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Buildings were introduced by Jacques Tits to pro-
vide a geometric framework for understanding 
certain classes of groups. The definition evolved
gradually during the 1950s and 1960s and reached
a mature form about 1965. My treatment will be
based on Tits’s 1965 definition, in which a build-
ing is a simplicial complex with certain properties.
It is possible to give a more modern answer to
“What is a building?”, which is equivalent but looks
very different; see [2].

Buildings are made up of apartments, also called
thin buildings or Coxeter complexes; these corre-
spond to Coxeter groups. A Coxeter group is a
group generated by elements of order 2, subject to
relations that give the orders of the pairwise prod-
ucts of the generators. The simplest example is the
dihedral groupD2m of order 2m , with presentation

D2m =
〈
s, t | s2 = t2 = (st)m = 1

〉
.

The infinite dihedral group

D∞ =
〈
s, t | s2 = t2 = 1

〉

is also a Coxeter group; there is no relation for the
product st because it has infinite order. Readers
who have studied Lie theory have seen Weyl groups,
which are the classical examples of Coxeter groups.
The symmetric group S4 on four letters, for in-
stance, is the Weyl group of type A3, with presen-
tation

S4 =
〈
s, t, u | s2 = t2 = u2

= (st)3 = (tu)3 = (su)2 = 1
〉
.

Every finite Coxeter group can be realized in a
canonical way as a group of orthogonal transfor-
mations of Euclidean space, with the generators of
order 2 acting as reflections with respect to

hyperplanes. Thus D2m acts on the plane, with s
and t acting as reflections through lines that meet
at an angle ofπ/m. And S4 admits a reflection rep-
resentation on 3-space, obtained by starting with
the obvious action of S4 on R4 and restricting to
the subspace x1 + x2 + x3 + x4 = 0. More geometri-
cally, we get this action by viewing S4 as the group
of symmetries of a regular tetrahedron.

Given a finite Coxeter group W and its reflection
representation on Euclidean space, consider the set
of hyperplanes whose reflections belong to W . If
we cut the unit sphere by these hyperplanes, we
get a cell decomposition of the sphere. The cells
turn out to be (spherical) simplices, and we obtain
a simplicial complex Σ = Σ(W ) triangulating the
sphere. This is the Coxeter complex associated
with W .

For D2m acting on the plane, Σ is a circle decom-
posed into 2m arcs. For the action of S4 on 3-space,
Σ is the triangulated 2-sphere shown in Figure 1.
There are six reflecting hyperplanes, which cut the
sphere into twenty-four triangular regions.  Combi-
natorially, Σ is the barycentric subdivision of the
boundary of a tetrahedron, as indicated in the 
picture. (One face of an inscribed tetrahedron is 
visible.) The vertex labels will be explained below. 

A similar but more complicated construction
yields a Coxeter complex associated with an 
arbitrary Coxeter group W . For example, Σ(D∞) is
a triangulated line, with the generators s and t
acting as affine reflections with respect to the 
endpoints of an edge.

In general, a simplicial complex Σ is said to be
a Coxeter complex if it is isomorphic to Σ(W ) for
some Coxeter groupW . Such complexes are glued
together to make buildings. Here is the canonical
example of a building: Let k be a field and let
∆ = ∆(kn) be the abstract simplicial complex whose
vertices are the nonzero proper subspaces of the
vector space kn and whose simplices are the chains

V1 < V2 < · · · < Vr
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of such subspaces. Every simplex σ is contained
in a subcomplex, called an apartment, which is
isomorphic to the Coxeter complex associated with
the symmetric group on n letters. To find such an
apartment, choose a basis e1, e2, . . . , en of kn such
that every subspace Vi that occurs in σ is spanned
by some subset of the basis vectors. We then get
an apartment containing σ by taking all simplices
whose vertices are spanned by subsets of the basis
vectors.

Figure 1 shows an apartment for the case n = 4.
The labels on the vertices indicate which basis vec-
tors span the corresponding subspace. Thus the ver-
tex labeled 2 is the line spanned by e2 , the vertex
labeled 12 is the plane spanned by e1 and e2 , and
the vertex labeled 123 is the 3-dimensional space
spanned by e1, e2, and e3 . These three subspaces
form a chain, so they span a 2-simplex in ∆.

For a second example of a building, take any sim-
plicial tree with no endpoints (i.e., every vertex is
incident to at least two edges). Any subcomplex iso-
morphic to a triangulated line is an apartment,
isomorphic to the Coxeter complex associated with
the infinite dihedral group.

With these two examples at hand, we are ready
to give the official axiomatic definition. The reader
is warned in advance that it is not easy to get a feel
for the axioms without seeing them used to prove
a few things.

A building is a simplicial complex that can be ex-
pressed as the union of subcomplexes Σ , called
apartments, satisfying the following axioms:

(B0) Each apartment is a Coxeter complex.
(B1) Any two simplices are contained in an

apartment.
(B2) Given two simplices σ,τ and two 

apartments Σ,Σ′ containing them, there

is an isomorphism Σ→ Σ′ fixing σ and τ
pointwise.

We allow σ and τ to be empty in (B2), so any two
apartments are isomorphic.

It is straightforward to verify that trees without
endpoints are in fact buildings. Checking the axioms
in our first example, however, is more challenging;
see [1, IV.2, Exercise 2] for an outline of one way to
do this, based on the Jordan-Hölder theorem.

I said at the beginning that buildings arose from
connections between geometry and group theory.
“Geometry” here refers to incidence geometry: pro-
jective geometry, polar geometry,…. For example,
the building∆(kn) , which can be viewed as a simpli-
cial encoding of (n− 1)-dimensional projective space,
is closely related to the projective general linear
group PGLn(k). The fundamental theorem of pro-
jective geometry is a precise result in this direction.
One of the great achievements of Tits is a vast 
generalization of this result, proved in [3], which
classifies thick, irreducible, spherical buildings of
dimension at least 2. Roughly speaking, they are all
associated with simple algebraic or classical groups.
[A building is thick if every simplex of codimension 1
is a face of at least three maximal simplices. It is 
irreducible if it cannot be expressed as the simplicial
join of lower-dimensional buildings. And it is 
spherical if the apartments are finite complexes, 
and hence triangulated spheres.]

In this essay I have given an old-fashioned an-
swer to the question “What is a building?”, with
hardly any hint as to what has happened since
1965. Lest the reader get the wrong impression, let
me close by saying that buildings and their appli-
cations continue to be an active area of research.
For one thing, connections between buildings,
group theory, and geometry are still of great in-
terest. Kac-Moody theory has been one catalyst
here. Secondly, buildings arise in conjunction with
a variety of other areas of mathematics. Indeed, a
search of the recent literature reveals papers about
random walks and potential theory on buildings,
harmonic maps into buildings, buildings associated
with manifolds of nonpositive curvature,…. All in-
dications are that buildings will continue to be a
rich and fertile source of mathematical work.
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Figure 1. The Coxeter complex of type A3 .

Comments and suggestions may be sent to 
whatis-notices@ams.org.


