) the automorphism induced
by σ ∈ G on l = OL/mL. Then

1. the map σ 7→ σ̄ induces an isomorphism between G/G0 and Gal(l/k). In particular we have
that |G0| = eL/K.

2. the field M
df
= LG0 is the maximal unramified extension of K contained in L. In particular, M

is Galois over K with cyclic Galois group G/G0 = Gal(l/k).

We have thus the following picture:

L l

totally ramified e G0

M l

unramified f G/G0 = Gal(l/k)

K k

Proof To prove 1, it is enough to show that the map G→ Gal(l/k) given by σ 7→ σ̄ is surjective, since
G0 is the kernel of this map by definition. Let θ ∈ OL be an element whose image θ ∈ l is a primitive
element of l over k. As in proof of the theorem 5.1, the minimal polynomial p(x) of θ belongs to OK [x].
The minimal polynomial q0(x) ∈ k[x] of θ̄ then divides the image p̄(x) ∈ k[x] of p(x). Since G acts
transitively on the roots of p(x) and any automorphism σ0 ∈ Gal(l/k) is determined by its value σ0(θ̄),
which is a root of q0(x) and hence of p̄(x), we have that σ0 = σ̄ where σ ∈ G is any automorphism that
takes θ to a root of p(x) lifting σ0(θ̄). Finally, to prove 2, let M = LG0 and just apply 1 to the Galois
extension L ⊃ M . We then conclude that M has residue field l and hence that fM/K = fL/K , proving
that M is the maximal unramified extension of K contained in L.

Corollary 5.5 (Unramified Highlander’s Philosophy) Let K be a local field and let Fq be its
residue field. Then there is a bijection between finite unramified extensions of K (in some algebraic
closure of K) and finite extensions of Fq, which associates to each finite extension of K its residue field.
In particular, there is exactly one unramified extension of each degree, and they are all cyclic extensions
(i.e. Galois extensions with cyclic Galois group).

Proof Keep the notation of the last theorem. The natural isomorphism of Galois groups Gal(M/K) ≈
Gal(l/k) induced by σ 7→ σ̄ translates into a bijection between the subextensions of M ⊃ K and those

of l ⊃ k: it takes N with H = Gal(M/N) to the subfield lH̄ of l fixed by the image H̄ ⊂ Gal(l/k) of
H . But M ⊃ N is unramified, so σ 7→ σ̄ also induces an isomorphism Gal(M/N) ≈ Gal(l/n) where n

denotes the residue field of N . In other words, H̄ = Gal(l/n) and hence n = lH̄ . To sum up there is a
bijection between the unramified subextensions of L ⊃ K and the subextensions of l ⊃ k, taking N to
its residue field n.

Therefore to finish the proof we just need to show that: (1) any unramified extension of K is
contained in some Galois extension of K; and (2) given a finite extension l ⊃ Fq it is possible to find a
Galois extension L of K whose residue field contains l. (1) follows from the proof of theorem 5.1, which
shows that any unramified extension of K is separable. To prove (2), given any finite extension l of Fq,

we have that l is splitting field of xqn − x ∈ Fq[x] for some n. It suffices then to consider the splitting

field L of xqn − x ∈ K[x] over K.

Definition 5.6 Let L ⊃ K be an unramified extension. The unique automorphism in Gal(L/K) lifting
the Frobenius automorphism of the residue field extension is also called Frobenius automorphism of
L ⊃ K.

Example 5.7 The unramified extension of degree n over Fp((t)) is just Fpn((t)). For p odd, the un-
ramified extension over Qp of degree 2 is Qp(

√
u), where u is a non-square in Z×

p (see example 3.8). The

Frobenius map is
√
u 7→ −√u (there is no other choice).
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The degree 3 unramified extension L of Q5 is given by Q5(θ) where θ is a root of f(x) = x3+3x2−1. This
follows from the fact that the image f̄(x) ∈ F5[x] of f(x) is irreducible, hence f(x) is also irreducible;
on the other hand, the residue field l of L contains the image θ̄ ∈ l of θ ∈ OL (θ is integral over Z5),
hence [l : F5] ≥ [L : Q5] = 3, and we thus must have equality, showing that L is unramified over Q3.
The Frobenius automorphism φ is characterised by φ(θ) ≡ θ5 (mod 5). A straightforward computation
shows that −θ2 − 3θ − 1 is another root of f(x) and that φ is explicitly given by θ 7→ −θ2 − 3θ − 1.

We close this section showing that, in a local field, you will never have trouble solving equations by
radicals!

Theorem 5.8 Every Galois extension L ⊃ K of local fields is solvable.

Proof Although quite impressive, this theorem has a simple proof. Write G = Gal(L/K), let Gi

denote the i-th higher ramification group, and l and k be the residue fields of L and K respectively.
Since G/G0 = Gal(l/k) is cyclic, in order to show that G is solvable it is enough to show that G0 is

solvable. The key idea is then to construct, for i ≥ 0, injective morphisms fi:Gi/Gi+1 →֒ U
(i)
L /U

(i+1)
L .

Let Π be a uniformiser of L. Define fi:Gi/Gi+1 → U
(i)
L /U

(i+1)
L by

f(σGi+1) =
σ(Π)

Π
mod U

(i+1)
L for σ ∈ Gi

First we show that this map is well-defined: since σ ∈ Gi preserves the valuation, σ(Π) = uΠ
for some unit u ∈ O×

L; but we also have σ(Π) ≡ Π (mod Πi+1) and therefore u ≡ 1 (mod Πi), i.e.,

u = σ(Π)/Π ∈ U (i)
L . Replacing i by i+ 1 shows that σ(Π)/Π ∈ U (i+1)

L whenever σ ∈ Gi+1.

Next we show that the definition of fi does not depend on the choice of Π: replacing Π by another

uniformiser uΠ, u ∈ O×

L, alters fi by σ(u)/u mod U
(i+1)
L . But σ ∈ Gi and thus σ(u) ≡ u (mod m

i+1
L )

showing that σ(u)/u ∈ U (i+1)
L .

We now check that fi is group morphism. Let σ, τ ∈ Gi. Since τ(Π) is also a uniformiser, we have
that

fi(στGi+1) =
στ(Π)

Π
mod U

(i+1)
L =

σ
(
τ(Π)

)

(
τ(Π)

) · τ(Π)

Π
mod U

(i+1)
L

= fi(σGi+1)fi(τGi+1)

Finally, we show that fi is injective. Let σ ∈ Gi and suppose that u
df
= σ(Π)/Π satisfies u ∈

U
(i+1)
L ⇐⇒ u ≡ 1 (mod Πi+1). Then σ(Π) ≡ Π (mod Πi+2), which implies that σ ∈ Gi+1. In fact,

we have that σ ∈ G0 and that L is totally ramified over M
df
= LG0 by theorem 5.4. Hence we may choose

Π to be a |G0|-th root of a uniformiser of M and by theorem 3.9 we have that OL is generated over
OM by the powers of Π. Therefore σ(Π) ≡ Π (mod Πi+2) implies that σ(b) ≡ b (mod Πi+2) for all
b ∈ OL, as claimed.

6 Exercises

1. Show that Fp((t)) and Qp are uncountable.

2. Show that the p-adic number f =
∑

i aip
i ∈ Qp belongs to Q if and only if its p-base expansion is

periodic. Find the 5-base expansion for 2/3 and 1/10 in Q5.

3. (Multiplicative Calculus Student’s Psychedelic Dream) Let K be a local field and consider elements
fn ∈ K×, n ≥ 0. Show that the infinite product

∏

n≥0 fn converges to an element of K× if and only if
limn→∞ fn = 1.

4. Show that Fp((t)) is the completion of Fp(t) with respect to the valuation given by the prime t of
Fp[t]. Similarly show that Qp is the completion of Q with respect to the valuation given by the prime p
of Z.

5. Over which Qp is the quadratic form 3x2 + 7y2 − 15z2 anisotropic?

6. Give an example of two totally ramified extensions of some local field K whose compositum is not
totally ramified over K.
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7. Show that the splitting field of xpn − x is the unramified extension of Qp of degree n.

8. Find the Galois groups of x5 + x+ 1 over Q, Q3 and Q5.

9. Let n be a positive integer and p be an odd prime. Is Dn the Galois group of some Galois extension
of Qp? (I write Dn for the dihedral group with 2n elements with the sole purpose of confusing my
audience!)



Chapter 2

LocalClassFieldTheory

1 Introduction

Local Class Field Theory is the study of abelian extensions of a local field K, that is, Galois exten-
sions of K with abelian Galois group. The celebrated local Artin reciprocity theorem shows that
all information about such extensions is already contained, in an unexpectedly simple form, in the mul-
tiplicative group K×. The local reciprocity theorem is beyond doubt one of the greatest achievements of
contemporary Mathematics. Its (ravishingly beautiful!) proof will occupy us for most of this chapter.

1.1 Notation and General Remarks

Throughout this chapter, we adopt the following notations and conventions. For any field K we denote
by

Ksp
df
= separable closure of K

GK
df
= Gal(Ksp/K) = absolute Galois group of K

Recall that GK is a topological group: a topological basis consists of the left translates of the subgroups
GL where L runs over all finite extensions of K. Galois theory establishes a 1-1 correspondence between
closed subgroups of GK and fields between K and Ksp.

The group GK is an example of a profinite group (i.e. a projective limit of finite groups): we
have, both algebraically and topologically,

GK ≈ lim←−
L⊃K

Gal(L/K)

where L runs over all finite Galois extensions of K and each Gal(L/K) is given the discrete topology.

Given any profinite group G, we denote by

[G : G]
df
= closure (in the profinite topology) of the commutator subgroup of G

Gab df
=

G

[G : G]
= maximal abelian quotient of G

By the Galois correspondence we then have

Kab df
= K [GK :GK ]

sp = maximal abelian extension of K

= compositum of all finite abelian extensions of K inside Ksp

Gab
K = Gal(Kab/K)

Finally, if K is a local field with residue field k we write (see section I.5)

Knr
df
= maximal unramified extension of K in Ksp

= compositum of all finite unramified extensions of K inside Ksp

Gnr
K

df
= Gal(Knr/K) ≈ Gk = Ẑ

ΦK
df
= Frobenius automorphism of Knr ⊃ K

where

Ẑ
df
= lim←−

n∈N

Z/(n) =
∏

p

Zp

and p runs over all prime integers. The last isomorphism follows from the Chinese Remainder Theorem
(check!). The Frobenius map ΦK is a topological generator of Gnr

K , corresponding to the element 1 ∈ Ẑ
under the above isomorphism.
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2 Statements of the main theorems

Theorem 2.1 (Local Artin Reciprocity) Let K be a local field. There exists a unique group mor-
phism, called local Artin map,

θK :K× → Gab
K

such that the following holds: for any finite abelian extension L ⊃ K, the map θL/K :K× → Gal(L/K)
(also referred to as local Artin map) given by the composition

K× θK- Gab
K

canonical-- Gal(L/K)

satisfies:

1. θL/K is surjective with kernel given by the norm group NL/KL
×. Thus we have an induced

isomorphism (which we still denote by θL/K)

θL/K :
K×

NL/K(L×)
≈ Gal(L/K)

2. if L ⊃ K is unramified, ΦL/K ∈ Gal(L/K) denotes the corresponding Frobenius map, and
v:K× → Z denotes the normalised valuation of K, then for all a ∈ K×

θL/K(a) = Φ
v(a)
L/K

The first property is a “compatibility” one in that it says that the “big” Artin map θK is compatible
with its “finite layers” in the sense that the diagram

K×
θK - Gab

K

K×

NL/K(L×)

can.
??

θL/K

≈
- Gal(L/K)

can.

??

commutes. This implies that for all finite extensions M ⊃ L ⊃ K with M ⊃ K (and thus L ⊃ K)
abelian we have a commutative diagram

K×

NM/K(M×)

θM/K

≈
- Gal(M/K)

K×

NL/K(L×)

can.
??

θL/K

≈
- Gal(L/K)

can.

??

Conversely, to give θK is equivalent to give maps θL/K , one for each finite abelian extension L ⊃ K,
compatible in the above sense.

The second property is a “normalisation” property in that it fixes the value of the local Artin map
for unramified extensions. Let L ⊃ K be an unramified extension of degree n and let π be a uniformiser
of K. From 1 and 2 we conclude that πnZ · UK = ker θL/K = NL/KL

× and therefore (see the explicit
formula for the valuation of L in theorem I.3.4) that the norm map NL/K :UL ։ UK is surjective on
units for unramified extensions.

The “functorial” properties of the reciprocity map immediately imply:
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Theorem 2.2 Let K be a local field and let L and L′ be finite abelian extensions of K. Then

1. L′ ⊃ L ⇐⇒ NL′/KL
′× ⊂ NL/KL

×;

2. N(L′∩L)/K(L′ ∩ L)× = NL′/KL
′× ·NL/KL

×;

3. N(L′·L)/K(L′ · L)× = NL′/KL
′× ∩NL/KL

×.

Proof We prove 3 as an example and leave the other two as exercises. We have a commutative diagram

K×
θ(L′·L)/K - Gal

(
(L′ · L)/K

)

K×

w
w
w
w
w
w
w
w
w
w

θL′/K × θL/K- Gal(L′/K)×Gal(L/K)

can.

?

∩

where the right vertical arrow is injective. Hence

N(L′·L)/K(L′ · L)× = ker θ(L′·L)/K = ker(θL′/K × θL/K) = ker θL′/K ∩ ker θL/K = NL′/KL
′× ∩NL/KL

×

Observe that 1 of the last theorem shows that there is a 1-1 containment reversing correspondence
between finite abelian extensions of K and norm groups of K×, that is, subgroups of K× which are
of the form NL/KL

× for some finite abelian extension L ⊃ K. The local existence theorem tells us
which subgroups of K× are norm groups.

Theorem 2.3 (Local Existence) Let K be a local field. A subgroup of finite index of K× is a norm
group if and only if it is open. Hence there is a 1-1 containment reversing correspondence

{ finite abelian extensions of K } ↔ { open subgroups of K× of finite index }
L 7→ NL/KL

×

Remark 2.4 When charK = 0, a subgroup T ⊂ K× of finite index is automatically open: since T

has finite index, T ⊃ (K×)n for some n, and (K×)n ⊃ U
(m)
K for m sufficiently large (exercise!). Hence

if charK = 0 there is a perfect 1-1 correspondence between subgroups of K× of finite index and finite
abelian extensions of K!

In the first chapter, we gave a complete description of the unit group K×. Hence with the reciprocity
and existence theorems we obtain a complete classification of all abelian extensions of a local field K!
The proofs of these two deep theorems will be given later. In this section we give some applications to
impress you with the power of these results.

Example 2.5 Consider the Galois extension M = Q3(
√

2,
√

3) of Q3 with Galois group Gal(M/Q3) ∼=
Z/2× Z/2, generated by automorphisms σ and τ given by

{

σ(
√

2) = −
√

2
σ(
√

3) =
√

3

{

τ(
√

2) =
√

2
τ(
√

3) = −
√

3

The lattice of subfields is

M = Q3(
√

2,
√

3)

L0 = Q3(
√

2)

τ

L1 = Q3(
√

3)

σ

L2 = Q3(
√

6)

στ

K = Q3

τ |L1 σ|L2
= τ |L2σ|L0
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Now we now identify the corresponding norm subgroups in Q×

3 = 3Z × {±1} × U (1)
Q3

(see section 2 of

chapter I). Observe that since the indices of these subgroups divide 4 and U
(1)
Q3

∼= Z3 is 2-divisible (see

lemma I.4.1), all of them contain U
(1)
Q3

. Since L0 ⊃ Q3 is unramified we know that NL0/Q3
(L×

0 ) =

32Z × UQ3 . Moreover −3 ∈ NL1/Q3
(L×

1 ) and −6 ∈ NL2/Q3
(L×

2 ), thus 3 ∈ NL2/Q3
(L×

2 ) since −2 ∈ U (1)
Q3

.

Also since M is the compositum of L0 and L2 we have that NM/Q3
(M×) = NL0/Q3

(L×

0 ) ∩NL2/Q3
(L×

2 ).
Putting everything together, we obtain the following lattice of subgroups of Q×

3 , drawn upside down:

NM/Q3
(M×) = 32Z × U (1)

Q3

NL0/Q3
(L×

0 ) = 32Z × {±1} × U (1)
Q3

NL1/Q3
(L×

1 ) = (−3)Z × U (1)
Q3

NL2/Q3
(L×

2 ) = 3Z × U (1)
Q3

Q×

3 = 3Z × {±1} × U (1)
Q3

Finally, we have that







θL0/Q3

(
−1 ·NL0/Q3

(L×

0 )
)

= 1

θL1/Q3

(
−3 ·NL1/Q3

(L×

1 )
)

= 1

θL2/Q3

(
3 ·NL2/Q3

(L×

0 )
)

= 1

⇒







θM/Q3

(
−1 ·NM/Q3

(M×)
)

= τ

θM/Q3

(
−3 ·NM/Q3

(M×)
)

= σ

θM/Q3

(
3 ·NM/Q3

(M×)
)

= στ

which completely determines θM/Q3
.

For the next, we need the following explicit computation of norm groups of cyclotomic extensions.

Lemma 2.6 Let n be a positive integer and consider the cyclotomic extension L = Qp(ζpn) of Qp where
ζpn denotes a primitive pn-th root of unity. Then the extension L ⊃ Qp is totally ramified of degree
[L : Qp] = φ(pn) = (p− 1) · pn−1 (φ denotes the Euler function) and 1− ζpn is a uniformiser of L. The
corresponding norm group is

NL/Qp
(L×) = pZ · U (n)

Qp

Hence the local Artin map gives a canonical isomorphism UQp/U
(n)
Qp
≈ Gal(L/Qp) (which are canonically

isomorphic to (Z/pn)×).

Proof The polynomial in Qp[x]

f(x)
df
=

xpn − 1

xpn−1 − 1
= x(p−1)pn−1

+ x(p−2)pn−1

+ · · ·+ xpn−1

+ 1

is irreducible by the usual argument combining Gauß’ lemma and Eisenstein’s criterion applied to f(x+1).
Hence f(x) is the minimal polynomial of ζpn over Qp and thus [L : Qp] = φ(pn) = (p− 1) · pn−1. Also

NL/K(1− ζpn) =
∏

0<i<pn

p∤i

(1− ζi
pn) = f(1) = p

and from the explicit formula of theorem I.3.4 we conclude that L is totally ramified over Qp with
uniformiser 1− ζpn and residue field Fp.

The last expression also shows that all powers of p belong to NL/Qp
(L×). By computations of

section I.4, we have that Q×

p = pZ × µp−1 × U (1)
Qp

and L× ∼= (ζpn − 1)Z × µp−1 × U (1)
L , where µp−1 ⊂ Q×

p

is the group of (p − 1)-th roots of unity. Thus to show that NL/Qp
(L×) = pZ · U (n)

Qp
it suffices to show

that NL/Qp
U

(1)
L ⊃ U (n)

Qp
. In fact, in that case NL/Qp

(L×) will have index at most |µp−1| · [U (1)
Qp

: U
(n)
Qp

] =

(p − 1) · pn−1 in Q×

p , but from the local Artin reciprocity theorem we know that this index is precisely

(p− 1) · pn−1 = [L : Qp].

By lemma I.4.1, the exp and log functions give an isomorphism U
(i)
Qp

∼= (pi) for i ≥ 1 (respectively

i ≥ 2) when p 6= 2 (respectively p = 2). Hence, when p 6= 2 the map x 7→ x(p−1)·pn−1

gives an
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isomorphism U
(1)
Qp

∼= U
(n)
Qp

since x 7→ (p − 1) · pn−1 · x gives an isomorphism (p) ∼= (pn), proving that

NL/Qp
U

(1)
L ⊃

(
U

(1)
Qp

)[L:Qp]
= U

(n)
Qp

in this case. When p = 2 and n ≥ 2 (for n = 1, L = Q2), we have

that x 7→ x2n−1

gives an isomorphism U
(2)
Q2

∼= U
(n+1)
Qp

and only get that NL/Q2
U

(1)
L ⊃ U

(n+1)
Q2

. However

an explicit computation shows that 52n−2

= NL/Qp
(2 + i), where i = (ζ2n)2

n−2

is a primitive 4-th root

of 1, and since U
(2)
Q2

= U
(3)
Q2
∪ 5 · U (3)

Q2
applying x 7→ x2n−2

gives U
(n)
Q2

= U
(n+1)
Q2

∪ 52n−2 · U (n+1)
Q2

, proving

that NL/Q2
U

(1)
L ⊃ U (n)

Q2
in this case as well.

Remark 2.7 It can be shown (using formal groups à la Lubin-Tate, see for instance Neukirch’s book

or Serre’s article in Cassels-Fröhlich) that the isomorphism UQp/U
(n)
Qp
≈ Gal(L/Qp) takes u mod U

(n)
Qp

to

the automorphism given by ζpn 7→ ζu−1

pn .

We are now ready to show the celebrated

Theorem 2.8 (Local Kronecker-Weber) Every finite abelian extension of Qp is contained in a
cyclotomic extension.

Proof Let L ⊃ Qp be a finite abelian extension. Since NL/Qp
L× has finite index in Q×

p , there exists m

such that pm ∈ NL/Qp
L×, and since NL/Qp

L× is open, there exists n such that NL/Qp
L× ⊃ U

(n)
Qp

. Let

N = pn · (pm − 1). We claim that NQp(ζN )/Qp
Qp(ζN )× = pmZ × U (n)

Qp
⊂ NL/Qp

L×, which in turn implies

that Qp(ζN ) ⊃ L, finishing the proof of the theorem.

To prove the claim, observe that Qp(ζN ) is the compositum of M0 = Qp(ζpm−1) and M1 = Qp(ζpn),
hence the norm group of Qp(ζN ) is the intersection of the norm groups of M0 and M1. By the lemma,

we already know that NM1/Qp
M×

1 = pZ×U (n)
Qp

. On the other hand, we show below that M0 is unramified

over Qp of degree m and hence has norm group pmZ × UQp . Putting everything together, we conclude

that Qp(ζN ) has norm group pmZ × U (n)
Qp

as claimed.

Finally, to show that M0 is the degreem unramified extension of Qp, let f(x) ∈ Zp[x] be the minimal

polynomial of ζpn−1 over Qp and let f̄(x) ∈ Fp[x] denote the image of f(x) in Fp[x]. Since xpm−1 − 1 is

separable over Fp[x], by Hensel’s lemma the irreducible factors of xpm−1−1 over Qp and over Fp are in 1-1
correspondence, thus f̄(x) is irreducible over Fp[x]. Hence [M0 : Qp] = deg f(x) = deg f̄(x) ≤ fM0/Qp

,
but since we always have [M0 : Qp] ≥ fM0/Qp

, equality holds (compare with example I.5.7). On the

other hand M0 and Fpm are the splitting fields of xpm−1 − 1 over Qp and Fp, respectively. Hence m

is the largest of the degrees of the irreducible factors of xpm−1 − 1 over Qp and Fp. This shows that
deg f̄(x) ≤ m and also [M0 : Qp] ≥ m, hence both are equal to m.

Example 2.9 We have that Q3(
√

2,
√

3) has norm group 32Z×U (1)
Q3

, so by the above proof we have that

Q3(
√

2,
√

3) ⊂ Q3(ζ24). Explicitly, writing i = ζ6
24, a primitive 4-th root of 1, we have that

ζ8 =

√
2 + i

√
2

2
and ζ3 =

−1 + i
√

3

2

Hence
√

2 = 2ζ3
24 · (1 + ζ6

24)
−1 and

√
3 = (2ζ8

24 + 1) · ζ−6
24 .

Before we end this section, we give a general overview of the proof of the local reciprocity. The first
part of the proof, the Tate-Nakayama theorem, is a purely group theoretical result that describes the
maximal abelian quotient Gab of a finite group G in terms of a Z[G]-module C satisfying some conditions.
The second part of the proof is to show that for a finite Galois extension of local fields L ⊃ K with
G = Gal(L/K) we may take C = L×, and for that we will make use of our knowledge of the structure of
L×. Once the reciprocity theorem is proved, the proof of the existence theorem is then not too difficult.

3 Tate-Nakayama theorem

Let G be a finite group. In this section, we prove a purely group theoretic result giving an isomorphism

Gab ≈ CG

NG(C)
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where C is a G-module satisfying some conditions and NG:C → CG denotes the norm map of C (see
appendix). The methods of this section are inspired in computations of Algebraic Topology, with the
starting point being the well-known relation H1(X,Z) = π1(X)ab between the first singular homology
group of a topological space X and the maximal abelian quotient π1(X)ab of the fundamental group of
X . Since Galois extensions are algebraic analogs of covering spaces in Topology, this turns out to be a
quite natural point of view (if, of course, you’ve studied Algebraic Topology before, but don’t worry if
you haven’t, the proofs below are purely algebraic, but it’s a good idea to eventually look at the source
of inspiration for them).

All the results that we will need from group cohomology are summarised in the appendix for the
convenience of the reader. We begin with a criterion for cohomological triviality for a G-module.

Theorem 3.1 (Twin number vanishing criterion) Let G be a finite group and M be a G-module.
If there are two consecutive numbers i and i+ 1 for which

Hi
T (H,M) = Hi+1

T (H,M) = 0 for all subgroups H ≤ G

then Hr
T (G,M) = 0 for all r ∈ Z.

Proof First observe that by dimension shifting (see appendix) it is enough to show the “weaker”
conclusion Hr

T (G,M) = 0 for all r ≥ 1. In fact, writing an exact sequence of G-modules

0→ N → P →M → 0

for some induced G-module P (which is thus also induced as an H-module for all H ≤ G) we obtain an

isomorphism Hj+1
T (H,N) = Hj

T (H,M) for all H ≤ G and j ∈ Z. Hence if we know that Hr
T (H,M) = 0

for all r ≥ 1 then we know that Hr
T (H,N) = 0 for all r ≥ 2, and applying the “weak twin number

criterion” to N in place of M we conclude that H1
T (H,N) = 0 as well, that is H0

T (H,M) = 0, so that the
conclusion of the weak criterion holds also for r ≥ 0. Proceeding inductively in this manner, we extend
the result to all r ∈ Z.

A similar proof using dimension shifting (check!) also allows us to assume that i = 1 (or any other
fixed number we deem convenient). Hence from now on we assume that H1(H,M) = H2(H,M) = 0 for
all H ≤ G and prove that these conditions imply that Hr(G,M) = 0 for all r ≥ 1.

Since Hr(G,M) is a torsion abelian group, it is enough to show that its p-primary component
vanishes for all prime numbers p. Let Gp be a p-Sylow subgroup of G. A restriction-corestriction
argument shows that res:Hr(G,M)→ Hr(Gp,M) is injective on p-primary components (see appendix),
thus it is enough to show that Hr(Gp,M) = 0.

Hence we may assume that G is solvable and proceed by induction on the order of G. If G is
cyclic, the theorem follows from the periodicity of cohomology. Now let H ⊳ G be a proper normal
subgroup such that G/H is cyclic. By induction Hr(H,M) = 0 for all r ≥ 1 and hence we have an exact
inflation-restriction sequence

0→ Hr(G/H,MH)→ Hr(G,M)→ Hr(H,M) = 0

for all r ≥ 1. Therefore Hr(G/H,MH) = Hr(G,M) for all r ≥ 1 and in particular H1(G,M) =
H2(G,M) = 0 implies that H1(G/H,MH) = H2(G/H,MH) = 0. But G/H is cyclic, so periodicity
yields Hr(G/H,MH) = 0 for all r ≥ 1, and hence Hr(G,M) = 0 for all r ≥ 1 too.

Now we can prove the main result of this section.

Theorem 3.2 (Tate-Nakayama) Let G be a finite group and let C be a G-module such that for all
subgroups H ≤ G
1. H1(H,C) = 0

2. H2(H,C) is cyclic of order |H |
Let γ be a generator of H2(G,C). Then for all r ∈ Z the cup product with γ gives an isomorphism

Hr
T (G,Z)

∪γ

≈
- Hr+2

T (G,C)

Observe that if γ ∈ H2(G,C) is a generator then res(γ) ∈ H2(H,C) is also a generator since
cor ◦ res(γ) = [G : H ] · γ has order |H |, hence res(γ) must have order |H | as well in view of 2.
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Proof The key idea of the proof is to apply a “double dimension shifting” (wow!) and for that we
construct a cohomologically trivial G-module C(γ) fitting into an exact sequence

0→ C → C(γ)→ IG → 0 (∗)

Here IG = 〈σ − 1 | σ ∈ G〉 is the kernel of the augmentation map Z[G] → Z (see appendix), so that we
have an exact sequence of G-modules

0→ IG → Z[G]→ Z→ 0 (∗∗)

Once C(γ) is constructed, the proof of the theorem follows easily: from (∗∗), using the fact that Z[G]
has trivial cohomology, we conclude that the connecting map δa:Hr

T (G,Z) ≈ Hr+1
T (G, IG) is an isomor-

phism; similarly, from (∗), we have that the connecting map δc:H
r+1
T (G, IG) ≈ Hr+2

T (G,C) is also an

isomorphism. The composition δc ◦ δa gives the desired isomorphism Hr
T (G,Z) ≈ Hr+2

T (G,C), which
equals to the cup product with γ, as we later show.

Let c be a 2-cocycle representing γ. Since we wish H2(G,C(γ)) to vanish, the idea is to construct
C(γ) so that c becomes a coboundary in C(γ). Take C(γ) to be the direct sum of C with the free abelian
group with basis xσ , σ ∈ G, σ 6= 1:

C(γ)
df
= C ⊕

⊕

σ∈G
σ 6=1

Zxσ

We extend the G-action from C to C(γ) in such a way that c becomes the coboundary of σ 7→ xσ:

σ · xτ = xστ − xσ + c(σ, τ)

where we interpret “x1” to be c(1, 1). The 2-cocycle relation then guarantees that 1 · xτ = xτ and
(ρσ) · xτ = ρ · (σ · xτ ) hold for all ρ, σ, τ ∈ G (check!), turning C(γ) into a G-module containing C as a
G-submodule. Finally the map C(γ) → IG in (∗) is given by xσ 7→ σ − 1 for σ 6= 1, and is identically
zero on C. Another easy check shows that the latter map preserves the G-action.

In order to show that C(γ) is cohomologically trivial we apply the twin number vanishing criterion:
we need to verify that H1(H,C(γ)) = H2(H,C(γ)) = 0 for all subgroups H ≤ G. Here the hypotheses
1 and 2 of the theorem come into play. First observe that from (∗∗) and the explicit description of the
connecting map in terms of the standard resolution (see appendix) we obtain

(i) H1(H, IG) = H0
T (H,Z) is cyclic of order |H | with generator given by the class [f ] of the 1-cocycle

f(σ) = σ − 1, σ ∈ H .

(ii) H2(H, IG) = H1(H,Z) = Hom(H,Z) = 0

From (∗) we have an exact sequence

0 = H1(H,C) - H1(H,C(γ)) - H1(H, IG)

δ- H2(H,C) - H2(H,C(γ)) - H2(H, IG) = 0

Hence everything falls through if we can show that the connecting map δ is an isomorphism. At least we
know that both H1(H, IG) and H2(H,C) are cyclic groups of order |H |, so it is enough to show that δ is
surjective. We show by explicit computation that δ([f ]) = res(γ) where [f ] ∈ H1(H, IG) is as in (i). First

we lift f to the function f̃ :H → C(γ) given by f̃(σ) = xσ. Now (df̃)(σ, τ) = σ · xτ − xστ + xσ = c(σ, τ)

for all σ, τ ∈ G, where d denotes the coboundary map, hence δ([f ]) = [df̃ ] = [c] = res(γ), as required.

Finally, we verify that the composition δc ◦ δa of the two connecting maps δa:Hr
T (G,Z)

≈−→
Hr+1

T (G, IG) and δc:H
r+1
T (G, IG)

≈−→ Hr+2
T (G,C) is indeed the cup product with γ. Denote by µ ∈

H0
T (G,Z) = Z/|G| the generator 1 mod |G| and by φ = [f ] = δa(µ) ∈ H1(G, IG) where f is as in

(i). By the compatibility of cup products with the connecting maps (see appendix) we obtain, for all
α ∈ Hr

T (G,Z),

α ∪ γ = α ∪ δc(φ) = (−1)r · δc(α ∪ φ) = (−1)r · δc
(
α ∪ δa(µ)

)

= (−1)r · δc
(
(−1)r · δa(α ∪ µ)

)
= (−1)r · δc

(
(−1)r · δa(α)

)
= δc ◦ δa(α)

since − ∪ µ is the identity on Hr
T (G,Z).
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Recall that (see appendix) H−2
T (G,Z) = H−1

T (G, IG) = IG/I
2
G and that Gab = IG/I

2
G via the

isomorphism σ · [G : G] 7→ (σ − 1) · I2
G. As a consequence we obtain

Corollary 3.3 (“Abstract” Reciprocity) With the notation and hypotheses of the Tate-Nakayama
theorem, we have an isomorphism

CG

NG(C)
= H0

T (G,C) ≈ H−2
T (G,Z) = Gab

We wish to apply the Tate-Nakayama’s theorem to G = Gal(L/K) and C = L× where L ⊃ K is a
finite Galois extension of local fields. Hence we need to verify that, for all subgroups H ≤ G,

1. H1(H,L×) = 0;

2. H2(H,L×) is cyclic of order |H |.
The first condition is just Hilbert Satz 90 (see appendix), so we are left to compute H2(G,L×). This
is not too difficult since we know the structure of L× and since G is solvable so we will be able to
reduce everything to the cyclic case. We begin by looking at the cyclic factor G/G0 corresponding to
the maximal unramified extension of K in L.

4 Unramified Cohomology

In this section, L ⊃ K will be a finite unramified extension with G = Gal(L/K), and l ⊃ k will be the
corresponding extension of residue fields. Recall that we have a canonical isomorphism G = Gal(L/K) ≈
Gal(l/k), and so G is cyclic.

We now compute H2(G,L×). The starting point is the exact sequence of G-modules

0 - UL
- L× v- Z - 0 (†)

where v denotes the normalised valuation of L. We need to compute the cohomology of UL and Z.

To compute the cohomology of Z, we use the exact sequence of G-modules (with trivial G-action)

0→ Z→ Q→ Q/Z→ 0

Since Hr
T (G,Q) is torsion and multiplication by any non-zero integer is an automorphism of Q, we

conclude that Hr
T (G,Q) = 0 for all r. Hence we have that Hr

T (G,Z) = Hr−1
T (G,Q/Z) for all r.

Next we compute the cohomology of UL.

Theorem 4.1 For all r we have that
Hr

T (G,UL) = 0

Proof We have exact sequences of G-modules (via the isomorphism G ≈ Gal(l/k))

0→ U
(1)
L → UL → l× → 0

0→ U
(r+1)
L → U

(r)
L → l+ → 0

The group Hr
T (G, l+) is trivial for all r since l+ is an induced module by the normal basis theorem

(see appendix). We now show that the group Hr
T (G, l×) is also trivial for all r. By the periodicity of

cohomology of cyclic groups, it is enough to prove that for r = 0 and r = 1. The case r = 1 is just
Hilbert 90, while the case r = 0 follows from the surjectivity of the norm map Nl/k : l× → k×: if k = Fq

and b is a generator of the group l× then Nl/k(b) = b1+q+···+qn−1

has order q−1 and hence is a generator
of k×.

Hence, from the long exact sequences associated to the two short ones above, we conclude that

Hr
T (G,U

(i+1)
L ) = Hr

T (G,U
(i)
L ) for all r and all i ≥ 0. Now to show that Hr

T (G,UL) is trivial, again
by periodicity we may assume r > 0. Let f :Gr → UL be an r-cocycle and denote by d the (r − 1)-

th coboundary map. Since Hr(G,U
(1)
L ) = Hr(G,UL), f differs by a coboundary from an r-cocycle

f1:G
r → U

(1)
L , i.e., there exists g0:G

r−1 → UL such that f1 = f ·d(g0)−1. Proceeding in this manner, we

inductively construct functions gi:G
r−1 → U

(i)
L such that f · d(g0g1 . . . gi)

−1 is an r-cocycle with values

in U
(i+1)
L . Then the product g0g1 . . . gi converges to a function g:Gr−1 → UL (multiplicative Calculus

Student Psychedelic Dream!) and we have that dg = f , that is, the class [f ] is trivial in Hr(G,UL).
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The case r = 0 is of special interest, since it gives an unconditional proof of

Corollary 4.2 (Norm groups of unramified extensions) Let L ⊃ K be the unramified extension
of degree n and let π ∈ K be a common uniformiser. Then the norm map NL/K :UL → UK is surjective
and hence

NL/KL
× = πnZ · UK

Back to the computation of H2(G,L×). From (†) and the fact that UL has trivial cohomology, we
conclude that the valuation v induces an isomorphism H2(G,L×) = H2(G,Z). On the other hand, we

have another isomorphism given by connecting map δ:H1(G,Q/Z)
≈−→ H2(G,Z). Putting everything

together, we obtain a canonical isomorphism, called invariant map,

invL/K :H2(G,L×)
≈-

1
|G|Z

Z

given by the composition

H2(G,L×)
v

≈
- H2(G,Z) �δ

≈ H1(G,Q/Z) = Hom(G,Q/Z)
f 7→f(Φ)-

1
|G|Z

Z

where we write Φ ∈ G for the Frobenius automorphism.

If M ⊃ L is another unramified extension with H = Gal(M/K) then following the isomorphisms
above we obtain a commutative diagram

H2(H,M×)
invM/K

≈
-

1
|H|Z

Z

H2(G,L×)

inf

∪

6

invL/K

≈
-

1
|G|Z

Z

∪

6

where the left vertical arrow is given by inflation and the right vertical one is the inclusion map. Hence
the invariant maps for the various unramified extensions of K fit together into a single invariant map

invK :H2(Gnr
K ,K×

nr)
≈- Q/Z

(see the notation at the end of section 1).

Theorem 4.3 (Functorial property of the invariant map) Let K ′ ⊃ K be an arbitrary (possibly
ramified) finite extension of local fields. We have a commutative diagram

H2(Gnr
K′ ,K ′×

nr)
invK′

≈
- Q/Z

H2(Gnr
K ,K×

nr)

res

6

invK

≈
- Q/Z

[K ′ : K]

6

where the left vertical map is restriction and the right vertical one is multiplication by [K ′ : K]. Hence if
K ′ ⊃ K is an arbitrary finite Galois extension with G = Gal(K ′/K) then H2(G,K ′×) contains a cyclic
group of order |G|.
Proof First we note that K ′

nr = Knr ·K ′ by theorem I.5.1 and the unramified Highlander’s Philosophy
(corollary I.5.5) so that the restriction map on H2 is well-defined. Let e and f be the ramification and
inertia degrees of K ′ ⊃ K and denote by v and v′ the normalised valuations of K and K ′ respectively
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so that v′|K = e · v. Observe that ΦK′ |Knr = Φf
K . Hence, from the definition of the invariant map, we

obtain a commutative diagram

H2(Gnr
K′ ,K ′×

nr)
v′- H2(Gnr

K′ ,Z) - Homct(G
nr
K′ ,Q/Z) - Q/Z

H2(Gnr
K ,K×

nr)

res

6

v- H2(Gnr
K ,Z)

e · res
6

- Homct(G
nr
K ,Q/Z)

e · res
6

- Q/Z

ef

6

Since ef = [K ′ : K], the first result follows.

To show the second result, assume that K ′ ⊃ K is finite Galois with G = Gal(K ′/K). Using the
inflation-restriction sequence and Hilbert 90, we conclude that the inflation maps

inf:H2(Gnr
K ,K×

nr) →֒ H2(GK ,K
×

sp) and inf:H2(Gnr
K′ ,K ′×

nr) →֒ H2(GK′ ,K×

sp)

are injective. Identifying H2(Gnr
K ,K×

nr) and H2(Gnr
K′ ,K ′×

nr) with Q/Z via invK and invK′ and using the
result just proven, we obtain a commutative diagram

0 - H2(G,K ′×)
inf - H2(GK ,K

×

sp)
res - H2(GK′ ,K×

sp)

H2(Gnr
K ,K×

nr)

inf

∪

6

res - H2(Gnr
K′ ,K ′×

nr)

inf

∪

6

Q/Z

invK

w
w
w
w
w
w
w
w
w

[K ′ : K] - Q/Z

invK′

w
w
w
w
w
w
w
w
w

We conclude that H2(G,K ′×) contains a subgroup isomorphic to
1

[K′:K]
Z

Z , that is, a cyclic group of order
|G| = [K ′ : K].

In order to show that H2(G,K ′×) actually equals
1

[K′:K]
Z

Z , we shall bound the order of H2(G,K ′×)
from above using a counting argument. Since G is solvable, it will be enough to do that assuming G
cyclic. This is done in the next section.

5 Proof of the Local Reciprocity: conclusion

We begin by introducing a very useful tool in the cohomology of cyclic groups that will help simplify our
counting argument.

Definition 5.1 Let G be a cyclic group and M be a G-module whose Tate cohomology groups are all
finite. We define its Herbrand quotient as

h(G,M) =
|H0

T (G,M)|
|H1

T (G,M)|

The Herbrand quotient plays the same role as the Euler characteristic in Topology. We have two
main computational lemmas:

Lemma 5.2 (Multiplicativity) Let G be a cyclic group and consider an exact sequence of G-modules

0→M ′ →M →M ′′ → 0

If two of the Herbrand quotients h(G,M), h(G,M ′), h(G,M ′′) are defined (i.e. have finite Tate coho-
mology groups) then so is the third and

h(G,M) = h(G,M ′) · h(G,M ′′)
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Proof From the periodicity of cohomology of cyclic groups, the long exact sequence associated to the
above short one becomes an “exact hexagon”

H0
T (G,M ′)

f0
- H0

T (G,M)
g0
- H0

T (G,M ′′)

H1
T (G,M ′′)

δ1
6

�g
1

H1
T (G,M) �f

1

H1
T (G,M ′)

δ0

?

The first result follows directly from from this hexagon. The second result also follows from this hexagon
by elementary counting, as one has

|H0
T (G,M ′)| = | ker f0| · | ker g0| |H1

T (G,M ′)| = | ker f1| · | ker g1|
|H0

T (G,M)| = | ker g0| · | ker δ0| |H1
T (G,M)| = | ker g1| · | ker δ1|

|H0
T (G,M ′′)| = | ker δ0| · | ker f1| |H1

T (G,M ′′)| = | ker δ1| · | ker f0|

Lemma 5.3 (Finite Index Invariance) Let G be a cyclic group, M be a G-module and M ′ be a
G-submodule of finite index. Then h(G,M ′) is defined if and only if h(G,M) is defined, in which case
h(G,M ′) = h(G,M).

Proof By the last lemma, it suffices to show that if M is a finite group then h(G,M) = 1. Let
σ be a generator of G. Since M is a finite group one has that |H0

T (G,M)| = |MG|/|NG(M)| and
|H1

T (G,M)| = | kerNG|/|(σ − 1) ·M |. But |M | = | kerNG| · |NG(M)| and similarly (since MG is the
kernel of multiplication by σ − 1) one has that |M | = |MG| · |(σ − 1) ·M |, and the result follows.

Let L ⊃ K be a cyclic extension of local fields with Galois group G of order n. We apply the above
to the exact sequence of G-modules

0→ UL → L× → Z→ 0

induced by the valuation of L. It is easy to compute h(G,Z) = n and we have

Theorem 5.4 With the above notation and hypotheses, h(G,UL) = 1.

Proof By the previous lemma, it is enough to show that UL contains an induced G-submodule of finite
index. First assume that charK = 0 and let π be a uniformiser of K. By lemma I.4.1 we have an

isomorphism of G-modules U
(i)
L
∼= m

i
L for i sufficiently large. On the other hand, for j sufficiently large

m
i
L ⊃ πjOL

∼= OL. Since UL/U
(i)
L and m

i
L/π

jOL are finite, it is enough to show that OL contains an
induced module of finite index. Now let ω1, . . . , ωn be a normal basis of L ⊃ K; multiplying by a conve-
nient power of π we may assume that ω1, . . . , ωn ∈ OL. Since OL is a finite OK -module (theorem I.3.9),
we have that the induced module M = OKω1 + · · ·+OKωn has finite index in OL.

Now we sketch a proof that works even if charK 6= 0. Let M be as above. Multiplying the ωi by a
sufficiently large power of π we may assume that M ·M ⊂ πM . Then we may consider the submodule of
finite index V = 1+M of UL and the filtration given by V (i) = 1+πiM for i ≥ 0. It is easy to show that
we have an isomorphism of G-modules V (i)/V (i+1) ∼= M/πM , which has trivial cohomology since the
latter is induced. As in the proof of theorem 4.1, this implies that V itself has trivial cohomology.

Hence we get h(G,L×) = h(G,UL) · h(G,Z) = n. Since H1(G,L×) is trivial by Hilbert 90, we
conclude that |H2(G,L×)| = n when G is cyclic. In general, for an arbitrary Galois extension we have

Theorem 5.5 Let L ⊃ K be an arbitrary finite Galois extension of local fields with G = Gal(L/K).
Then the group H2(G,L×) is cyclic of order |G|.
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Proof Since H2(G,L×) contains a cyclic group of order |G| by theorem 4.3, it is enough to show that
the order of H2(G,L×) divides |G|. For that, we use the special cyclic case above together with the fact
that G is solvable (see theorem I.5.8). Alternatively, without resorting to theorem I.5.8, one may use the
fact that res:H2(G,L×) → H2(Gp, L

×) defines an injection on the p-primary components, where Gp is
any p-Sylow subgroup of G (see appendix), and we may work with the solvable group Gp instead of G.

The proof is by induction on |G|. We already know the result for G cyclic. In general, let H ⊳ G
be a normal subgroup such that H is cyclic and non-trivial. By Hilbert 90, we have an exact inflation-
restriction sequence

0→ H2(G/H, (LH)×)→ H2(G,L×)→ H2(H,L×)

Hence the order of H2(G,L×) divides the product of the orders of H2(H,L×) and H2(G/H, (LH)×),
which in turn divides |H | · |G/H | = |G| by induction hypothesis, and we are done.

As a corollary, we obtain the following result that allows us to extend the invariant map of last
section to the whole group H2(GK ,K

×

sp). This map plays an important role in the study of division
algebras over a local field.

Corollary 5.6 Let K be a local field. We have an isomorphism

invK :H2(GK ,K
×

sp)
≈- Q/Z

obtained by composing the inflation map inf:H2(Gnr
K ,K×

nr)
≈−→ H2(GK ,K

×

sp) and the invariant map

invK :H2(Gnr
K ,K×

nr)
≈−→ Q/Z of last section.

Proof By Hilbert 90 and the inflation-restriction sequence, we have an inclusion inf:H2(Gnr
K ,K×

nr) →֒
H2(GK ,K

×

sp), which we now show to be also surjective. Since

H2(GK ,K
×

sp) = lim−→
K′ finite

Galois over K

H2
(
Gal(K ′/K),K ′×)

,

given any γ ∈ H2(GK ,K
×

sp) we can find a finite Galois extension K ′ such that

γ ∈ H2
(
Gal(K ′/K),K ′×)

= ker
(
H2(GK ,K

×

sp)
res- H2(GK′ ,K×

sp)
)

(by Hilbert 90 and the inflation-restriction sequence the inflation maps in the above limit are injec-
tive, so we may view H2

(
Gal(K ′/K),K ′×)

as a subgroup of H2(GK ,K
×

sp) and we write γ also for the
corresponding element in this subgroup). Now by theorem 4.3 and the above theorem, we have that
inf:H2(Gnr

K ,K×

nr) →֒ H2(GK ,K
×

sp) allows us to make the identification

ker
(
H2(Gnr

K ,K×

nr)
res- H2(Gnr

K′ ,K ′×
nr)

)
= ker

(
H2(GK ,K

×

sp)
res- H2(GK′ ,K×

sp)
)

(see the second diagram of the proof of theorem 4.3). Hence γ belongs to this kernel and a fortiori to
(the inflation of) H2(Gnr

K ,K×

nr).

Finally, we are ready to make

Definition 5.7 For any finite abelian extension L ⊃ K of local fields, we define the local reciprocity
map θL/K :K× → Gal(L/K) as the composition of the natural projection map K× ։ K×/NL/KL

× with
the inverse of the Tate-Nakayama isomorphism

Gal(L/K)
≈−→ K×

NL/KL×

given by the cup product with the unique element γ ∈ H2(Gal(L/K), L×) such that invL/K(γ) =
1

[L:K] mod Z. Such element γ is called a fundamental class.
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To prove that the above isomorphism satisfies the two properties of theorem 2.1, we describe θL/K

in terms of characters. Let L ⊃ K be as above with G = Gal(L/K). Recall that we have two exact
sequences of G-modules

0→ Z→ Q→ Q/Z→ 0 (∗)
0→ IG → Z[G]→ Z→ 0 (∗∗)

where Q and Z[G] have trivial cohomology, hence the connecting maps

δ:H1(G,Q/Z)
≈−→ H2(G,Z)

δa:H−2
T (G,Z)

≈−→ H−1
T (G, IG)

are isomorphisms. Besides we have a natural isomorphism Gab = H−1
T (G, IG) given by

Gab ≈−→ H−1
T (G, IG) =

IG
I2
G

σ · [G : G] 7→ (σ − 1) · I2
G

Theorem 5.8 (Local Reciprocity Revisited) With the above notation, for any a ∈ K× and any
character χ ∈ H1(G,Q/Z) = Hom(G,Q/Z) one has

χ
(
θL/K(a)

)
= invK(ā ∪ δχ)

where ā is the image of a in H0
T (G,L×) = K×/NL/KL

×. In other words, the cup product gives a perfect
pairing

H0
T (G,L×)⊗H2

T (G,Z)
∪- H2

T (G,L×) ⊂
inf- H2

T (GK ,K
×

sp)

K×

NL/KL×
⊗Hom(G,Q/Z)

id⊗δ ≈
6

-
1
|G|Z

Z

≈
?

⊂ - Q/Z

≈ invK

?

Proof Let γ ∈ H2(G,L×) be the fundamental class and n = |G|. Given a ∈ K× and χ ∈ H1(G,Q/Z),

write σ
df
= θL/K(a) ∈ G and χ(σ) = i

n mod Z with 0 ≤ i < n. Since invK(γ) = 1
n mod Z, in order to

show that χ(σ) = invK(ā ∪ δχ) we have to show that ā ∪ δχ = i · γ in H2(G,L×). However by the
very definition of θL/K we have that σ̄ ∪ γ = ā, where σ̄ ∈ H−2

T (G,Z) denotes the image of σ under the

isomorphism H−2
T (G,Z) = Gab = G. Hence

ā ∪ δχ = σ̄ ∪ γ ∪ δχ = σ̄ ∪ δχ ∪ γ

and we are left to show that σ̄ ∪ δχ = i mod n in H0
T (G,Z). Note that σ̄ ∪ δχ = δ(σ̄ ∪ χ) and by the

lemma below σ̄ ∪ χ ∈ H−1
T (G,Q/Z) is represented by χ(σ) = i

n mod Z ∈ Q/Z. On the other hand, the

connecting map δ:H−1
T (G,Q/Z)

≈−→ H0
T (G,Z) is induced by the norm map (see appendix), which in our

case is just multiplication by n. Hence δ(σ̄ ∪ χ) = i mod n, as required.

Finally, the above identity implies that the pairing

H0
T (G,L×)⊗H1

T (G,Q/Z)
id⊗δ

≈
- H0

T (G,L×)⊗H2
T (G,Z)

∪- H2
T (G,L×)

is perfect. In fact, if χ ∈ H1
T (G,Q/Z) is such that ā ∪ δχ = 0 ⇐⇒ χ(θL/K(a)) = 0 for all a ∈ K× then

χ = 0 since θL/K :K× ։ Gal(L/K) is surjective. On the other hand, if a ∈ K× is such that ā ∪ δχ =

0 ⇐⇒ χ(θL/K(a)) = 0 for all χ ∈ H1
T (G,Q/Z) then clearly θL/K(a) = 0 ⇐⇒ a ∈ ker θL/K = NL/KL

×

and thus ā = 0, showing that the left kernel of this pairing is also trivial.
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Lemma 5.9 Let G be a finite group and A and B be G-modules. Let f :G→ B be a 1-cocycle.

1. for a ∈ ker(A
NG- A), the cup product of [a] ∈ H−1

T (G,A) and [f ] ∈ H1
T (G,B) is given by

[a] ∪ [f ] = −
[∑

σ∈G

σ(a)⊗ f(σ)
]

∈ H0
T (G,A⊗B)

Here brackets denote the corresponding cohomology classes.

2. for σ ∈ G denote by σ̄ ∈ H−2
T (G,Z) the image of σ under the isomorphism Gab ≈ H−2

T (G,Z).
Then

σ̄ ∪ [f ] = [f(σ)] ∈ H−1
T (G,B)

Proof We use dimension shifting. Write an exact sequence of G-modules

0→ B → B′ → B′′ → 0

with B′ induced, and such that it is split as a sequence of abelian groups, so that

0→ A⊗B → A⊗B′ → A⊗B′′ → 0

is still exact (check the appendix for more details). Then the connecting map δ:H0
T (G,B′′)

≈−→ H1
T (G,B)

is an isomorphism and thus we may write [f ] = δ[b′′] for some b′′ ∈ B′′G and

[a] ∪ [f ] = [a] ∪ δ[b′′] = −δ[a⊗ b′′]

On the other hand, the connecting map δ:H−1
T (G,A ⊗ B′′) → H0

T (G,A ⊗ B) is induced by the norm.
There exists a pre-image b′ ∈ B′ of b′′ such that f(σ) = σ(b′) − b′ ∈ B for all σ ∈ G. Since a ⊗ b′ is a
pre-image of a⊗ b′′ under A⊗B′ → A⊗B′′, we conclude that δ[a⊗ b′′] is represented by

NG(a⊗ b′) =
∑

σ∈G

σa⊗ σ(b′) =
∑

σ∈G

σa⊗ f(σ) +
∑

σ∈G

σa⊗ b′

=
∑

σ∈G

σa⊗ f(σ) +NG(a)⊗ b′ =
∑

σ∈G

σa⊗ f(σ)

To show 2, observe that tensoring the augmentation sequence (∗∗) with B we obtain an exact
sequence

0→ IG ⊗B → Z[G]⊗B → Z⊗B = B → 0

since Z is a free Z-module and hence TorZ
1 (B,Z) = 0. Since Z[G]⊗B is induced (see appendix), we have

that the connecting map δa:H−1
T (G,B)

≈−→ H0
T (G, IG ⊗B) is an isomorphism, hence it suffices to show

that δa(σ̄ ∪ [f ]) = δa[f(σ)]. Since δa(σ̄ ∪ [f ]) = δa(σ̄)∪ [f ] and δa(σ̄) = [σ− 1] ∈ H−1
T (G, IG), applying 1

we obtain

δa(σ̄ ∪ [f ]) = [σ − 1] ∪ [f ] = −
[∑

τ∈G

τ(σ − 1)⊗ f(τ)
]

=
[∑

τ∈G

τ ⊗ f(τ) −
∑

τ∈G

τσ ⊗ f(τ)
]

=
[∑

τ∈G

τσ ⊗ f(τσ) −
∑

τ∈G

τσ ⊗ f(τ)
]

=
[∑

τ∈G

τσ ⊗ τf(σ)
]

∈ H0
T (G, IG ⊗B)

On the other hand, since δa:H−1
T (G,B)

≈−→ H0
T (G, IG⊗B) is induced by the norm and 1⊗f(σ) ∈ Z[G]⊗B

is a pre-image of f(σ) ∈ B = Z⊗B we have that

δa[f(σ)] =
[
NG

(
1⊗ f(σ)

)]
=

[∑

τ∈G

τ ⊗ τf(σ)
]

∈ H0
T (G, IG ⊗B)

Hence the two classes δa(σ̄ ∪ [f ]) and δa[f(σ)] are equal in H0
T (G, IG ⊗ B) since

∑

τ∈G

τσ ⊗ τf(σ) −
∑

τ∈G

τ ⊗ τf(σ) =
∑

τ∈G

τ(σ − 1)⊗ τf(σ) = NG

(
(σ − 1)⊗ f(σ)

)
∈ NG(IG ⊗B)
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Using the description of the reciprocity map given in theorem 5.8, it is easy to show that for an

unramified extension of local fields L ⊃ K one has θL/K(a) = Φ
v(a)
L/K , where v denotes the normalised

valuation of K and ΦL/K is the Frobenius automorphism of L ⊃ K. In fact, let n = [L : K] and

G = Gal(L/K) and consider the character χ:G → Q/Z given by χ(ΦL/K) = 1
n mod Z. Then ā ∪ δχ is

represented by the 2-cocycle c:G×G→ L× given by

c(Φi
L/K ,Φ

j
L/K) =

{
a if i+ j ≥ 0
0 otherwise

0 ≤ i, j < n

Now since the invariant map is given by the composition

H2(G,L×)
v

≈
- H2(G,Z) �δ

≈ H1(G,Q/Z) = Hom(G,Q/Z) ≈ Q/Z

and v([c]) = δ[f ] where f :G→ Q/Z is the 1-cocycle given by f(ΦL/K) = v(a)
n mod Z, we conclude that

χ
(
θL/K(a)

)
= invK(ā ∪ δχ) = invK([c]) =

v(a)

n
mod Z = χ(Φ

v(a)
L/K)

showing that θL/K(a) = Φ
v(a)
L/K since χ is injective.

We can also show the compatibility of the various maps θL/K in the sense that given finite extensions
M ⊃ L ⊃ K with M and L abelian over K we have a commutative diagram

K×
θM/K- Gal(M/K)

Gal(L/K)

can.

??

θ
L
/K

-

This will prove that the maps θL/K fit together into a single map θK :K× → Gab
K , which will then satisfy

all the properties required in theorem 2.1.

Let a ∈ K×, let χ ∈ Hom(Gal(L/K),Q/Z) and denote by χ′ = inf(χ) ∈ Hom(Gal(M/K),Q/Z).
Then inf(ā ∪ δχ) = ā ∪ δχ′ and thus

χ(θL/K(a)) = invK(ā ∪ δχ) = invK(ā ∪ δχ′) = χ′(θM/K(a)) = χ(θM/K(a)|L)

Since this holds for all χ ∈ Hom(Gal(L/K),Q/Z), we conclude that θL/K(a) = θM/K(a)|L, as was to be
shown.

With the above, we finish the proof of the local reciprocity theorem. Hurray!

6 Hilbert Symbol and Proof of Existence Theorem

In this section, we prove the existence theorem, and for that we shall need a few results from Kummer
theory and its relation with local reciprocity. This is accomplished in the first subsection.

6.1 Hilbert symbol

For any field K and any positive integer n prime to charK, denote by µn ⊂ K×

sp the group of n-th roots
of 1 of K.

Definition 6.1.1 Let K be a local field such that K ⊃ µn. For a, b ∈ K× we define the Hilbert symbol
(a, b) as

(a, b)
df
=
θK(b)(α)

α
∈ µn where αn = a, α ∈ K×

sp

Observe that since K ⊃ µn this definition is independent of the choice of α.
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Lemma 6.1.2 Let K be a local field such that K ⊃ µn. The Hilbert symbol (−,−):K× ×K× → µn has
the following properties:

1. Bilinearity: for all a, a1, a2, b, b1, b2 ∈ K×,

(a1 · a2, b) = (a1, b) · (a2, b) and (a, b1 · b2) = (a, b1) · (a, b2)

2. Steinberg relations: (a, 1− a) = 1 for all a 6= 0, 1 and (a,−a) = 1 for all a ∈ K×

3. Skew-symmetry: (a, b) = (b, a)−1 for all a, b ∈ K×

4. (a, b) = 1 if and only if b ∈ NL/KL
× where L = K( n

√
a)

5. The Hilbert symbol gives a perfect pairing K×/(K×)n × K×/(K×)n → µn: if a ∈ K× is such
that (a, b) = 1 for all b ∈ K× then a ∈ (K×)n, and similarly for the other entry.

Proof Write α = n
√
a. The Hilbert symbol is clearly linear in the first entry, and also in the second

since θK(b2)(α) is an n-th root of a and thus

(a, b1 · b2) =
θK(b1b2)(α)

α
=
θK(b1)

(
θK(b2)(α)

)

θK(b2)(α)
· θK(b2)(α)

α
= (a, b1) · (a, b2)

Also, 4 is a direct consequence of the definition of the Hilbert symbol and the reciprocity theorem 2.1.
Now we show that 4⇒ 2. Since (a, b) is a [L : K]-th root of 1 (by Kummer theory for instance), we may
wlog assume that [L : K] = n. Let ζ be a primitive n-th root of 1. Then

xn − a =
∏

0≤i≤n

(x− ζiα)⇒
{

1− a = NL/K(1− α)
−a = NL/K(−α)

and hence (a, 1 − a) = 1 and (a,−a) = 1 by 4 (actually, (a,−a) = 1 can be shown to be a formal
consequence of bilinearity and the identity (a, 1− a) = 1, as the reader may verify).

Now we show that 3 follows formally from 1 and 2. In fact:

(ab,−ab) = 1 ⇐⇒ (a,−a) · (a, b) · (b, a) · (b,−b) = 1 ⇐⇒ (a, b) · (b, a) = 1

Finally, suppose that (a, b) = 1 for all b ∈ K×, and let L = K(α) as above. Since θL/K :K× ։

Gal(L/K) is surjective (see theorem 2.1) we conclude that α ∈ K, i.e., a ∈ (K×)n, as was to be shown.
By the skew-symmetry 3, the same holds for the other entry, and we are done.

Properties 3–5 immediately yield the following interesting corollary, which will be used below in the
proof of the Existence Theorem.

Corollary 6.1.3 Let n be a positive integer and let K be a local field containing a primitive n-th root
of 1. If an element a ∈ K× belongs to NL/KL

× for every cyclic extension L ⊃ K of degree n then
a ∈ (K×)n.

The Hilbert symbol can be defined more intrinsically in terms of the so-called Galois symbol.
Recall that for any field K and any positive integer n prime to charK (we do not assume K ⊃ µn), we
have an exact sequence of GK -modules (the Kummer sequence)

1 - µn
- K×

sp

n- K×

sp
- 1

where the last map is given by x 7→ xn. By Hilbert 90 the connecting map ∂:K× → H1(GK , µn)
induces an isomorphism K×/(K×)n = H1(GK , µn), and we also have that H2(GK , µn) is the n-torsion
of H2(GK ,K

×

sp). Explicitly, ∂a is given by the 1-cocycle σ 7→ σ(α)/α ∈ µn where α = n
√
a is any n-th

root of a in Ksp.

The Galois symbol is defined to be the pairing {−,−}:K× ×K× → H2(GK , µn ⊗ µn) given by

K× ⊗K× ∂⊗∂- H1(GK , µn)⊗H1(GK , µn)
∪- H2(GK , µn ⊗ µn) (†)

It has the following properties:
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1. Bilinearity: {a1 · a2, b} = {a1, b} · {a2, b} and {a, b1 · b2} = {a, b1} · {a, b2}
2. Steinberg relations: {a, 1− a} = 1 for all a 6= 0, 1 and {a,−a} = 1 for all a ∈ K×

3. Skew-symmetry: {a, b} = {b, a}−1 for all a, b ∈ K×

4. If µn ⊂ K then {a, b} = 1 ⇐⇒ a ∈ NL/KL
× where L = K( n

√
b).

Property 1 is clear, and 2–3 are formal consequences of {a, 1−a} = 1 (one can also prove 3 using the
skew-symmetry of the cup product). To prove the last Steinberg relation, one factors xn − a =

∏

i fi(x)
into irreducible polynomials fi(x) ∈ K[x] and set Ki = K(αi) where αi ∈ Ksp is any root of fi(x). Then

{1− a, a} =
∏

i

{NKi/K(1− αi), a} =
∏

i

corKi/K{1− αi, a} =
∏

i

corKi/K{1− αi, αi}n = 1

where corKi/K :H2(GKi , µn ⊗ µn)→ H2(GK , µn ⊗ µn) is the corestriction map.

Finally, to show 4 let ζ ∈ K be a primitive n-th root of unity. The choice of ζ defines a non-

canonical isomorphism of GK-modules φζ :µn → Z/n given by φζ(ζ) = 1 mod n and hence we obtain a
commutative diagram

H1(GK , µn)⊗H1(GK , µn)
∪- H2(GK , µn ⊗ µn)

H1(GK , µn)⊗H1(GK ,Z/n)

id⊗φζ
∼=
? ∪ - H2(GK , µn)

∼= id⊗φζ

?

where the vertical arrows are isomorphisms. Then the symbol {a, b} corresponds to the element ∂a∪χb ∈
H2(GK , µn) where χb ∈ H1(GK ,Z/n) is the character given by χb(σ) = φζ

(
∂b(σ)

)
= φζ

(
σ( n
√
b)/ n
√
b
)
.

Hence we have to show that ∂a ∪ χb = 0 ⇐⇒ a ∈ NL/KL where L = Kker χb
sp = K( n

√
b) denotes the

cyclic extension of K defined by χb.

We make the identifications H1(GK ,Z/n) = nH
1(GK ,Q/Z) and nH

2(GK ,K
×

sp) = H2(GK , µn)
where the subscript denotes the n-torsion part of the corresponding groups. Now an explicit computation
shows that, for all a ∈ K× and χ ∈ H1(GK ,Z/n) = nH

1(GK ,Q/Z),

a ∪ δχ = −∂a ∪ χ ∈ nH
2(GK ,K

×

sp) = H2(GK , µn)

where δ is as in theorem 5.8. In fact, let G = GK/ kerχ and σ be a generator of the cyclic group G. Let
n = |G| and 0 ≤ t < n be such that χ(σ) = t mod n. We have that a ∪ δχ and −∂a ∪ χ are represented
by the inflations of the 2-cocycles f :G×G→ L× and g:G×G→ µn given by

f(σi, σj) =
{
at if i+ j ≥ n
1 otherwise

and g(σi, σj) =
(σi n
√
a

n
√
a

)−j·t
for 0 ≤ i, j < n

and it is easy to check that they differ by the coboundary of the function h:G→ L× given by

h(σi) = ( n
√
a)i·t for 0 ≤ i < n

We apply the above to χ = χb and G = Gal(L/K). Since the cup product − ∪ δχb gives an
isomorphism H0

T (G,L×) ∼= H2
T (G,L×) ⊂ H2(GK ,K

×

sp) (see appendix) we have that

∂a ∪ χb = 0 ⇐⇒ a ∪ δχb = 0 ⇐⇒ a ∈ NL/KL
×

as was to be shown.

What all this has to do with the Hilbert symbol? We now specialise the above discussion to the case

when K is a local field containing µn. Since H2(GK , µn) is the n-torsion of H2(GK ,K
×

sp)
invK= Q/Z, we

have that H2(GK , µn) = 1
nZ/Z and thus we obtain a canonical isomorphism

H2(GK , µn ⊗ µn) �∪
≈ H2(GK , µn)⊗H0(GK , µn)

invK ⊗ id

≈
-

1
nZ

Z
⊗ µn = µn
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which allows us to write the Galois symbol pairing (†) simply as a pairing K× ⊗K× → µn. We claim
that this pairing is precisely the Hilbert symbol. In fact, let ζ ∈ K be a primitive n-th root of 1; given
a, b ∈ K×, the pairing we have just defined takes a⊗ b to

ζn·invK(∂a∪χb) = ζ−n·invK(a∪δχb) = ζ−χb(θK(a))

by the reciprocity theorem 5.8. Here χb is defined via φζ using the same chosen root of unity ζ, so that

the dependency on this choice “cancels.” Now if β = n
√
b by definition of χb we have that

ζ−χb(θK(a)) =

(
θK(a)(β)

β

)−1

= (b, a)−1 = (a, b)

proving the claim. This shows that properties 1–4 of the lemma are consequences of the corresponding
properties of the Galois symbol. The reciprocity is only needed to show the perfectness of the pairing.

Remark 6.1.4 When K has positive characteristic p, one has an exact sequence of GK-modules (the
Artin-Schreier sequence)

0 - Z/p - K+
sp

℘- K+
sp

- 0

where ℘(x) = xp − x. Then it is possible to define a pairing

K+ ×K× → Z/p

taking a ∈ K+ and b ∈ K× to [a, b)
df
= δψa ∪ b ∈ H2(GK ,K

×

sp) where the character ψa ∈ H1(GK ,Z/p) is
defined to be the image of a with respect to the connecting map of the Artin-Schreier sequence.

One shows that for a local field K

[a, b) = θK(b)(α) − α ∈ Z/p where ℘(α) = a

and that this pairing satisfies

1. Bilinearity: [a1 + a2, b) = [a1, b) + [a2, b) and [a, b1b2) = [a, b1) + [a, b2)

2. Steinberg relation: [a,−a) = 0 for all a 6= 0

3. [a, b) = 0 ⇐⇒ b ∈ NL/KL
× where L = K(α) with ℘(α) = a

4. If [a, b) = 0 for all b ∈ K× then a ∈ ℘(K+).

The proofs are mutatis mutandis the same as for the Hilbert symbol; we refer the reader to Serre’s “Local
Fields” for further details.

Lemma 6.1.5 Let p be a prime, q be a power of p and K = Fq((t)). If an element b ∈ K× belongs to
NL/KL

× for every cyclic extension L ⊃ K of degree p then b ∈ (K×)p.

Proof We sketch the proof and refer the reader to Serre’s book for details. For any a ∈ K+ and b ∈ K×

one has Schmid’s formula

[a, b) = TFq/Fp
res

(

a · db
b

)

where db/b = (
∑

n≥n0
ncnt

n−1) · (∑n≥n0
cnt

n)−1 is the logarithmic derivative of b =
∑

n≥n0
cnt

n, and

res denotes the residue, that is, the coefficient of t−1. Schmid’s formula can be proved by an explicit
computation using the above properties of the pairing [−,−).

Now if b ∈ NL/KL
× for every cyclic extension L ⊃ K of degree p then [a, b) = 0 for all a ∈ K+. If

b were not a p-th power then db/b 6= 0, and we would be able to find a such that res
(
a · db

b

)
= c for any

given c ∈ Fq. But then by Schmid’s formula [a, b) = TFq/Fp
(c) = 0 for all c ∈ Fq, contradicting the fact

that the trace is surjective.

6.2 Proof of the Existence Theorem

Now we are ready to prove the existence theorem. First we remark that in the definition of a norm group
NL/KL

× it is indifferent whether we require L ⊃ K to be an abelian Galois extension or not:
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Theorem 6.2.1 (Norm Limitation) Let L ⊃ K be a finite separable extension of local fields and let
E be the maximal abelian extension of K contained in L. Then NE/KE

× = NL/KL
×.

Proof Let M be a finite Galois extension of K that contains L, let G = Gal(M/K) and H = Gal(M/L)
so that E is the fixed field of H · [G : G]. Since the cup product commutes with corestriction, we have a
commutative diagram (check!)

L×

NM/LM×

θM/L

≈
- H

[H : H ]

K×

NM/KM×

NL/K

?
θM/K

≈
- G

[G : G]

can.
?

where the horizontal arrows are isomorphisms by the reciprocity theorem. Therefore θM/K gives an

isomorphism between the cokernels of two vertical arrows and thus [K× : NL/KL
×] =

[
G : H · [G : G]

]
=

|Gal(E/K)|. But we also have an isomorphism θE/K :K×/NE/KE
× ≈ Gal(E/K) and hence both

NE/KE
× and NL/KL

× have the same index in K×. However NE/KE
× ⊃ NL/KL

× since E ⊂ L and
therefore we must have NE/KE

× = NL/KL
×.

Before plunging into the proof of the existence theorem let us make a couple of the preliminary
observations. Let G be any topological group and H ≤ G be a subgroup. If H is open then it is also
closed, since H is the complement of the union of its (open) left cosets different from H . The very same
argument shows that if H is closed and of finite index then H is also open so that for subgroups of finite
index “open” and “closed” are equivalent notions. Moreover in order to show that H is open it is enough
to show that it contains an open subgroup T , for then H will be the union of the left translates of T .
Finally observe that the norm map NL/K :L → K is continuous for all finite extensions L ⊃ K of local
fields since it is given by a product of automorphisms of some finite Galois extension M of K, and these
automorphisms are continuous since they preserve the valuation of M (Highlander’s Philosophy!).

We first show the easy direction of the existence theorem:

Lemma 6.2.2 Let L ⊃ K be a finite extension of local fields. Then NL/KL
× is an open (and closed)

subgroup of finite index of K×. Moreover the kernel of NL/K :L× → K× is compact.

Proof We already know that NL/KL
× has finite index in K× by the reciprocity theorem 2.1. Also,

UK ∩NL/KL
× = NL/KUL (see the formula for the valuation of L in theorem I.3.4), so that we have an

injection UK/NL/KUL →֒ K×/NL/KL
× showing that NL/KUL also has finite index in UK . Since UL is

compact, NL/KUL is compact and hence closed and open in UK (since the latter group is Hausdorff).
Since UK is open in K× we have that NL/KUL is open in K× as well. Therefore NL/KL

× is open too
as it contains the open subgroup NL/KUL. Moreover since NL/K is continuous we have that kerNL/K

is closed. And since it is contained in the compact subgroup UL we conclude that kerNL/K is compact
as well.

We now prove the converse. Let K is a local field and T ⊂ K× be an open subgroup of finite index.
First observe that if T contains a norm group NL/KL

× for some finite abelian extension L ⊃ K then T
itself is a norm group: by the functorial properties of the reciprocity map we have that T = NM/KM

×

where M = LθKT . Also the intersection of two norm groups NL1/KL
×

1 and NL2/KL
×

2 is a norm group,
namely the norm group of the compositum L1 ·L2. Hence the family of norm groups is directed (i.e. the
intersection of any two members of this family contains a third member).

Definition 6.2.3 Let K be a field. Then the universal norm group DK of K is defined to be the
intersection of all norm groups:

DK
df
=

⋂

[K′:K]<∞
NK′/K(K ′×) ⊂ K×

The existence theorem is essentially the statement that for a local field K its universal norm group
DK is trivial. In fact, considering the images of the norm groups in the finite group K×/T and using
the fact that this family is directed, DK = 1 implies that some member of this family must have trivial
image, therefore T contains a norm group as was to be shown.

Hence all that is left to prove is
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Lemma 6.2.4 Let K be a local field. Then DK = 1.

Proof First observe that if L is a finite extension of K then DK ⊂ NL/KDL. To show this let a ∈ DK .
For each finite extension L′ ⊃ L we have that

F (L′)
df
= N−1

L/K(a) ∩NL′/L(L′×) ⊂ L×

is a non-empty compact set: by hypothesis there exists c ∈ NL′/KL
′× such that a = NL′/K(c), hence

NL′/L(c) ∈ F (L′); moreover NL′/L(L′×) is closed and N−1
L/K(a) is compact by the previous lemma.

Clearly F (L′ · L′′) ⊂ F (L′) ∩ F (L′′), hence by compactness (finite intersection property) we have that
⋂

L′ F (L′) 6= ∅, and any element in this intersection belongs to DL and has norm a.

Now we prove that DK is trivial. It is enough to show that DK is divisible since this implies
DK =

⋂

n≥1(K
×)n = 1. Let p be a prime number. Given a ∈ DK we have to show that xp = a has a

solution with x ∈ DK . Assume first that p 6= charK and let ζ be a primitive p-th root of 1. For each
finite extension L ⊃ K(ζ) consider the finite set

E(L)
df
= {b ∈ K× | bp = a with b ∈ NL/KL

×}

Clearly E(L ·L′) ⊂ E(L)∩E(L′). Moreover each E(L) is non-empty: writing a = NL/K(c) with c ∈ DL

(which is possible by the above) then corollary 6.1.3 implies that c = dp for some d ∈ L× and hence
NL/K(d) ∈ E(L). By compactness,

⋂

L E(L) 6= ∅ and any element x in this intersection is in DK and
satisfies xp = a, as required. If p = charK, the proof is similar, but using lemma 6.1.5 instead.

Remark 6.2.5 The lemma together with theorem 2.1 shows that θK :K× → Gab
K is injective and has

dense image. Therefore we have a commutative diagram

0 - UK
- K×

v - Z - 0

0 - Iab
K

θK ≈
?

- Gab
K

θK

?

∩

can.- Gnr
K = Ẑ

inclusion

?

∩

- 0

where Iab
K is the inertia group of Kab ⊃ K.

7 Further applications

We end this chapter with a couple of important applications of the local reciprocity theorem. Here we
assume a few more prerequisites than before.

7.1 The global Kronecker-Weber theorem

As an illustration of how the study of local fields is relevant in addressing global questions, we show how
to derive the global Kronecker-Weber from the local one.

Theorem 7.1.1 (Kronecker-Weber) Every finite abelian extension of Q is contained in a cyclotomic
extension.

Proof Let L be a finite abelian extension of Q. The idea is to find n such that M
df
= L(ζn) has exactly

the same ramification data as Q(ζn), that is, for each prime p ∈ Z the ramification degrees of the prime
ideals of M and Q(ζn) lying above p are the equal. We claim that this forces M = Q(ζn) and therefore
L ⊂ Q(ζn).

In fact, denote by Ip ⊂ Gal(M/Q) the inertia group of a prime ideal of M lying above p (they
are all equal since M is abelian over Q). Consider the subgroup I of Gal(M/Q) generated by all the
Ip. The fixed field M I is unramified over Q, hence by Minkowski’s theorem (see for instance Neukirch’s
book) we have that M I = Q and hence I = Gal(M/Q). On the other hand, the ramification degree of a
prime ideal of Q(ζn) lying above p is the same as the ramification degree of Qp(ζn) over Qp. Factoring
n =

∏

p p
ep , we have that Qp(ζn) is the compositum of the totally ramified extension Qp(ζpep ) ⊃ Qp

and the unramified extension Qp(ζn/pep ) ⊃ Qp (see the proof of the local Kronecker-Weber), hence this
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ramification degree is φ(pep) (see lemma 2.6). Therefore if M and Q(ζn) have the same ramification data
then |Ip| = φ(pep) for all p and

[M : Q] = |I| ≤
∏

p

|Ip| =
∏

p

φ(pep) = φ(n) = [Q(ζn) : Q]

But since M ⊃ Q(ζn), the two fields must be equal, as claimed.

Now we construct n with the above property. For each prime p ∈ Z, choose a prime ideal mp of
L lying above p and denote by Lp the completion of L with respect to this prime (all completions are
isomorphic since L is Galois over Q). By the local Kronecker-Weber, there exists an integer np = pep ·mp

with p ∤ mp such that Lp ⊂ Qp(ζnp). Set n =
∏

p∈S p
ep where S denotes the (finite) set of primes that

ramify in L. Denoting by Mp the completion of M with respect to a prime lying above mp, we have to
check that the ramification degree of Mp ⊃ Qp equals φ(pep), the ramification degree of Qp(ζn) ⊃ Qp.
But since Mp = Lp(ζn) and since Lp ⊂ Qp(ζnp) we have that Mp(ζmp) = Qp(ζn)(ζmp), which has
ramification degree φ(pep ) over Qp. Since Qp(ζmp) ⊃ Qp is unramified we have that Mp(ζmp) ⊃ M is
also unramified by theorem I.5.1 and thus M ⊃ Qp also has ramification degree φ(pep), as was to be
shown.

7.2 Central simple algebras and Brauer group

The final application is to central simple algebras. We recall without proof some basic facts about central
simple algebras, referring the reader to Gille-Szamuely’s book for proofs.

Let K be any field. A central simple algebra A over K is a finite dimensional associative K-
algebra which satisfies the following equivalent conditions:

1. A has no trivial two sided ideals and the centre of A is K;

2. A ∼= Mn(D) for some n and some division algebra D with centre K (here Mn(D) denotes the
ring of n×n matrices with entries in D, and D is uniquely determined by A up to isomorphism);

3. there exists a finite Galois extension L ⊃ K that “splits” A, i.e., A⊗K L ∼= Mn(L) for some n.

We say that two central simple algebras A and B over K are Brauer equivalent if there is an
isomorphism A⊗K Mm(K) ∼= B ⊗K Mn(K) for some m and n. The Brauer group Br(K) of K is the
group consisting of all the (Brauer) equivalence classes [A] of central simple algebras A over K. The
product in Br(K) is induced by the tensor product: [A] · [B] = [A ⊗K B]. One verifies that this is
well-defined, and turns Br(K) into a torsion abelian group. The identity element of Br(K) is [K] and
[A]−1 = [Aop], where Aop is the opposite algebra of A, defined by inverting the order of the multiplication
in A.

By 2 of the above definition, we have that the elements of the Brauer group of K are in 1-1
correspondence with the isomorphism classes of division algebras over K. In other words, Br(K) is a
“directory” of all division algebras over K. One can also view Br(K) as a measure of the arithmetic
complexity of K (i.e., of its absolute Galois group) due to the following important

Theorem 7.2.1 For any field K, one has an isomorphism

Br(K) = H2(GK ,K
×

sp)

Furthermore, if L ⊃ K is an arbitrary field extension, restriction res:H2(GK ,K
×

sp) → H2(GL, L
×

sp) in
cohomology corresponds to restriction Br(K)→ Br(L) of Brauer groups, defined by [A] 7→ [A⊗K L].

The above isomorphism can be described as follows. Let L be a finite Galois extension of K and set
G = Gal(L/K). Given a 2-cocycle f :G×G→ L× representing an element of H2(G,L×) we can build a
central simple algebra Af (the so-called crossed product) which, as a vector space over L, is given by

Af =
⊕

σ∈G

L · eσ

Multiplication on Af is defined by

(aσeσ) · (bτeτ ) = aσσ(bτ )f(σ, τ) · eστ for aσ, bτ ∈ L×, σ, τ ∈ G
One obtains a map H2(G,L×) → Br(K) given by [f ] 7→ [Af ]. Taking the direct limit over all L we
obtain the desired isomorphism.

The “simplest” central simple algebras are the cyclic ones:

Definition 7.2.2 A central simple algebra A over K is cyclic if there exists a cyclic extension L ⊃ K
that splits A (as in definition 3).

Now we are ready to show the main result about central simple algebras over local fields:
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Theorem 7.2.3 Every central simple algebra A over a local field K is cyclic.

Proof Recall that we have a commutative diagram (see theorem 4.3 and corollary 5.6)

Br(L)
invL

≈
- Q/Z

Br(K)

res

6

invK

≈
- Q/Z

[L : K]

6

Hence if [A] has order n in Br(K) then any cyclic extension of degree n will split A, for instance the
unramified extension of degree n.

As we saw, the Brauer group of a local field played a prominent role in the proof of the local
reciprocity theorem. It also plays a central role in the proof of the global reciprocity theorem. We just
state the important

Theorem 7.2.4 (Brauer group of global fields) Let K be a global field. One has an exact sequence

0 - Br(K)

∑

v
resv-

⊕

v

Br(Kv)

∑

v
invKv- Q/Z - 0

Here Kv denotes the completion of K with respect to the valuation v, resv: Br(K) → Br(Kv) and
invKv : Br(Kv) → Q/Z are the usual restriction and invariant maps, and the direct sum runs over all
valuations of K, including the archimedean ones.

The proof of the above theorem is the main step of the proof of the global reciprocity law. In terms
of central simple algebras, it describes the local-global or Haße principle for division algebras: a
division algebra D over a global field K is completely determined by its restrictions D ⊗K Kv to the
local fields Kv. In particular, D is trivial if and only if D ⊗K Kv is trivial for all v.

8 Exercises

1. Show that θQ5(ζ5)/Q5
(2)(ζ5) = ζ3

5 .

2. Let M ⊃ L ⊃ K be finite extensions of local fields with M ⊃ K abelian. Show that the following
diagrams commute:

L×

NM/L(M×)

θM/L

≈
- Gal(M/L)

K×

NM/K(M×)

NL/K

?
θM/K

≈
- Gal(M/K)

?

∩

L×

NM/L(M×)

θM/L

≈
- Gal(M/L)

K×

NM/K(M×)

6

θM/K

≈
- Gal(M/K)

Ver

6

Here the unlabelled maps are the canonical ones and Ver denotes the transfer map (Verlagerung in
German): given finite groups H ≤ G, Ver:Gab → Hab is defined via the restriction map res:Gab =
H−2

T (G,Z)→ Hab = H−2
T (H,Z).

3. Compute the reciprocity map for the cyclotomic extension Q3(ζ18) ⊃ Q3 and draw the lattices of
subfields and corresponding norm groups.

4. Show that every finite abelian group is the Galois group of some extension of Q.
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Appendix

1 Integral Extensions

Definition 1.1 Let S ⊃ R be an extension of commutative rings. An element s ∈ S is integral over R
if it satisfies a monic polynomial with coefficients in R:

sn + rn−1s
n−1 + · · ·+ r0 = 0, ri ∈ R

The extension S ⊃ R is integral if every element of S is integral over R.

Integral extensions are to rings what algebraic extensions are to fields. The next lemma explicits
this relation, showing how to “clear out” the denominators.

Lemma 1.2 Let R be a domain. Then for any element α in the algebraic closure of the field FracR
there is r ∈ R such that rα is integral over R.

Proof Suppose that cnα
n + cn−1α

n−1 + · · ·+ c0 = 0 with ci ∈ R, cn 6= 0. Multiplying by cn−1
n we have

(cnα)n + cn−1(cnα)n−1 + · · ·+ cn−1
n c0 = 0, hence we may take r = cn.

Definition 1.3 A domain R is called normal or integrally closed if every element of FracR which is
integral over R lies in R.

For instance, Z is a normal domain. This follows from the more general fact

Theorem 1.4 Every UFD is normal.

Proof Let A be a UFD and K = FracA. Suppose that an element x/y ∈ K, with x, y ∈ A relatively
prime, is integral over A, and let

(x

y

)n

+ an−1

(x

y

)n−1

+ an−2

(x

y

)n−2

+ · · ·+ a0 = 0, ai ∈ A

be a monic equation for x/y. Multiplying by yn we obtain

xn = −an−1x
n−1y − an−2x

n−2y2 − · · · − a0y
n

and hence x is a multiple of y. But since x and y are relatively prime, we must have that y is a unit in
A and hence x/y ∈ A, as required.

Integral elements have a very useful intrinsic “polynomial-free” characterisation:

Theorem 1.5 (Characterisation of integral elements) Let S ⊃ R be an extension of rings and
α ∈ S. The following are equivalent:

1. α is integral over R.

2. α is an element of an R-algebra A ⊂ S which is finitely generated as an R-module.

Proof Suppose that α is integral over R, root of a monic polynomial in R[x] of degree n. Then A = R[α]
is a finite R-module, generated by 1, α, . . . , αn−1 over R, and α ∈ A. Conversely, suppose that α belongs
to a ring A which is finitely generated as an R-module, say by ωi, 1 ≤ i ≤ n. We use the so-called
determinant trick: for i = 1, . . . , n, we can write

αωi =
∑

1≤j≤n

mijωj , mij ∈ R

In matrix notation, we can rewrite the previous system as (αI − M) · ω = 0, where M = (mij),
ω = (ω1, . . . , ωn)T and I denotes the n × n identity matrix. Since this homogeneous linear system
in ω has a non-trivial solution, det(αI − M) = 0. Therefore α is a root of the monic polynomial
p(x) = det(xI −M) in R[x], i.e., α is integral over R.
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Using the above characterisation we easily obtain

Theorem 1.6 Let S ⊃ R be an extension of rings. The elements of S integral over R form a subring
of S containing R.

Proof Let α, β ∈ S be roots of monic polynomials in R[X ] of degrees m and n, respectively. Then
R[α, β] is a finite R-module generated by αiβj , 0 ≤ i ≤ m−1, 0 ≤ j ≤ n−1. Therefore α+β, αβ ∈ R[α, β]
are integral over R.

The subring of S consisting of all elements which are integral over R is called integral closure or
normalisation of R in S. The name integral closure stems from

Theorem 1.7 (Transitivity of integrality) Let T ⊃ S ⊃ R be extensions of rings. If T is integral
over S and S is integral over R, then T is integral over R. In particular, if R is a domain and K is a
field containing R then the integral closure of R in K is an integrally closed ring.

Proof Let t ∈ T be integral over S with tn + sn−1t
n−1 + · · ·+ s0 = 0, si ∈ S. Since each si is integral

over R, R[s0, . . . , sn−1] is a finite R-module, hence so is A = R[t, s0, . . . , sn−1], and t ∈ A. Thus t is
integral over R.

Theorem 1.8 (Norms and Traces of integral elements) Let R be a domain and L be a finite
separable field extension of K = FracR. Let S be the integral closure of R in L. If R is normal, then
TL/K(s) and NL/K(s) are elements of R for all s ∈ S.

Proof Let n = [L : K] and σ1, . . . , σn:L → Ksp be the K-embeddings of L into Ksp. Since s is the
root of a monic polynomial in R[X ], so are σi(s) for all i. Hence σi(s) are integral over R, and thus so
are the elements NL/K(s) =

∏
σi(s) and TL/K(s) =

∑
σi(s) of K = FracR. Since R is normal, they

must lie in R.

Example 1.9 The sequence of Fibonacci numbers is defined by F0 = 0, F1 = 1, and Fk+2 = Fk+1+Fk

for k ≥ 0. The first terms are thus 0, 1, 1, 2, 3, 5, 8, 13, . . . It is easy to show by induction that

Fk =
αk − βk

α− β , where α =
1 +
√

5

2
and β =

1−
√

5

2

Notice that α and β are integral over Z.

We now prove that if m | n then Fm | Fn. Write n = dm with d ∈ Z. We just perform the division:

Fn

Fm
= α(d−1)m + α(d−2)mβm + · · ·+ αmβ(d−2)m + β(d−1)m

This shows that Fn/Fm ∈ Q is integral over the normal domain Z, hence Fn/Fm ∈ Z and we are done.

Example 1.10 Let d be a square-free integer. Let K = Q(
√
d) and denote by A the integral closure of

Z in K. We have the following explicit description of A:

A = Z + Zω, where ω =

{√
d if d ≡ 2 or d ≡ 3 (mod 4)

1+
√

d
2 if d ≡ 1 (mod 4)

Let us prove the case d ≡ 3 (mod 4); the other ones are similar and are left to the reader. First, it is

clear that Z + Z
√
d ⊂ A. Now let α ∈ A and write α = r+ s

√
d, r, s ∈ Q; we need to show that r, s ∈ Z.

Observe that TK/Q(α) = 2r and TK/Q(α
√
d) = 2ds are integers, hence we may write r = m/2 and

s = n/2d for some m,n ∈ Z. But NK/Q(α) = r2 − ds2 = (m2d− n2)/4d is also an integer. Since d ≡ 3

(mod 4), both m and n must be even, hence r ∈ Z and ds2 ∈ Z. Using the fact that d is square-free, we
conclude that s ∈ Z as well.
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2 Valuations

Definition 2.1 An abelian ordered group (G,+,≤) is an abelian group (G,+) together with a partial
order ≤ such that a ≤ b ⇒ a + g ≤ b + g for all a, b, g ∈ G. Examples of such groups are the additive
groups Z and R with the usual order.

Definition 2.2 Let (G,+,≤) be an ordered group and ∞ be a formal symbol satisfying g +∞ = ∞
and g ≤ ∞ for all g ∈ G∪ {∞}. A valuation v on a field K with values in G is a map v:K → G∪ {∞}
such that

1. v(xy) = v(x) + v(y);

2. v(x+ y) ≥ min{v(x), v(y)};
3. v(x) =∞ ⇐⇒ x = 0.

If v is identically zero on K×, we say that v is trivial. If G is a discrete subgroup of R (for example Z),
we say that v is a discrete valuation. We say that a discrete valuation v is normalised if G = Z and
v is surjective.

Valuations are intimately connected with prime factorisations in UFDs, as in the following

Example 2.3 Let p be a prime number. Given any nonzero rational number r, we may write it as
r = pn · a

b with a, b ∈ Z both not divisible by p. Setting vp(r) = n, we obtain a normalised discrete
valuation on Q.

Similarly let k be any field and let p(x) ∈ k[x] be an irreducible polynomial. Then we may write

any nonzero r(x) ∈ k(x) as r(x) = p(x)n · f(x)
g(x) with f(x), g(x) ∈ k[x] not divisible by p(x). Setting

vp(x)

(
r(x)

)
= n also gives a normalised discrete valuation on k(x).

Let v be a valuation on a field K. Setting

|x|v df
= 2−v(x)

(where 2 denotes your favourite real number bigger than 1 and 2−∞ = 0 by definition) we obtain
analogous “multiplicative” properties

1. |xy|v = |x|v · |y|v;

2. |x+ y|v ≤ max{|x|v, |y|v};
3. |x|v = 0 ⇐⇒ x = 0.

turningK into a normed metric space. The presence of a valuation thus allows us to employ techniques
and ideas from Analysis and Topology. A word of caution: as a consequence of the “strong triangle
inequality” |x + y|v ≤ max{|x|v, |y|v}, some things behave a little differently from the real or complex
world. For instance, one has the super strong triangle inequality

|x|v 6= |y|v ⇒ |x+ y|v = max{|x|v, |y|v}

In fact, using 1 one can easily show that | − y|v = |y|v for all y. Thus if |x|v > |y|v, say, then by 2 one
has |x|v ≤ max{|x+ y|v, | − y|v} ⇒ |x|v ≤ |x + y|v while |x + y|v ≤ |x|v, again by 2, proving the super
strong triangle inequality. In particular amongst |x|v, |y|v and |x−y|v there are always two equal values,
showing that in a discretely valued field all triangles are isosceles!

A concept from Topology that will be quite useful to us is that of a complete metric space. We say
that K is complete with respect to |−|v (or v) if every Cauchy sequence converges: given a sequence
{xn}n≥0 in K such that

∀ǫ > 0 ∃n0 = n0(ǫ) such that n,m ≥ n0 ⇒ |xn − xm|v < ǫ

then limn→∞ xn exists in K, namely there is an element x∞ ∈ K such that

∀ǫ > 0 ∃n0 = n0(ǫ) such that n ≥ n0 ⇒ |xn − x∞|v < ǫ

Definition 2.4 Two valuations v and w on a field K are equivalent if they define the same topology
on K.

More explicitly, we have the following
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Theorem 2.5 (Equivalence of valuations) Two valuations v and w on a field K are equivalent if
and only if there exists c > 0 such that v(x) = c · w(x) for all x ∈ K.

Proof Clearly if v is a multiple of w then they define the same topology on K. Conversely, if v and w
define the same topology then w(x) > 0⇒ v(x) > 0 since both conditions express the fact that xn → 0
when n→∞. We may assume that both valuations are nontrivial and therefore there exists π ∈ K× such

that w(π) > 0. Set c = v(π)
w(π) . Then v(x) = c·w(x) whenever x is a power of π. In general, for an arbitrary

element x ∈ K×, we “approximate” x by a power of π, taking a rational approximation n
m of w(x)

w(π) such

that n
m < w(x)

w(π) ≤ n+1
m where m,n are integers and m > 0. Then m · w(x) > n · w(π) ⇐⇒ w(xm

πn ) > 0

and therefore

v
(xm

πn

)

> 0⇒ v(x) >
n

m
· v(π) =

n

m
·
(
c · w(π)

)
≥ n

n+ 1
·
(
c · w(x)

)

Since we may take n arbitrarily large, we have that v(x) ≥ c · w(x). Replacing x by x−1 we obtain the
opposite inequality v(x) ≤ c · w(x), finishing the proof.

The above proof shows that if w(x) > 0⇒ v(x) > 0 holds for all x ∈ K then the two valuations are
actually equivalent. In other words we have

Lemma 2.6 (Independency of Inequivalent Valuations) Let v and w be inequivalent valuations
on a field K. Then there exists x ∈ K such that v(x) > 0 and w(x) ≤ 0.

Every valuation v on a field K defines a subring

Ov
df
= {x ∈ K | v(x) ≥ 0} = {x ∈ K | |x|v ≤ 1}

called valuation ring of v. It is a local ring with maximal ideal

mv
df
= {x ∈ OK | v(x) > 0} = {x ∈ OK | |x|v < 1}

and unit group
O×

v = {x ∈ OK | v(x) = 0} = {x ∈ OK | |x|v = 1}

Observe that in Ov we have that a | b ⇐⇒ v(a) ≤ v(b).

Theorem 2.7 (Discrete valuation rings) Let R be a domain with field of fractions K = FracR.
Then the following conditions are equivalent

1. R is the valuation ring of a discrete valuation on K.

2. R is a local PID different from K;

3. R is a noetherian normal local ring with Krull dimension 1 (that is, the prime ideals of R are
just (0) and its maximal ideal);

4. R is a UFD with a single irreducible element π up to units.

Any R satisfying the above conditions is called a discrete valuation ring or dvr for short. Any
generator of the maximal ideal of R is called a uniformiser.

Proof To show that 1 ⇒ 2, observe that if v is a normalised valuation on K such that R = Ov then
given any ideal I of R with n = min{v(r) | r ∈ I} then I can be generated by any r ∈ R such that
v(r) = n.

Clearly 2⇒ 4⇒ 3. We also have 4⇒ 1 since we may define a valuation v on K by setting v(a) = n
where a = u · πn, u ∈ R×.

Finally, we show that 3⇒ 2. Let m be the maximal ideal of R. First observe that any nonzero ideal
of R contains some power of m. This follows by noetherian induction: if there is a non-zero ideal I that
does not contain any power of m, then we may choose I maximal with this property. Since R has Krull
dimension 1 and I 6= m and I 6= (0), we have that I is not prime and hence there exist a, b /∈ I such that
ab ∈ I. Then both I + (a) and I + (b) properly contain I, hence I + (a) ⊃ m

i and I + (a) ⊃ m
j for some

i and j and therefore I ⊃
(
I + (a)

)
·
(
I + (b)

)
⊃ m

i+j , a contradiction.
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Next consider the R-module

m
−1 df

= {a ∈ K | a ·m ∈ R for all m ∈ m}

Let a ∈ m be any nonzero element and let i be the smallest positive integer such that (a) ⊃ m
i. If

b ∈ m
i−1 − (a) then b · m ⊂ (a) but b /∈ (a), i.e., b

a ∈ m
−1 but b

a /∈ R, showing that m
−1 6⊂ R. This

implies that m ·m−1 = R. In fact, suppose not. Then m ·m−1 ⊂ m and if a ∈ m
−1−R then a is integral

over R by the determinant trick, hence a ∈ R since R is normal, a contradiction.

Now we show that for any nonzero ideal I we have that I = m
n for a uniquely determined n.

Uniqueness follows immediately from m ·m−1 = R by multiplying two distinct representations by some
power of m

−1. To prove existence, we use noetherian induction: let I be a nonzero ideal which is maximal
among those that cannot be written as a power of m. Then I ⊂ m and hence m

−1 · I is an ideal of R
which properly contains I since multiplying I = m

−1 · I by m and using m · m−1 = R we conclude that
I · m = I and hence I = (0) by Nakayama’s lemma. Therefore m

−1 · I = m
n for some n and hence

I = m
n+1.

By Nakayama’s lemma m 6= m
2. Let π ∈ m− m

2. Since (π) is a power of m, the only possibility is
m = (π). Hence m is principal, and therefore so are all ideals of R. Therefore R 6= K is a local PID.

3 Limits

3.1 Direct Limits

Definition 3.1.1 A partially ordered set (I,≥) is said to be directed if given any pair i, j ∈ I there
exists k ∈ I such that k ≥ i and k ≥ j.
Definition 3.1.2 Let (I,≥) be a directed set. A direct system of rings (or groups, topological spaces,
and so on) is a family of rings (Ri)i∈I (or groups, topological spaces, and so on), together with a family
of morphisms of rings (or of groups, topological spaces, and so on) φij :Ri → Rj , i ≤ j, such that

1. φii = idRi for all i ∈ I;
2. φik = φjk ◦ φij for any triple i ≤ j ≤ k in I.

Given a direct system (Ri, φij), we may consider its direct limit, which consists of a ring (or
group. . . )

R = lim−→
i∈I

Ri

together with morphisms φi:Ri → R which are compatible with the φij in the sense that for all i ≤ j
the diagram

Rj

φj - R

Ri

φij

6
φ i

-

commutes. Intuitively R can be viewed as a “generalised union” of the Ri, with “generalised inclusion
maps” φi:Ri → R (which are not necessarily injective). The direct limit is characterised by the following
universal property, which distinguishes it as the “smallest” ring “containing” all the Ri: given a test ring
T and maps fi:Ri → T which are compatible with the φij , namely fj ◦ φij = fi for all i ≤ j, then there
exists a unique f :R→ T such that fi = f ◦ φi for all i.

We may construct the direct limit by setting

R =

∐

i∈I Ri

∼

the disjoint union of the Ri modulo the equivalence relation ∼ which identifies ri ∈ Ri and rj ∈ Rj if
there exists k ∈ I with k ≥ i and k ≥ i such that φik(ri) = φjk(rj) ∈ Rk. One may perform addition and
multiplication of the classes of ri ∈ Ri and rj ∈ Rj by replacing them by representatives in a common
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ring Rk where k ≥ i and k ≥ j (such k exists since the index set I is directed). It is easy to check that
everything is well-defined. The maps φi:Ri → R are the natural ones.

As a concrete example, let k be a field and R be a k-algebra. Consider the directed set given by the
finite subsets of R, ordered by inclusion. Given a finite set S in this system, let RS be the k-subalgebra
of R generated by the elements of S. If S ⊂ S′, let φSS′ :RS →֒ RS′ be inclusion map. Then one has

R = lim−→
S

RS

3.2 Projective Limits

Let (I,≤) be a directed set. A projective system of groups (or rings, topological spaces, and so on) is
a family of groups (Gi)i∈I and maps φji:Gj → Gi, i ≤ j, such that

1. φii = idGi for all i ∈ I;
2. φki = φji ◦ φkj for any triple i ≤ j ≤ k in I.

The projective limit of the above projective system is a group (ring, topological space, . . . )

G = lim←−
i∈I

Gi

together with “projection” maps φi:G→ Gi such that

G
φj - Gj

Gi

φji

?

φ
i

-

commutes for all i ≤ j. The projective limit is characterised by the following universal property: given
a test group T and morphisms gi:T → Gi such that gi = φji ◦ gj for all i ≤ j, then there is a unique
g:T → G such that gi = φi ◦ g for all i ∈ I.

We can construct G as the subgroup of the product
∏

i∈I Gi consisting of “coherent tuples”, namely

G =
{

(σi) ∈
∏

i∈I

Gi

∣
∣
∣ φji(σj) = σi for all i ≤ j

}

with φi:G→ Gi given the i-th projection map.

Projective limits usually arise by “stacking” quotient maps. As a concrete example, consider the
directed set of finite Galois extensions l of a field k in some separable closure ksp, ordered by inclusion.
Set Gl = Gal(l/k) and let φml:Gm ։ Gl be the natural quotient (or projection) maps for all m ⊃ l ⊃ k
in this directed set. Then

G = lim←−
l

Gl

is just the absolute Galois group Gal(ksp/k) of k, since to give an automorphism σ ∈ Gal(ksp/k) is the
same as to give a family σl ∈ Gal(l/k) of compatible automorphisms for all finite Galois extensions l of
k.

4 Group homology and cohomology

4.1 Definitions

In this subsection, G will denote a finite group.

Definition 4.1.1 A G-module M is just a left Z[G]-module, where Z[G] is the group ring of G with
integer coefficients. In other words, M is an abelian group together with a G-action, that is, a map
G×M →M sending (σ,m) to an element σ ·m ∈M such that, for all m,m′ ∈M , and σ, σ′ ∈ G,
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1. 1 ·m = m

2. σ · (m+m′) = σ ·m+ σ ·m′

3. (σσ′) ·m = σ · (σ′ ·m)

A morphism of G-modules f :M → N is a map of left Z[G]-modules, i.e., a group morphism such
that f(σm) = σf(m) for all σ ∈ G and m ∈M .

If M is a G-module, we write MG for the subgroup of G-fixed points:

MG df
= {m ∈M | σ ·m = m for all σ ∈ G}

Example 4.1.2 Examples of G-modules arising in nature are

1. M = Z, M = Q, or M = Q/Z where G operates trivially: σm = m for all σ ∈ G and m ∈M ;

2. M = Z[G] or M = IG, where G operates by left multiplication. Here IG is the so-called
augmentation ideal of Z[G], defined as the kernel of the augmentation map ǫ: Z[G] → Z
given by

∑

σ∈G

nσσ 7→
∑

σ∈G

nσ

Observe that IG is a free Z-module with basis σ − 1, σ ∈ G, σ 6= 1. If Z is given the trivial
action as above, then the augmentation map is a morphism of G-modules;

3. if L ⊃ K is a finite Galois extension with G = Gal(L/K), then M = L+, M = L× and M = µL

are all examples of G-modules where G operates via the Galois action. Here L+ and L× are the
additive and multiplicative groups of L and µL ⊂ L× is the subgroup of roots of 1 contained in
L.

4. for any G-module M we have a morphism of G-modules NG:M →MG given by

NG(m)
df
=

∑

σ∈G

σm, m ∈M

called norm map. In the previous example, when M = L× the norm map NG coincides with
the usual norm of fields NL/K :L→ K. When M = L+ then it becomes the trace TL/K :L→ K.

From now on, unless otherwise stated the abelian groups M of the example will always be given the
G-actions above. With this convention, for any G-module M we have an isomorphisms of abelian groups

HomZ[G](Z,M) = MG

and

Z⊗Z[G] M =
M

IG ·M
since Z[G]/IG = Z (induced by augmentation).

Now we show how to build new modules from old ones. Let M and N be two G-modules. Then the
set

HomG(M,N)

of all morphisms of G-modules between M and N can be made into a G-module by “conjugation”

(σf)(m)
df
= σf(σ−1m) for f ∈ HomG(M,N) and m ∈M . Similarly, the tensor product of M and N over

Z
M ⊗N

can be made into a G-module by “diagonal action” σ(m ⊗ n)
df
= σ(m) ⊗ σ(n) for m ∈ M and n ∈ N .

The next definition shows how to “lift” modules from subgroups:

Definition 4.1.3 Let H ≤ G be a subgroup and N be an H-module. The induced module from N is
the G-module

IndG
H(N)

df
= HomH(G,N)

of all H-linear functions f :G → N (i.e. f(h · g) = h · f(g) for all h ∈ H and g ∈ G) and where the

G-action is given by (σf)(g) = f(gσ) for all σ, g ∈ G. When H = 1 we simply write IndG(N). A

G-module M is called induced if M = IndG(N) for some abelian group N .
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Another way to “lift” an H-module is via the “base change” Z[G] ⊗Z[H] N , where the G-action is
given by multiplication on the left component (in the tensor product, the left component is viewed as a

right Z[H ]-module via m · σ df
= σ−1 ·m for all σ ∈ H and m ∈ Z[G]). Base change is related to induced

modules via the isomorphism of G-modules

IndG(N) ∼= Z[G]⊗N

given by φ 7→ ∑

g∈G g ⊗ φ(g−1). Here N is any abelian group with trivial G-action. Observe that an

induced G-module M = Z[G] ⊗N is also induced as an H-module: if Hσ1, . . . , Hσn are right cosets of
H then M = Z[H ]⊗N ′ where N ′ =

⊕

1≤i≤n σiN .

Example 4.1.4 Let L ⊃ K be a finite Galois extension with G = Gal(L/K). Then L+ is an induced
G-module. In fact, by the normal basis theorem there exists ω ∈ L such that {σ(ω) | σ ∈ G} is a basis
of L over K. Then we have a G-isomorphism K[G] ∼= L+ given by

∑

σ∈G aσσ 7→
∑

σ∈G aσσ(ω). Since

K[G] = Z[G]⊗K is induced by the above, so is L+.

The following lemma will be useful in arguments involving dimension shifting (which we will see
later).

Lemma 4.1.5 Let M be an arbitrary G-module and denote by M0 the underlying abelian group. Then
there is an injective map of G-modules

M →֒ IndG(M0)

sending m to the function φm:G → M0 given by φm(σ) = σ · m. There is also a surjective map of
G-modules

IndG(M0) ։ M

given by φ 7→∑

σ∈G σφ(σ−1).

Definition 4.1.6 Let M be a G-module and i ≥ 0. The i-th cohomology group of M is defined as

Hi(G,M)
df
= Exti

Z[G](Z,M)

while the i-th homology group of M is defined as

Hi(G,M)
df
= Tor

Z[G]
i (Z,M)

We briefly recall the definitions of Ext and Tor below, but we warn you that except for low degrees
i = 0, 1 the computations of these groups are not done directly from their definitions but rather via their
functorial properties and some “vanishing theorems” that tell you sufficient conditions under which these
groups are trivial.

A G-module I is called injective if the functor HomG(−, I) is exact. A G-module P is called
projective if the functor HomG(P,−). For instance, free Z[G]-modules are projective. It can be shown
that any G-module M can be embedded into an injective module and it can also be written as a quotient
of a projective module. Hence we can inductively construct an injective resolution of M , namely an
exact sequence

0→M → I0 → I1 → I2 → · · ·
where the G-modules Ii are all injective, and similarly one may construct a projective resolution

· · · → P 2 → P 1 → P 0 →M → 0

Now we can define ExtiZ[G](Z,M) as follows. Choose an injective resolution of M as above and apply

the G-fixed point functor HomG(Z,−) = (−)G to it. We obtain a complex

0→MG → (I0)G → (I1)G → (I2)G → · · ·

Then

ExtiZ[G](Z,M)
df
=

ker
(

(Ii)G → (Ii+1)G
)

im
(

(Ii−1)G → (Ii)G
)
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(Here we interpret I−1 = 0). Now an easy but rather tedious computation shows that the groups thus
obtained are independent of the choice of the injective resolution of M . Alternatively, one can choose a
projective resolution of Z

· · · → P 2 → P 1 → P 0 → Z→ 0

and apply the functor HomG(−,M) to it, defining

Exti
Z[G](Z,M)

df
=

ker
(

HomG(P i,M)→ HomG(P i+1,M)
)

im
(

HomG(P i−1,M)→ HomG(P i,M)
)

(Here we interpret P−1 = 0) Again, this is independent of the chosen projective resolution of Z, and it
can be shown that either procedure, via projective resolutions of Z or injective resolutions of M , yield
isomorphic groups.

For Tor
Z[G]
i (Z,M), the procedure is similar, except that Hom is replaced by the tensor product and

the we use projective resolutions for both entries (in the tensor product M ⊗Z[G]N we view M as a right

Z[G]-module via m · σ df
= σ−1 ·m for σ ∈ G and m ∈ M). For instance, if P• → M → 0 is a projective

resolution of M , applying the functor Z⊗Z[G] − = −/IG · − we obtain

Tor
Z[G]
i (Z,M) =

ker
(

Pi/IG · Pi → Pi−1/IG · Pi−1

)

im
(

Pi+1/IG · Pi+1 → Pi/IG · Pi

)

Example 4.1.7 (Cyclic groups) Let G be a cyclic group of order n and let σ be a generator of G.
Then we have a projective resolution of Z

· · · I- Z[G]
N- Z[G]

I- Z[G]
N- Z[G]

I- Z[G]
ǫ- Z - 0

where ǫ is the augmentation map, and I and N denote multiplication by σ − 1 and 1 + σ + · · ·+ σn−1,
respectively. Hence we obtain

Hi(G,M) =







MG if i = 0

kerNG

IG ·M
if i is odd

MG

NG(M)
if i > 0 is even

where NG:M → MG is the norm map and IG is the augmentation ideal of Z[G]. Using the same
projective resolution of Z, for homology we obtain

Hi(G,M) =







M

IG ·M
if i = 0

MG

NG(M)
if i is odd

kerNG

IG ·M
if i > 0 is even

The main functorial property of Tor and Ext, and thus of the homology and cohomology groups,
are their long exact sequences. For any short exact sequence of G-modules

0→ A→ B → C → 0

one has long exact sequences

0 - H0(G,A) = AG - H0(G,B) = BG - H0(G,C) = CG

δ0

- H1(G,A) - H1(G,B) - H1(G,C)

δ1

- H2(G,A) - H2(G,B) - H2(G,C)
δ2

- · · ·
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and

· · · δ3- H2(G,A) - H2(G,B) - H2(G,C)

δ2- H1(G,A) - H1(G,B) - H1(G,C)

δ1- H0(G,A) =
A

IG ·A
- H0(G,B) =

B

IG · B
- H0(G,C) =

C

IG · C
- 0

for cohomology and homology respectively. The maps δi and δi are called connecting morphisms.
The other maps are the natural ones induced by the maps A→ B and B → C.

Think of the short exact sequence as a way to “decompose” B into simpler modules, a submodule
A and a quotient module C. If we know the homology/cohomology of A and C then the long exact
sequence allows us to find out the homology/cohomology of B.

Example 4.1.8 Let ǫ be the augmentation map. From the exact sequence of G-modules

0 - IG - Z[G]
ǫ- Z - 0

and the fact that Z[G] is free (and thus has trivial homology), we conclude that the connecting morphisms
give isomorphisms Hp(G,Z) = Hp−1(G, IG) for all p ≥ 1. In particular, for p = 1 we have that

H1(G,Z) = H0(G, IG) =
IG
I2
G

= Gab

where Gab df
= G/[G : G] is the maximal abelian quotient of G. The isomorphism Gab ≈ IG/I

2
G is given

by σ · [G : G] 7→ (σ − 1) · I2
G.

The main vanishing theorem is Shapiro’s lemma.

Lemma 4.1.9 (Shapiro) Let H ⊂ G be a subgroup and N be an H-module. Then for all i ≥ 0 we
have isomorphisms

Hi(H,N) = Hi(G, IndG
H(N)) and Hi(H,N) = Hi(G, IndG

H(N))

In particular, any induced G-module has trivial cohomology and homology.

Proof (Sketch) For any any G-module M and any H-module N we have a canonical isomorphism

HomG(M, IndG
H N) = HomH(M,N) and the functor IndG

H(−) is exact. From these two properties it

follows that IndG
H(−) preserves injectives, hence given an injective resolution 0 → N → I• of N , we

obtain an injective resolution 0 → IndG
H(N) → IndG

H(I•) of IndG
H(N). The result follows by applying

HomG(Z,−) and using the fact that HomG(Z, IndG
H N) = HomH(Z, N). The proof for homology is

similar.

Corollary 4.1.10 If L ⊃ K is a finite Galois extension with G = Gal(L/K) then H0(G,L+) = K+

and Hp(G,L+) = 0 for p ≥ 1.

Definition 4.1.11 The p-th Tate cohomology group is defined by

Hp
T (G,M) =







Hp(G,M) if p ≥ 1

MG

NGM
if p = 0

kerNG

IG ·M
if p = −1

H−p−1(G,M) if p ≤ −2

The importance of the Tate cohomology groups is that it allows us to splice the long exact sequences
of homology and cohomology into a single very long one. Given a short exact sequence of G-modules

0→ A→ B → C → 0
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we have a commutative diagram with exact rows

H1(G,C) - H0(G,A) - H0(G,B) - H0(G,C) - 0

0 - H0(G,A)

NG

?
- H0(G,B)

NG

?
- H0(G,C)

NG

?
- H1(G,A)

where the vertical arrows are induce by the norm maps. Hence we obtain an exact sequence

· · · → H−1
T (G,A)→ H−1

T (G,B)→ H−1
T (G,C)

→ H0
T (G,A)→ H0

T (G,B)→ H0
T (G,C)

→ H1
T (G,A)→ H1

T (G,B)→ H1
T (G,C)→ · · ·

Example 4.1.12 (Periodicity of Tate cohomology for cyclic groups) If G is cyclic we have that

Hp
T (G,M) =







MG

NGM
if p is even

kerNG

IG ·M
if p is odd

4.2 Explicit Resolutions

Here we show how to define homology and cohomology via an explicit projective resolution of Z:

Definition 4.2.1 The standard resolution of Z is the projective resolution

· · · d3- C̃2
d2- C̃1

d1- C̃0
d0- Z - 0

where C̃p = Z[Gp+1] is the free Z-module with basis (σ0, σ1, . . . , σp) ∈ Gp+1 = G× · · · ×G (p+ 1 times)

with “diagonal” G-action s · (σ0, . . . , σp) = (s · σ0, . . . , s · σp), and where dp+1: C̃p+1 → C̃p is given by

d(σ0, σ1, . . . , σp+1) =
∑

0≤k≤p+1

(−1)k(σ0, σ1, . . . , σk−1, σk+1, . . . , σp+1)

Applying HomG(−,M) to the standard resolution, we obtain a complex of abelian groups

0 - C̃0(G,M)
d̃0

- C̃1(G,M)
d̃1

- C̃2(G,M)
d̃2

- · · ·

where

C̃p(G,M)
df
=

{

functions f̃ :Gp+1 →M
∣
∣
∣
f̃(s · σ0, . . . , s · σp) = s · f̃(σ0, . . . , σp) for all
s ∈ G and (σ0, . . . , σp) ∈ Gp+1

}

and d̃p: C̃p(G,M)→ C̃p+1(G,M) is given by

(d̃pf̃)(σ0, . . . , σp+1) =
∑

0≤k≤p+1

(−1)kf̃(σ0, . . . , σk−1, σk+1, . . . , σp+1)

We have an isomorphism between C̃p(G,M) and the abelian group Cp(G,M) of all functions from Gp

to M : it takes f ∈ C̃p(M) to the function

(σ1, σ2, . . . , σp) 7→ f̃(1, σ1, σ1σ2, σ1σ2σ3, . . . , σ1σ2 · · ·σp)

The above complex is therefore isomorphic to the following “inhomogeneous” one

0 - C0(G,M)
d0

- C1(G,M)
d1

- C2(G,M)
d2

- · · ·
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where dp:Cp(G,M)→ Cp+1(G,M) is given by

(dpf)(σ1, . . . , σp+1) = σ1 · f(σ2, . . . , σp+1)

+
∑

1≤k≤p

(−1)kf(σ1, . . . , σk−1, σk · σk+1, σk+2, . . . , σp+1)

+ (−1)p+1f(σ1, . . . , σp)

Hence we obtain an explicit formula

Hp(G,M) =
kerdp

im dp+1

An element of ker dp is called a p-cocycle while an element of im dp−1 is called a p-coboundary. Let

0→ A→ B → C → 0

be a short exact sequence of G-modules. In terms of cocycles and coboundaries, one has a very explicit
description of the connecting morphism

δ:Hp(G,C)→ Hp+1(G,A)

as follows: given a p-cocycle f :Gp → C representing an element ϕ = [f ] ∈ Hp(G,C), we may lift it

to a function f̂ :Gp → B. Then dpf̂ is in the image of the map Cp+1(G,A) → Cp+1(G,B) induced by

A→ B, so we may view it as a p-cocycle dpf̂ :Gp+1 → A, and δ(ϕ) = [dpf̂ ] ∈ Hp+1(G,A).

Similarly, for homology one obtains an inhomogeneous complex

· · · d3- C2(G,M)
d2- C1(G,M)

d1- C0(G,M) - 0

where Cp(G,M) = Cp(G,M) and dp:Cp(G,M)→ Cp(G,M) is given now by

(dpf)(σ1, . . . , σp−1) =
∑

σ∈G

σ−1 · f(σ, σ1, . . . , σp−1)

+
∑

1≤k≤p−1

(−1)k
∑

σ∈G

f(σ1, . . . , σk−1, σk · σ, σ−1, σk+1, . . . , σp−1)

+ (−1)p+1
∑

σ∈G

f(σ1, . . . , σp−1, σ)

Example 4.2.2 We have that a 1-cocycle is a function f :G→ M such that f(στ) = σf(τ) + f(σ). It
is a coboundary if and only if it has the form f(σ) = σm −m for some m ∈ M . In particular, if the
G-action on M is trivial, then all 1-coboundaries are trivial and a 1-cocycle is just a group morphism:
H1(G,M) = Hom(G,M) in this case.

Example 4.2.3 Let G be a cyclic group of order n generated by σ. Then one has an exact sequence of
G-modules

0→ Z→ Q→ Q/Z→ 0

As we shall see later, Hi(G,Q) = 0 for all i ≥ 1 and hence the connecting maps induce isomorphisms

δ:Hi(G,Q/Z)
≈−→ Hi+1(G,Z) for all i ≥ 0. Then H1(G,Q/Z) = Hom(G,Q/Z) is a group of order n,

generated by a morphism f :G → Q/Z given by f(σ) = 1
n mod Z, and hence H2(G,Z) is also cyclic of

order n, generated by the class of the 2-cocycle

δf(σi, σj) =
{

1 if i+ j ≥ n
0 otherwise

for 0 ≤ i, j < n

which can be computed as described above using the lift f̂ :G→ Q of f given by f̂(σi) = i
n for 0 ≤ i < n.

Now we use the explicit characterisation of cohomology in terms of cocycles to prove a very important
vanishing theorem in Galois cohomology:



Group homology and cohomology 53

Theorem 4.2.4 (Hilbert’s Satz 90) Let L ⊃ K be a finite Galois extension with Galois group G =
Gal(L/K). Then

H1(G,L×) = 0

Proof Let f :G→ L× be a 1-cocycle, and consider the element

m
df
=

∑

σ∈G

f(σ) · σ(a)

where a ∈ L× is chosen so that m 6= 0, which is possible by Dedekind’s independency of characters.
Then for every τ ∈ G we have that

m =
∑

σ∈G

f(τσ) · τσ(a) =
∑

σ∈G

τ
(
f(σ)

)
· f(τ) · τσ(a) = τ(m) · f(τ)

That is, f(τ)−1 = τ(m)/m, showing that f is a coboundary.

4.3 Dimension shifting; Inflation, Restriction, Corestriction

We have seen how changing modules alters the cohomology groups via the long exact sequence. Now we
show how changing the group alters the cohomology. Let f :G′ → G be a group morphism and A be a
G-module. We may view A as a G′-module as well via

σ′ · a df
= f(σ′) · a for a ∈ A, σ′ ∈ G′

We denote this G′-module by f∗A. Clearly AG is a subgroup of (f∗A)G′

, hence the inclusion map
defines a functorial map H0(G,A)→ H0(G′, f∗A). By general properties of derived functors, this map
in degree 0 extends uniquely for all p ≥ 0 to a functorial map Hp(G,A)→ Hp(G′, f∗A), compatible with
the connecting maps. We recall the proof of this fact since it relies on a recurrent technique in group
homology/cohomology known as dimension shifting.

First write an exact sequence of G-modules

0→ A→ I → B → 0

with I injective (cohomologically trivial would do, for instance an induced module). Since Hp(G, I) = 0

for all p > 0 we have that the connecting maps give isomorphisms δ:Hp−1(G,B)
≈−→ Hp(G,A) for all

p > 1. Now, for p > 1, if we already know the map Hp−1(G,−)→ Hp−1(G′, f∗−) in dimension p− 1 we
may define it in dimension p via the composition

Hp(G,A)
δ−1

≈
- Hp−1(G,B) - Hp−1(G′, f∗B)

∂- Hp(G′, f∗A)

where ∂ denotes the connecting map with respect to the exact sequence of G′-modules

0→ f∗A→ f∗I → f∗B → 0

For the “base case” p = 1 the procedure is similar but we need to use the commutative diagram instead

0 - AG - IG - BG - H1(G,A) - 0

0 - (f∗A)G′

?

∩

- (f∗I)G′

?

∩

- (f∗B)G′

?

∩

- H1(G′, f∗A)

?
- · · ·

Similar procedures work for homology and also for Tate cohomology groups. One may consider the
more general case where A′ is a G′-module and g:A→ A′ is a group morphism which is compatible with
f in the sense that g(f(σ′) · a) = σ′ · g(a) for all a ∈ A and σ′ ∈ G′. Then the degree 0 map induced by
g extends to a map Hp

T (G,A)→ Hp
T (G′, A′) for all p.
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Definition 4.3.1 Let H ≤ G be a subgroup and M be a G-module. We define the restriction map

res:Hp
T (G,M)→ Hp

T (H,M)

to be the map induced by the inclusion map MG →֒MH in degree 0 (take f :H →֒ G to be the inclusion
map).

Now suppose that H ⊳ G is normal. We define the inflation

inf:Hp
T (G/H,MH)→ Hp

T (G,M)

to be the map induced by the identity (MH)G/H = MG in degree 0 (take f :G ։ G/H to be the quotient
map and g:MH →֒M to be the inclusion).

For p ≥ 0, the restriction and inflation maps have a very simple description in terms of the standard
resolution. Given a p-cocycle f :Gp → M , res([f ]) is represented by the restriction f :Hp → M of f to
Hp. On the other hand, for a p-cocycle f : (G/H)p →MH we have that inf([f ]) is given by the p-cocycle

f̃ :Gp →M given by the composition

Gp
։ (G/H)p f- MH ⊂ - M

where the unlabelled maps are the natural ones.

Theorem 4.3.2 (Inflation-restriction sequence) Let M be a G-module, and H be a normal subgroup
of G. Suppose that Hp(H,M) = 0 for p = 1, . . . , q − 1. Then

0 - Hq(G/H,MH)
inf- Hq(G,M)

res- Hq(H,M)

is exact.

Proof The result follows easily for p = 1 by direct computation with cocycles. The general case follows
by dimension shifting. Suppose that q ≥ 2 and consider an exact sequence ofG-modules (see lemma 4.1.5)

0→M → IndG(M0)→ N → 0 (∗)

Note that the middle term is induced also as an H-module. Since H1(H,M) = 0 by hypothesis we have
that the sequence of G/H-modules

0→MH →
(
IndG(M0)

)H → NH → 0 (∗∗)

is still exact. The middle term
(
IndG(M0)

)H
= IndG/H(M0) is induced as a G/H-module, and we have

a commutative diagram

0 - Hq(G/H,MH)
inf- Hq(G,M)

res- Hq(H,M)

0 - Hq−1(G/H,NH)

≈
6

inf- Hq−1(G,N)

≈
6

res- Hq−1(H,N)

≈
6

where the vertical arrows are the connecting maps associated to (∗) and (∗∗), which are isomorphisms
since the middle terms of (∗) and (∗∗) are cohomologically trivial. Since Hp(H,N) = Hp+1(H,M) = 0
for p = 1, 2, . . . , q− 2 we have that the bottom row is exact by induction on q. Hence the top row is also
exact.
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Remark 4.3.3 For the expert (but then you shouldn’t be reading this appendix!): the previous result
follows directly from the Hochschild-Serre spectral sequence

Hp(G/H,Hq(H,M))⇒ Hp+q(G,M)

Remark 4.3.4 Using the inflation map one can define cohomology for profinite groups as well. A group
is profinite if it is the projective limit of finite groups. For instance, for any field k, its absolute Galois

group Gk
df
= Gal(ksp/k) is profinite. If G = lim←−

i∈I

Gi, giving the discrete topology to the finite groups

Gi, G is made into a topological space as well, namely the projective limit of the topological spaces Gi.
Since the product of discrete groups is compact by Tychonoff’s theorem and G is a closed subgroup of
∏

i∈I Gi we have that G is compact. Now let M a continuous G-module, namely a G-module for which
the action G×M →M is continuous. This means that for every m ∈M the orbit G ·m is finite. Then
we can define the p-th cohomology group as

Hp(G,M)
df
= lim←−

H

Hp(G/H,MH)

where H runs over all open normal subgroups of G and the transition maps are given by inflation.

Let us go back to the finite case. Let H ≤ G be a subgroup and M be a G-module. We define the
norm map NG/H :MH →MG via

NG/H(m)
df
=

∑

σ∈S

σ(m)

where S is a set of left cosets representatives of G/H . Clearly this does not depend on the choice of
S and the above sum is G-invariant. Now dimension shifting allows us to extend this map to all other
dimensions using an exact sequence of G-modules (see lemma 4.1.5)

0→M → IndG(M0)→ N → 0

and the fact that the middle term is also induced as an H-module.

Definition 4.3.5 The map

cor:Hp
T (H,M)→ Hp

T (G,M)

induced by the norm map NG/H :MH →MG in degree 0 is called corestriction.

Theorem 4.3.6 (Restriction-Corestriction) Let H ≤ G be a subgroup and M be a G-module. Then
the composition

Hp
T (G,M)

res- Hp
T (H,M)

cor- Hp
T (G,M)

equals multiplication by [G : H ]. In particular, Hp
T (G,M) is killed by |G|.

Proof For p = 0 we have that the above composition is

MG

NGM
- MH

NHM

NG/H- MG

NGM

where the first map is the natural one. This composition is clearly multiplication by [G : H ]. The general
case now follows easily by dimension shifting.

Example 4.3.7 Let Gp be any p-Sylow subgroup of G. Then res:Hp(G,M)→ Hp(Gp,M) is injective
on the p-primary components of these groups. In fact, cor ◦ res is multiplication by [G : Gp], which is
prime to p, and thus is an automorphism on these p-primary components.

Example 4.3.8 We have that Hp
T (G,Q) = 0 for all p. In fact, multiplication by |G| is an automorphism

of Q. Since Hp(G,−) is a functor, this implies that multiplication by |G| is also an automorphism of
Hp

T (G,Q) which must then be zero by the theorem.
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4.4 Cup product

Definition 4.4.1 There exists a unique family of maps

Hp
T (G,A) ⊗Hq

T (G,B)
∪- Hp+q

T (G,A⊗B)

(tensor products over Z) called cup products, which are characterised by the following properties:

1. the cup product is a morphism of bifunctors (a.k.a natural transformations) in the pair (A,B);

2. for p = q = 0 the cup product is induced by the natural map AG ⊗BG → (A⊗B)G;

3. the cup product is compatible with connection morphisms: if

0→ A′ → A→ A′′ → 0

is an exact sequence of G-modules and B is a G-module such that

0→ A′ ⊗B → A⊗B → A′′ ⊗B → 0

is exact then the diagram

Hp
T (G,A′′)⊗Hq

T (G,B)
∪- Hp+q

T (G,A′′ ⊗B)

Hp+1
T (G,A′)⊗Hq

T (G,B)

δp ⊗ id

? ∪- Hp+q+1
T (G,A′ ⊗B)

δp+q

?

commutes. On the other hand, if

0→ B′ → B → B′′ → 0

is an exact sequence of G-modules and A is a G-module such that

0→ A⊗B′ → A⊗B → A⊗B′′ → 0

is exact then the diagram

Hp
T (G,A) ⊗Hq

T (G,B′′)
∪- Hp+q

T (G,A⊗B′′)

Hp
T (G,A) ⊗Hq+1

T (G,B′)

id⊗δq

? ∪- Hp+q+1
T (G,A ⊗B′)

(−1)p · δp+q

?

commutes.

Uniqueness of this family is easily proven by dimension shifting, while existence is given by the
explicit formulas in cocycles. First we extend the standard resolution by setting C̃−p = C̃∗

p−1 for p ≥ 1,

where C̃∗
p−1 is the dual of C̃p−1 = Z[Gp], namely the free Z-module with basis given by functions

(σ∗
1 , . . . , σ

∗
p), which send (σ1, . . . , σp) to 1 ∈ Z and every other basis element of C̃p−1 to 0 ∈ Z. The

boundary map d−p: C̃−p → C̃−p−1 is given by

d−p(σ
∗
1 , . . . , σ

∗
p) =

∑

s∈G

∑

0≤i≤q

(−1)i(σ∗
1 , . . . , σ

∗
i , s

∗, σ∗
i+1, . . . , σ

∗
p)

and d0: C̃0 → C̃−1 is given by d0(σ0) =
∑

s∈G(s∗). One may then compute the Tate cohomology groups
by applying HomG(−,M) to this sequence and computing the cohomology of the resulting complex.

Now define φp,q: C̃p+q → C̃p ⊗ C̃q as follows:
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• For p, q ≥ 0
φp,q(σ0, . . . , σp+q) = (σ0, . . . , σp)⊗ (σp, . . . , σp+q)

• For p, q ≥ 1
φ−p,−q(σ

∗
1 , . . . , σ

∗
p+q) = (σ∗

1 , . . . , σ
∗
p)⊗ (σ∗

p+1, . . . , σ
∗
p+q)

• For p ≥ 0, q ≥ 1

φp,−p−q(σ
∗
1 , . . . , σ

∗
q ) =

∑

(σ1, s1, . . . , sp)⊗ (s∗p, . . . , s
∗
1, σ

∗
1 , . . . , σ

∗
q )

φ−p−q,p(σ
∗
1 , . . . , σ

∗
q ) =

∑

(σ∗
1 , . . . , σ

∗
q , s

∗
1, . . . , s

∗
p)⊗ (sp, . . . , s1, σq)

φp+q,−q(σ0, . . . , σp) =
∑

(σ0, . . . , σp, s1, . . . , sq)⊗ (s∗q , . . . , s
∗
1)

φ−q,p+q(σ0, . . . , σp) =
∑

(s∗1, . . . , s
∗
q)⊗ (sq, . . . , s1, σ0, . . . , σp)

where the sum runs over all (s1, . . . , sp) ∈ Gp.

Then a straightforward but long check shows that (ǫ ⊗ ǫ) ◦ φ0,0 = ǫ (here ǫ: C̃0 → Z denotes the
augmentation map) and that

φp,q ◦ d = (d⊗ 1) ◦ φp+1,q + (−1)p(1⊗ d) ◦ φp,q+1

for all p, q ∈ Z (we omitted the indices of the coboundary maps d for notational clarity). Now given

f ∈ HomG(C̃p, A) and g ∈ HomG(C̃q , B) we define f ∪ g ∈ HomG(C̃p+q , A⊗B) by

f ∪ g = (f ⊗ g) ◦ φp,q

and now it is easy to check that if f and g are cocycles, so is f ∪ g, and that its class depends only on
the classes of f and g. A lengthy but easy check shows that the pairing ∪ so defined has the desired
properties of the cup product.

The following lemma can be easily proved by dimension shifting, and is left as an exercise for the
reader since I’m running out of time and energy:

Lemma 4.4.2 Let H ≤ G be a subgroup. We have

1. (a∪b)∪c = a∪(b∪c) in Hp+q+r
T (G,A⊗B⊗C) for a ∈ Hp

T (G,A), b ∈ Hq
T (G,B), c ∈ Hr

T (G,C);

2. a ∪ b = (−1)pq · b∪ a under the isomorphism A⊗B = B ⊗A for a ∈ Hp
T (G,A), b ∈ Hq

T (G,B);

3. res(a ∪ b) = res a ∪ res b ∈ Hp+q
T (H,A⊗B) for a ∈ Hp

T (G,A) and b ∈ Hq
T (G,B);

4. cor
(
a ∪ res b

)
= cora ∪ b for a ∈ Hp(H,A) and b ∈ Hq(G,B).

Our last theorem shows that how the cup product enters in the periodicity of the cohomology of
cyclic groups:

Theorem 4.4.3 Let G be a cyclic group of order n and σ be a generator. Consider the 2-cocycle
f :G×G→ Z given by

f(σi, σj) =
{

1 if i+ j ≥ n
0 otherwise

for 0 ≤ i, j < n

Then for any G-module M the cup product − ∪ [f ] gives an isomorphism

Hp
T (G,M)

∪[f ]

≈
- Hp+2

T (G,M)

Proof We have exact sequences of G-modules

0 - IG - Z[G]
ǫ- Z - 0

0 - Z
µ- Z[G]

σ−1- IG - 0

where ǫ is the augmentation map, µ denotes multiplication by 1+σ+ · · ·+σn−1 and Z[G]→ IG is given

by multiplication by σ − 1. The connecting maps ∂:Hp
T (G,Z)

≈−→ Hp+1
T (G, IG) and δ:Hp+1

T (G, IG)
≈−→

Hp+2
T (G,Z) are isomorphisms and by explicit computations with cocycles we have that [f ] = δ ◦ ∂(φ)

where φ = 1 mod n ∈ H0
T (G,Z) = Z/n.

Since all terms of the above sequences are free Z-modules they stay exact after tensoring with M .
Therefore for any α ∈ Hp

T (G,M) we have that

α ∪ [f ] = α ∪ δ ◦ ∂(φ) = δ ◦ ∂(α ∪ φ) = δ ◦ ∂(α)

since − ∪ φ is the identity, as can be easily checked by dimension shifting for example. Now since

Z[G]⊗M is induced the connecting maps ∂:Hp
T (G,M)

≈−→ Hp+1
T (G,M⊗IG) and δ:Hp+1

T (G,M⊗IG)
≈−→

Hp+2
T (G,M) are isomorphisms, hence so is δ ◦ ∂ and we are done.
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