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The notion of arbitrage is crucial in the modern the-
ory of finance. It is the cornerstone of the option
pricing theory due to F. Black and M. Scholes (pub-
lished in 1973, Nobel Prize in Economics 1997).

The underlying idea is best explained by telling
a little joke. A finance professor and a normal 
person go on a walk, and the normal person sees
a €100 bill lying on the street. When the normal per-
son wants to pick it up, the finance professor says:
“Don’t try to do that. It is absolutely impossible that
there is a €100 bill lying on the street. Indeed, if it
were lying on the street, somebody else would al-
ready have picked it up.”

How about financial markets? There it is already
much more reasonable to assume that there are no
arbitrage possibilities, i.e., that there are no €100
bills lying around waiting to be picked up. Let us
illustrate this with an easy example.

Consider the trading of dollars versus euros which
takes place simultaneously at two exchanges, say in
New York and Frankfurt. Assume for simplicity that
in New York the $/€ rate is 1:1. Then it is quite ob-
vious that in Frankfurt the exchange rate (at the
same moment of time) also is 1:1. Let us have a
closer look why this is indeed the case. Suppose to
the contrary that you can buy in Frankfurt a dollar
for €0.999. Then, indeed, the so-called “arbitrageurs”
(these are people with two telephones in their hands

and three screens in front of them) would quickly
act to buy dollars in Frankfurt and simultaneously
sell the same amount of dollars in New York, keep-
ing the margin in their (or their bank’s) pocket. Note
that there is no normalizing factor in front of the
exchanged amount and the arbitrageur would try
to do this on a scale as large as possible.

It is rather obvious that in the above-described
situation the market cannot be in equilibrium. A 
moment’s reflection reveals that the market forces
triggered by the arbitrageurs will make the dollar
rise in Frankfurt and fall in New York. The arbitrage
possibility will disappear when the two prices 
become equal. Of course “equality” here is to be 
understood as an approximate identity where, even
for arbitrageurs with very low transaction costs, 
the above scheme is not profitable any more.

This brings us to a first, informal and intuitive,
definition of arbitrage: an arbitrage opportunity 
is the possibility to make a profit in a financial 
market without risk and without net investment of
capital. The principle of no arbitrage states that a
mathematical model of a financial market should
not allow for arbitrage possibilities.

To apply this principle to less trivial cases, we con-
sider a—still extremely simple—mathematical model
of a financial market: there are two assets, called the
bond and the stock. The bond is riskless; hence by
definition we know what it is worth tomorrow. For
(mainly notational) simplicity we neglect interest
rates and assume that the price of a bond equals €1
today as well as tomorrow, i.e., B0 = B1 = 1.

The more interesting feature of the model is
the stock, which is risky: we know its value today,
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say S0 = 1, but we do not know its value tomorrow.
We model this uncertainty stochastically by defin-
ing S1 to be a random variable depending on the
random element ω ∈ Ω. To keep things as simple
as possible, we let Ω consist of only two elements,
g for “good” and b for “bad”, with probability
P[g] = P[b] = 1

2. We define S1(ω) by

(1) S1(ω) =

{
2 for ω = g
1
2 for ω = b.

Now we introduce a third financial instrument in
our model, an option on the stock with strike price K:
the buyer of the option has the right, but not the
obligation, to buy one stock at time t = 1 at the pre-
defined price K. To fix ideas let K = 1. A moment’s
reflection reveals that the price C1 of the option at
time t = 1 (where C stands for contingent claim) is
C1 = (S1 −K)+, i.e., in our simple example

(2) C1(ω) =

{
1 for ω = g
0 for ω = b.

Hence we know the value of the option at time
t = 1, contingent on the value of the stock. But what
is the price of the option today?

The classical approach, used by actuaries 
for centuries, is to price contingent claims by 
taking expectations, which leads to the value
C0 := E[C1] = 1

2 in our example. Although this 
simple approach is very successful in many actu-
arial applications, it is not at all satisfactory in 
the present context. Indeed, the rationale behind
taking the expected value is the following argument
based on the law of large numbers: in the long 
run the buyer of an option will neither gain nor lose
on average. We rephrase this fact in financial lingo:
the performance of an investment in the option
would on average equal the performance of the
bond (for which we have assumed an interest rate
zero). However, a basic feature of finance is that
an investment in a risky asset should, on average,
yield a better performance than an investment in
the bond (for the skeptical reader: at the least these
two values should not necessarily coincide). In our
“toy example” we have chosen the numbers such
that E[S1] = 1.25 > 1 = E[B1] , so that on average
the stock performs better than the bond.

A different approach to the pricing of the 
option goes like this: we can buy at time t = 0 a
portfolio consisting of  23 stocks and −1

3 bonds. The
reader might be puzzled about the negative sign:
investing a negative amount in a bond—“going
short” in financial lingo—means to borrow money.

One verifies that the value Π1 of the portfolio
at time t = 1 equals 1 or 0 depending on whether
ω equals g or b. The portfolio “replicates” the 

option, i.e.,

(3) C1 ≡ Π1.

We are confident that the reader now sees why
we have chosen the above weights 2

3 and −1
3: the 

mathematical complexity of determining these
weights such that (1) holds true amounts to 
solving two linear equations in two variables.

The portfolio Π has a well-defined price at time
t = 0, namely Π0 = 2

3S0 − 1
3B0 = 1

3 . Now comes the
“pricing by no arbitrage” argument: equality (1)
implies that we also must have

(4) C0 = Π0;

whence C0 = 1
3. Indeed, suppose that (1) does not

hold true; to fix ideas, suppose we have C0 = 1
2 as

above. This would allow an arbitrage by buying
(“going long in”) the portfolio Π and simultaneously
selling (“going short in”) the option C . The differ-
ence C0 −Π0 = 1

6 remains as arbitrage profit at
time t = 0, while at time t = 1 the two positions 
cancel out independently of whether the random 
element ω equals g or b.

Although the preceding “toy example” is ex-
tremely simple and, of course, far from reality, it
contains the heart of the matter: the possibility of
replicating a contingent claim, e.g., an option, by
trading on the existing assets and applying the no
arbitrage principle.

It is straightforward to generalize the example
by passing from the time index set {0,1} to an 
arbitrary finite discrete time set {0, . . . , T} by 
considering T independent Bernoulli random vari-
ables. This binomial model is called the Cox-
Ingersoll-Ross model in finance. It is not difficult,
at least with the technology of stochastic calculus
that is available today, to pass to the (properly
normalized) limit as T tends to infinity, thus 
ending up with a stochastic process driven by
Brownian motion. The so-called geometric Brown-
ian motion is the celebrated Black-Scholes model,
which was proposed in 1965 by P. Samuelson. In
fact, already in 1900 L. Bachelier used Brownian 
motion to price options in his remarkable thesis
“Théorie de la spéculation” (member of the jury and
rapporteur: H. Poincaré).

In order to apply the above no arbitrage argu-
ments to more complex models, we still need one
crucial concept, namely, martingale measures. To
explain this notion let us turn back to our “toy 
example”, where we have seen that the unique
arbitrage-free price of our option equals C0 = 1

3.
We also have seen that by taking expectations, we
obtained E[C1] = 1

2 as the price of the option, which
allowed for arbitrage possibilities. The economic
rationale for this discrepancy was that the expected
return of the stock was higher than that of the bond.
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Now make the following thought experiment:
suppose that the world is governed by a different
probability than P that assigns different weights
to g and b, such that under this new probability—
let’s call it Q—the expected return of the stock
equals that of the bond. An elementary calculation
reveals that the probability measure defined by

Q [g] = 1
3 and Q [b] = 2

3 is the unique solution 

satisfying EQ [S1] = S0 = 1. Speaking mathemati-
cally, the process S is a martingale under Q , and
Q is a martingale measure for S .

Speaking again economically, it is not unrea-
sonable to expect that in a world governed by Q ,
the recipe of taking expected values should indeed
give a price for the option that is compatible with
the no arbitrage principle. A direct calculation 
reveals that in our “toy example” this is indeed the
case:

(5) EQ [C1] =
1
3
.

At this stage it is, of course, the reflex of every
mathematician to ask: what precisely is going on
behind this phenomenon?

To make a long story short: for a general sto-
chastic process (St )0≤t≤T , modelled on a filtered
probability space (Ω, (Ft )0≤t≤T ,P) , the following
statement essentially holds true. For any “contin-
gent claim” CT, i.e., an FT-measurable random 
variable, the formula

(6) C0 := EQ [CT ]

yields precisely the arbitrage-free prices for CT
when Q runs through the probability measures on
FT which are equivalent to P and under which the
process S is a martingale (equivalent martingale
measures). In particular, when there is precisely one
equivalent martingale measure (as is the case in the
Cox-Ingersoll-Ross, the Black-Scholes, and the
Bachelier models), (1) gives the unique arbitrage-
free price C0 for CT. In this case we may “replicate”
the contingent claim CT as

(7) CT = C0 +
∫ T

0
HtdSt ,

where (Ht )0≤t≤T is a predictable process (a trading
strategy) modelling the holding in the stock S
during the infinitesimal interval [t, t + dt] .

Of course, the stochastic integral appearing in
(1) needs some care; fortunately people like K. Itô
and those in P. A. Meyer’s school of probability 
in Strasbourg have told us very precisely how to 
interpret such an integral. The mathematical 
challenge of the above story consists of getting 
rid of the word “essentially” and turning this 
program into precise theorems.

Here is the central piece of the theory relating
the no arbitrage arguments with martingale theory.

Fundamental Theorem of Asset Pricing: For an
Rd -valued semimartingale S = (St )0≤t≤T ,  the 
following are equivalent:
1. There exists a probability measure Q equivalent

to P under which S is a sigma-martingale.
2. S does not permit a free lunch with vanishing

risk.
This theorem was proved for the case of a prob-

ability space Ω consisting of only finitely many
points by Harrison and Pliska [HP81]. In this case
one may equivalently write no arbitrage instead of
no free lunch with vanishing risk, and martingale
instead of sigma-martingale.

In the general case it is unavoidable to speak
about more technical concepts, i.e., sigma-
martingales (which is a generalization of the no-
tion of a local martingale) and free lunches. A free
lunch (a notion introduced by D. Kreps [K81]) is
something like an arbitrage, where, roughly speak-
ing, agents are allowed to form integrals as in (1),
then to “throw away money”, and finally to pass
to the limit in an appropriate topology. In 1994 we
proved, somewhat surprisingly, that one may take
the topology of uniform convergence (to which the
term “with vanishing risk” alludes) and still get a
valid theorem above.

The Fundamental Theorem may also be viewed
as describing a dichotomy in the fairness of games
(if we interpret stochastic processes as games of
chance). If a process is utterly unfair, then it allows
for something like an arbitrage (more precisely, a
“free lunch with vanishing risk”). If we discard this
extreme case of unfairness, then one may change
the odds (but not the null sets!) by passing from P
to Q such that under the new measure Q the
process is perfectly fair (more precisely, a sigma-
martingale).

References
[DS98] F. DELBAEN and W. SCHACHERMAYER (1998), The fun-

damental theorem of asset pricing for unbounded
stochastic processes, Math. Ann. 312, 215–250.

[HP81] J. M. HARRISON and S. R. PLISKA (1981), Martingales
and stochastic integrals in the theory of continuous
trading, Stochastic Process. and Appl. 11, 215–260.

[K81] D. M. KREPS (1981), Arbitrage and equilibrium in
economies with infinitely many commodities, J. Math.
Econom. 8, 15–35.

Comments and suggestions for the “WHAT IS…?”
column may be sent to notices-whatis@ams.org.


