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In mathematical terminology the word amoeba is
a recent addition.1 It was introduced by I. M.
Gelfand, M. M. Kapranov, and A. V. Zelevinsky in
their book [2] in 1994. A mathematical amoeba
falls short of similarity to its biological prototype.
In the simplest case, it is a region in R2 that may
pretend to be a picture of an amoeba: a body with
several holes (vacuoles) and straight narrowing
tentacles (pseudopods) going to infinity.

A planar amoeba is the image of the zero locus
of a polynomial in two variables under the map
Log : (C � 0)2 → R2 : (z,w ) �→ (log |z|, log |w|) . The
zero locus of a polynomial in two variables is called
a plane complex algebraic curve. This is a surface
in the 4-space C2 defined by the equation
f (z,w ) = 0, where f is a polynomial 

∑
cpqzpwq

with complex coefficients cpq. The minimal convex
polygon ∆ that contains all points (p, q) ∈ R2 cor-
responding to nonzero coefficients of the equation
is called the Newton polygon of f. It represents the
geometry of the equation, and, as we will see, its
geometry is closely related to the geometry of the
corresponding complex curve C ⊂ C2 and its
amoeba A⊂ R2.

An amoeba reaches infinity by several tenta-
cles. Each tentacle accommodates a ray and narrows
exponentially fast towards it. Thus there is only one
ray in a tentacle. The ray is orthogonal to a side of
the Newton polygon and directed along an out-
ward normal of the side. For each side of ∆ there
is at least one tentacle associated to it. The maxi-
mal number of such tentacles is a sort of lattice
length of the side: the number of pieces into which
the side is divided by integer lattice points (i.e.,
points with integer coordinates).

Each connected component of an amoeba’s com-
plement R2 �A is convex. Besides components
lying between tentacles, there can be bounded com-
ponents. The number of bounded components is
at most the number of interior integer lattice points
of ∆, and hence the total number of components
of R2 �A is at most the number of all integer lat-
tice points of ∆. Each component corresponds to
some integer lattice point of ∆.

To establish this correspondence, take a point
in a component of R2 �A and consider its preim-
age under the map Log. The preimage is a torus and
consists of points whose complex coordinates have
fixed absolute values but varying arguments. On
the torus there are circles: meridians, along which
z is fixed, and parallels, along which w is fixed. Con-
sider a meridian, and call the disk it bounds D. Let
us count the intersections, with multiplicities, be-
tween D and the complex curve C (so this is the
homological intersection number D ◦ C or, if you
like, the linking number lk(m,C)). Denote the in-
tersection number by q. In the same way, consider
a parallel and the disk it bounds, count (with mul-
tiplicities) the intersections of the disk with C , and
denote the intersection number by p. The point
(p, q) ∈ R2 belongs to ∆ and corresponds to the
component of R2 �A we started with. (The num-
bers p and q are independent of the choice of
meridian or parallel and depend only on the con-
nected component of R2 �A.) Different compo-
nents of R2 �A give rise to different integer lat-
tice points of ∆. It may happen that some integer
lattice points of ∆ do not correspond to any com-
ponent. Only vertices of ∆ necessarily correspond
to components. Any collection of integer lattice
points of ∆ that includes all vertices is realizable
by the amoeba of an appropriate algebraic curve
with this Newton polygon ∆.

Although a planar amoeba is not bounded, its
area is finite. Moreover,

Area(A) ≤ π2Area(∆).

Complex curves whose amoebas have the extremal
area are very special. In particular, R2 �A has the
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1I was told that in mathematical logic amoebas have been
known for more than twenty years. However, they belong
to an entirely different class of mathematical microbes and
have never bitten me, so I cannot tell you about them.
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maximal number of components. A mapping
C2 → C2 : (z,w ) �→ (az, bw ) with appropriate
a, b ∈ C makes such a curve real, i.e., defined by a
polynomial equation with real coefficients. The
geometry of the real part of this curve is also very
special. Real algebraic curves of this kind were dis-
covered by A. Harnack in 1876 when he constructed
real algebraic plane projective curves with the max-
imal number of components for each degree. Only
one component of a Harnack curve meets the co-
ordinate axes (including the line at infinity), and the
intersections with the axes lie on disjoint arcs of
this component. Consideration of amoebas allowed
G. Mikhalkin to prove that any real curve with these
properties must be topologically isotopic to a Har-
nack curve.

One of the main analytic tools used in the study
of amoebas is the remarkable Ronkin function
Nf : R2 → R . For a polynomial f, it is defined by

Nf (x, y)

=
∫

Log−1(x,y)
log |f (z,w )|d z

2πi|z|d
w

2πi|w| .

If f is a monomial azpwq , then Nf is a linear func-
tion, Nf (x, y) = px + qy + log |a| , with gradient
(p, q). For a general f, the Ronkin function is con-
vex. On each component of R2 �A, the function
Nf behaves like the Ronkin function of a monomial:
it is linear, and its gradient is the corresponding
integer point of ∆. The maximum of these linear
functions is a piecewise linear convex function.
The set where it is not differentiable is a union of
segments and rays that are contained in the amoeba
and that constitute its deformation retract. This set
is called the spine of A.

Logarithmic coordinates and amoebas disclose
a piecewise linear stream in the nature of alge-
braic geometry. There is a nonarchimedian ver-
sion of amoebas that brings these ideas to algebraic
varieties over other fields. There is also a similar
theory in higher dimensions. The notion of an al-
gebraic curve is replaced by the notion of an
algebraic variety, and the Newton polygon becomes
a Newton polytope. Amoebas provide a new way
to visualize complex algebraic varieties. Looking at

an amoeba, one can see handles of complex curves
and cycles in high-dimensional varieties, watch de-
generations, and build more complicated varieties
from simple ones.

The theory of amoebas is a fresh and beautiful
field of research, still quite accessible to a new-
comer, where exciting discoveries are still ahead.
The impressive results described above were ob-
tained during a short period of about eight years
by various people. The definition and initial fun-
damental observations are due to I. M. Gelfand,
M. M. Kapranov, and A. V. Zelevinsky. Relations be-
tween components of R2 �A and integer lattice
points of ∆ were discovered by M. Forsberg,
M. Passare, and A. Tsikh. The spine of an amoeba,
the Ronkin function, and the estimate of the area
are due to H. Rullgård and M. Passare. Homologi-
cal interpretations and relations to real algebraic
geometry are due to G. Mikhalkin. I enjoyed the
feast. About twenty years ago I found a way to
construct real algebraic curves by sort of gluing
curves to each other. I heard that this gluing and
the use of logarithmic coordinates in its descrip-
tion, after being replanted to the complex soil, mo-
tivated the introduction of amoebas. A version of
the gluing is used to glue amoebas.
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This is the inaugural installment of the “WHAT
IS...?” column, which carries short (one- or two-
page), nontechnical articles aimed at graduate
students. Each article focuses on a single math-
ematical object, rather than a whole theory. Com-
ments may be sent to notices-whatis@ams.org.
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