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Motivation. Algebraic varieties, which are zero sets
of polynomial equations, appear in geometry, 
in number theory, and in analysis. For example, 
Fermat’s Last Theorem studies rational solutions
of a polynomial equation. The Weierstrass ℘-
function and its derivative satisfy a cubic polyno-
mial equation. The geometry of these varieties
gives important information on the related 
problems in number theory or analysis.

In a variety the smooth locus is dense, but there
can be singularities, such as a node, a cusp on an
algebraic curve, a “self-intersection” on a surface,
a quotient singularity, and much more complicated
forms. Often singularities make it difficult to carry
out proofs, to analyze properties of the problem
described by the variety, to compute integrals, and
so on.

Therefore it is natural to ask: Is it possible to
“desingularize” a given algebraic variety, to replace
it in a reasonable way by a nonsingular variety?

This question was studied and solved success-
fully for curves and for algebraic surfaces. Oscar
Zariski was one of the main contributors, and he
stimulated many researchers in this problem. We
should pay a tribute to him!

Examples. a) A typical example: let C be the plane
curve given by the equation X3 = Y2 . At
(x = 0, y = 0) this curve has a singularity, a cusp. We
map affine space of dimension one by u �→ (u2, u3)
onto C ; this is a resolution of singularities of the
singular curve C .

b) Consider the plane curve given by the equa-
tion X4 + Y4 = 1, the Fermat quartic. Fermat’s Last
Theorem tells us (as Fermat proved himself in this
special case) that there are no rational solutions
(x, y) ∈ Q×Q to this equation with xy �= 0.

c) Consider the plane curve, the Bernoulli 
lemniscate, given by the equation (X2 + Y2)2

= X2 − Y2. In this case there are infinitely many 
rational solutions. One might have difficulties 
finding them without analyzing the geometry of 
the related projective curve.

d) Consider a nonsingular variety V , e.g. affine
space Cn, and consider a finite group G acting on
it. In general the quotient space has singularities,
the so-called quotient singularities. For example, let
V = C2, and let G be the cyclic group of order two,
generated by reflection in the origin. In this case
G\V is a surface, and the only singularity is the
image of the point (0,0).

Modifications: Resolution of Singularities. We
make more precise what we mean by “changing a
variety into a nonsingular one”.

Definition. A morphism f : W → V of algebraic 
varieties is called a modification if it is birational 
and proper.

“Birational” means that f is an isomorphism outside
lower-dimensional subvarieties, i.e., an isomor-
phism almost everywhere. “Proper” means that f
is a closed map. The reader may have encountered
analogous terminology or related concepts such
as a blowing-up, a σ-process, or a Cremona trans-
formation.
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The map in example (a) is a modification. The
quotient map V → G\V is not a modification if the
action of G on V is nontrivial.

Definition. A morphism f : W → V is called a res-
olution of singularities of  V if  f is a modification
and W is a nonsingular variety.

Hironaka’s Theorem. In 1964 Hironaka published
his famous theorem on the resolution of 
singularities [3].

Theorem. Let k be an algebraically closed field of
characteristic zero, and let V be an algebraic vari-
ety over k . There exists a modification f : W → V ,
where W is nonsingular.

This useful theorem was a great breakthrough
and admitted many applications. Hironaka’s diffi-
cult construction has been carefully analyzed, sim-
plified somewhat, and made canonical (see [2] for
a survey). Moreover, in the theorem by Hironaka,
we can choose f in such a way that it is an iso-
morphism exactly on the nonsingular part of V ; 
this extra information has technical advantages.

Hironaka’s proof, even in later versions, is dif-
ficult. Here is a challenge: try to resolve a quotient
singularity, as in example (d).

Open Problem. Up to now we have not been able
to prove the analogous theorem in positive char-
acteristic (except for low-dimensional cases). There
seems to be a need for a completely different ap-
proach [1]!

Alterations, A. J. de Jong, 1996.

Definition. A morphism f : W → V of algebraic 
varieties is called an alteration if it is surjective,
generically finite, and proper.

Such a morphism is a closed map which is “almost
everywhere” finite-to-one.

Theorem. Let K be a field, and let V be an algebraic
variety over K. There exists an alteration f : W → V ,
where W is a nonsingular variety.

From this theorem we can easily reprove Hi-
ronaka’s theorem in a weak form (Bogomolov and
Pantev, Abramovich and de Jong); for references
and a discussion see the first chapter in [2].

Remark. On the one hand, every modification 
is an alteration. On the other hand, an alteration
f : W → V can be factored, using the Stein factor-
ization, as W → S → V , where g : W → S is a 
modification and h : S → V is a finite morphism. 
Any alteration (with V normal) where the corre-
sponding h is not the identity is not a modification.
The quotient map C2 → G\C2 in (d) is an alteration
but not a modification.

A morphism of projective varieties is a modifi-
cation if and only if it is birational (if and only if
it is an isomorphism almost everywhere); it is an
alteration if it is finite almost everywhere.

Sketch of the Proof of de Jong. In contrast with
Hironaka’s theorem, where the proof is difficult, the
proof by de Jong is very clear. Basically (up to some
technical difficulties) one replaces a (singular) va-
riety V by a “fibration” V → B , where all fibers are
curves. By induction on the dimension, we assume
the theorem to be proven for B: we pull back the
fibration V → B via an alteration B′ → B, with B′
nonsingular, to a fibration V ′ → B′ over a nonsin-
gular base. Resolution of singularities of curves is
well known, and this can be made effective in the
family V ′ → B′ .

Comparison: Modifications ↔ Alterations. In the
proof by Hironaka, from the beginning we focus on
singularities present. Explicit (algebraic) methods
make singularities at one point “less singular” and,
as Hironaka proves, do not make a “global invari-
ant” worse. A complicated induction process gives
the desired (deep, very useful) result.

In the method by de Jong, in the beginning of the
proof singularities are completely ignored, and 
perhaps even more singularities are created. Explicit
resolution of singularities is then carried out in the
last, not very difficult, step. This geometric approach
lends itself to many geometric situations. Instead 
of the algebraic, algorithmic approach by Hironaka,
de Jong proposes a geometric method, which also
works in relative situations (singularities in a family)
and in positive characteristic. This allows several
applications not possible in Hironaka’s theory.
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