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A soliton is a special solitary traveling wave that
after a collision with another soliton eventually
emerges unscathed. Solitons are solutions of par-
tial differential equations that model phenomena
like water waves or waves along a weakly anhar-
monic mass-spring chain. The existence of soli-
tons critically depends on special mathematical
properties of the model equations. Typically 
such equations have solitary wave solutions whose
interaction is almost, but not exactly, clean: the 
reemerging waves appear perturbed, and the 
mathematical miracle whereby, among other 
things, one can explicitly describe the interaction is 
lost. Since all solitary waves have infinite tails, it 
is natural to seek model equations that generate 
solitary waves with a finite span. Two such waves
would interact only for a finite time and then, 
unlike solitons, would be completely oblivious to
each other. This is somewhat analogous to a search
for wavelets with compact support. We define a
compact wave as a robust solitary wave with com-
pact support beyond which it vanishes identically
[1]. We then define a compacton as a compact wave
that preserves its shape after interacting with 
another compacton.

How Compact Waves Emerge. Consider

(1) ut + (um)x +
[
ua(ub)xx

]
x

= 0,

with a + b ≡ n ≥ 1, and m ≥ a− 1. For n = b = 1
and m = 2,3, (1) reduces to the celebrated Kdv and
m-KdV equations, respectively, which are the home
base of solitons. But it is when n > 1 that the 
second nonlinearity enables formation of compact
patterns.

Consider first the special case of (1) wherein
m = 2 and a = b = 1. We seek a traveling solution,
U (s = x− λt), with velocity λ. Integrating once gives
U [−λ +U +Uss ] = C0. To avoid singular solutions,
we set C0 = 0 and obtain U = λ(1 +A0 cos s) . If
A0 = 1, then the trough of the periodic wave
touches U = 0, where the last term in equation (1)
degenerates (and the solution’s uniqueness is lost),

turning any period between two troughs into an 
isolated entity. We may now remove any such 
period and connect its edges with the trivial U = 0
solution

(2) U (x− λt) = 2λ cos2
[x− λt

2

]
,

where |x− λt| ≤ π and U vanishes elsewhere.
This is the sought-after compact wave. Its second
derivative has a jump at U = 0, but since UUss
∼ s2H(s) ↓ 0, where H(s) is the Heaviside function,
it satisfies our equation.

Unlike the usual solitonic case, in which there
is an instant runaway of its initial support, in our
case, because u vanishes at the edge of the support,
the degeneration of the dispersive mechanism
(uuxx)x blocks an instantaneous spread of the front.
Instead of infinite tails we obtain a wave of finite
span that propagates with constant velocity.

We return to (1) and look for solitary traveling
waves. Two easy integrations give

(3) U2(b−1)
[

1
2
U2
s − λA1U3−n +AmU2+m−n

]
= 0,

with A−1
k = b(k + b − a) . The expression in the

brackets describes a periodic wave with a peak at
U = [λA1/Am]

1
m−1 and a trough at U = 0, where

U ∼ s 2
n−1 .  Again, since for ω ≡ b + 1− a > 0 ,

Ub−1Us ∼ s
ω
n−1H(s) ↓ 0, U (s) satisfies (1) and each

period between the troughs is an isolated entity.
Removed and connected with the trivial states, the
1-period wave solution turns into a compact wave.
For m = n , we have

(4) U =
[λb
ω

cos2
(

(m− 1)
2b

s
)] 1

m−1

when |s| ≤ b
m−1 and zero elsewhere. Figure 1 shows

a clean interaction of three typical K(2,2) compact
waves (b = n =m = 2 in (1)). This and many other
experiments tempt us to declare them as com-
pactons despite the formation of small ripples.
The infinite number of conservation laws in a con-
ventional solitonic case would imply that collisions
are slightly inelastic. However, K(2,2) has only four
local conservation laws (u, u3, ucosx, and usinx),
so clean interactions and a ripple can, in principle,
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coexist [1]. Though analysis is needed to settle 
the question, extensive numerical studies of (1) 
indicate that the mechanism underlying the inter-
action of compact waves is very different from
that of solitary waves or solitons.

Stationary Compactons: When ω < 0, (1) sup-
ports stationary compact waves. Some of them 
may be seen as solitons in “mass units”, and thus
they inherit the integrability of their antecedents.
Let u be a density of some quantity. Then the
map x→ z =

∫ x
−∞ u(x, t)dx defines the “mass” of

u in (−∞, x). For a typical soliton the “total mass”
is finite, and in these coordinates u is compact.
Moreover, since shifts in time do not change the
mass distribution of the soliton, it is stationary 
in mass units. Thus in the m-KdV case u =√

2λcosh−1[
√
λ(x− λt)] =

√
2λ sin(z/

√
2), 0 ≤z ≤√

2π. In mass units interaction of N-solitons turns
ultimately into N-stationary compactons, and KdV
and m-KdV equations are mapped into (1) with
m →m + 1, a = 3, b = 1, and thus ω = −1. The
singularity now confines the dynamics to the 
initial support. Application to a motion of curves
in a plane is given in [2].

Compact Breathers. Consider the vibrations of
a chain of particles interconnected by springs:

(5)

y′′n + Φ′(yn) =
1
h

[
T (
yn+1 − yn

h
)− T (

yn − yn−1

h
)
]
.

Here h is the interparticle distance, T is the 
attraction between two adjacent mass points, and
Φ′(yn) is the force exerted by the ambience on the
nth node. The continuum limit, y(x, t) ≡ yn(t) ,
yields

(6) ytt + Φ′(y) = T (yx)x,

which describes the motion of a string. When the
stretch u = yx is small, T (u) ∼ u + uα , α > 1. Bal-
anced with a weak force due to the discreteness,
it begets a KdV-like equation. Being interested in
the opposite limit of a very strong anharmonicity,
we assume that T (u) ∼ u3. (6) is now singular when-
ever the stretch and thus the wave speed C2(u) ∼ u2

vanish. If Φ′(y) = y − y3 , we find a space-time sep-
arable solution for both the string and the chain.
It yields a periodic motion in both time and space.
For the string the degeneracy at yx = 0 enables us
to connect a 1-period of the solution with the 
trivial state, yielding a stationary compact solution,
a breather, which oscillates in time.

How does the discrete breather behave? Though
in principle the discrete lattice does not support
compact solutions, a careful analysis reveals that
the spread beyond the compact domain is con-
fined to a very narrow boundary layer where the
decay is super-exponential [3]. Figure 2 reveals that
neither the shape of the breather nor its support
seems to depend on the number of mass points.

As h increases,
breathers become
stable at higher
and higher ampli-
tudes, and their
basin of stability
increases dramat-
ically as well [3].

Clearly the sin-
gularities pre-
sented are not
esoteric mathe-
matical entities,
but a natural limit
of a very localized
boundary layer. This appears to be a generic prop-
erty of many discrete genuinely nonlinear dynam-
ical systems. For instance, a Lotka-Volterra-like
problem, 2hu̇j = u2

j+1−u2
j−1, may be seen as a dis-

crete antecedent of the K(2,2) equation with the
solitary waves having a super-exponentially de-
caying front, which in the quasi-continuum limit be-
comes strictly compact. A similar conclusion
emerges from a recently published work with
A. Pikovsky on phase compactons in chains of dis-
persively coupled oscillators.
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Figure 2. Continuous (line) and two
discrete breather profiles for h = 0.4,1 ,
respectively.
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Figure 1. Interaction of three K(m = 2, n = 2) compact waves
(courtesy of M. Staley). Numerically they seem to emerge from
the interaction intact, yet the interaction site is marked by a
very small ripple which decomposes into compacton-
anticompacton pairs [1].


