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Definiton

Let G be a group acting on a set X . A non-empty subset A of X is
said to be paradoxical if there exist disjoint subsets B and C of A,
finite partitions {Bi}ni=1 and {Cj}mj=1 of B and C and elements
s1, ..., sn, t1, ..., tm ∈ G such that A = tni=1siBi = tmj=1tjCj .

Example

Suppose a group G contains a free semigroup SF2 generated by
two elements a and b. Then SF2 ⊂ G is paradoxical with respect
to the action of the group on itself.

Theorem (Tarski ’29)

Let G be a group acting on a set X . A subset A of X is
non-paradoxical if and only if there is a finitely additive, invariant
measure µ : P(X )→ [0,+∞] such that µ(A) = 1.
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Definiton

A group G is said to be amenable if whenever it acts on a set X ,
the set X is non-paradoxical.

Definiton (Rosenblatt ’74)

A group G is said to be supramenable if whenever it acts on a set
X , all subsets of X are non-paradoxical.

Proposition (Rosenblatt ’74)

Groups of sub-exponential growth are supramenable.
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Example (Lamplighter group)

The group (⊕
Z

Z
2Z

)
o Z

is amenable and contains a free semigroup generated by two
elements. Hence it is not supramenable.

This example shows that the class of supramenable groups is not
closed under semi-direct products. It is unknown if the direct
product of two supramenable groups is still supramenable.
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Definiton (Exel ’94 + McClanahan ’95)

Let X be a topological space and {Dg}g∈G be a family of open
subsets of X . A partial action of a group G on X is a map

θ : G → pHomeo(X )

g 7→ θg : Dg−1 → Dg

such that:

1) θe = IdX ;
2) For all g , h ∈ G and x ∈ Dg−1 , if θg (x) ∈ Dh−1 , then
x ∈ D(hg)−1 and θh ◦ θg (x) = θhg (x).

Example

Let θ : G → Homeo(X ) be a (global) action of a group G on a
topological space X . Given D ⊂ X an open set, define, for all
g ∈ G , Dg := D ∩ θg (D). Then one can check that the restrictions
of the maps θg to the sets Dg give rise to a partial action of G on
D.
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Definiton

Let

θ : G → pHomeo(X )

g 7→ θg : Dg−1 → Dg

be a partial action of a group G on a topological space X . We say
a measure ν on X is invariant if for all E ∈ B(X ) and g ∈ G , we
have that

ν(θg (E ∩ Dg−1)) = ν(E ∩ Dg−1).

It is well known that a group is amenable if and only if whenever it
acts on a compact Hausdorff space, then the space admits an
invariant probability measure. For supramenable groups we have
the following:
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Proposition

A group is supramenable if and only if whenever it partially acts on
a compact Hausdorff space, then the space admits an invariant
probability measure.

Proof.

(⇐) If G is a non-supramenable group, then it has a subset A
which is paradoxical with respect to the action of the group on
itself. Let j : G → βG be the imbedding of G on its
beta-compactification. Consider the partial action obtained by
restricting the canonical action of G on βG to j(A). Then this
partial action does not admit an invariant probability measure.
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Definiton (Exel ’94 + McClanahan ’95)

Let A be a C∗-algebra and {Ig}g∈G be a family of ideals of A. A
partial action of a group G on A is a map

θ : G → pIso(A)

g 7→ θg : Ig−1 → Ig

such that:
1) θe = IdA;
2) For all g , h ∈ G , x ∈ Ig−1 , if θg (x) ∈ Ih−1 , then x ∈ I(hg)−1 and
θh ◦ θg (x) = θhg (x).

Given a partial action θ of a group G on a C∗-algebra A, one
associates to it another C∗-algebra, called partial crossed product
and denoted by A oθ G . It contains the C∗-algebra A, and the data
of the partial action. Its construction is a generalization of the
usual crossed product.
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Proposition

Let θ be a partial action of a group G on a compact Hausdorff
space X . Then X admits an invariant probability measure if and
only if C (X ) oθ G has a tracial state.

Theorem

Let θ be a partial action of a supramenable group G on a unital
C∗-algebra A which has a tracial state. Then A oθ G has a tracial
state.
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It is well known that if τ is a positive functional defined on an ideal
of a C∗-algebra, then it has a unique extension, with same norm,
to the whole C∗-algebra. It is a straightforward computation to
check that if τ is a trace, then the extension will also be a trace.

Lemma

Let I be an ideal of a C∗-algebra A and τ a trace on I . Then there
exists a unique extension of τ to a trace τ ′ on A satisfying
‖τ‖ = ‖τ ′‖.

Lemma

Let A be a unital C∗-algebra which has a tracial state and τ be an
extreme point of T (A), the set of tracial states of A. Then, for
every ideal I of A, ‖τ |I‖ is either 0 or 1.
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Theorem

Let θ be a partial action of a supramenable group G on a unital
C∗-algebra A which has a tracial state. Then A oθ G has a tracial
state.

Proof.

We would like to have some ”invariant” tracial state σ on A.
Invariant in the sense that σ(θg (a)) = σ(a) for all g ∈ G , a ∈ Ig−1 .
If such a tracial state exists, then, by using the canonical
conditional expectation Φ : A oθ G → A, we get that σ ◦ Φ is a
tracial state on A oθ G .
In order to produce σ, we start with some tracial state τ which is
an extreme point of T (A). For each g ∈ G , τ ◦ θg−1 is a trace on
Ig . Use the lemma to extend it to a trace τg defined on all of A.
For each a ∈ A, let â ∈ `∞(G ) be defined by â(g) := τg (a), g ∈ G .
Let Y := ‖g ∈ G : ‖τ |Ig ‖ = 1‖. Use Tarski’s Theorem to get an
invariant, finitely additive measure on G such that µ(Y ) = 1.
Then σ(a) :=

∫
G âdµ is the desired invariant tracial state.
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Definiton

We say a partial action

θ : G → pHomeo(X )

g 7→ θg : Dg−1 → Dg

on a compact Hausdorff space X , such that each Dg is clopen, is
amenable if there exists a net (mi )i∈I of continuous maps
mi : X → Prob(G ) such that:
(1) For every x ∈ X and i ∈ I , supp(mx

i ) ⊂ {g ∈ G : x ∈ Dg};
(2) For every g ∈ G , supx∈Dg−1

‖g .mx
i −mg .x

i ‖1 → 0.

Proposition

A partial action on a compact Hausdorff space, with clopen
domains, is amenable if and only if the groupoid of the partial
action is amenable, if and only if the associated Fell bundle has the
approximation property.
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Proposition (Kellerhals-Monod-Rørdam ’13 + Exel-Laca-Quigg ’02
+ Giordano-Sierakowski ’14)

Let G be a countable, amenable and non-supramenable group.
Then G admits a free, minimal, amenable and purely infinite
partial action on the Cantor set K , with compact-open domains.
The associated partial crossed product C (K ) o G of any such
partial action is a simple, purely infinite and nuclear C∗-algebra.
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