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When I became a professor at Harvard, David Kazh-
dan was running a “basic notions” seminar—things
every graduate student (and perhaps also faculty
member) should know. He asked me to give a talk
on “what is a random variable.” Since a random ma-
trix is a random variable taking values in the space
of matrices, perhaps it’s good to start with random
variables.

I was surprised by Kazhdan’s request since
“everybody knows” that a random variable is just
a measurable function

X(ω) from Ω to X.
He answered “yes, but that’s not what it means to
people working in probability” and of course he was
right. Let us consider the phrase

Pick a random matrix from Haar measure 
on the orthogonal group On

Here On is the group of n× n real matrices X with
XXT = id . Most of us learn that On has an invari-
ant probability measure µ, that is, a measure on the
Borel sets A of On such that for every set A and
matrix M

µ(A) = µ(MA), µ(On) = 1.

Let me tell you how to “pick X from µ.” To begin
with, you will need a sample Yij of picks from the
standard normal density (bell-shaped curve). This

is the measure on the real line with density e
−x2/2√

2π .
Even if you don’t know what it means to “pick Yij
from the normal density,” your computer knows.
You can just push a button and get a stream of in-
dependent normal picks.

Now things are easy. Fill up an empty n× n
array with Yij , 1 ≤ i, j ≤ n . Turn this into an 

orthogonal matrix by applying the Gram-Schmidt
algorithm; make the first row have norm one, take
the first row out of the second row and then make
this have norm one, and so on. The resulting ma-
trix X is random (because it was based on the ran-
dom Yij) and orthogonal (because we forced it to
be). Using the orthogonal invariance of the normal
distribution it is not hard to prove that X has the
invariant Haar measure

probability(X ∈ A) = µ(A).

Let us now translate the algorithmic description
of a random orthogonal matrix into random vari-
able language. Let Ω = lRn

2
. Let X be the orthogonal

group. The Gram-Schmidt algorithm gives a map
X(ω) from almost all of Ω onto X. This X(ω) is 
our random variable. To prescribe its probability

distribution, put product measure of e
−x2/2√

2π dx on lRn
2
.

The push forward of this measure under the map X
is Haar measure µ.

Often, one is interested in the eigenvalues of the
matrix. For orthogonal matrices, these are n points
on the unit circle. Figure 1a shows the eigenvalues
of a random 100× 100 orthogonal matrix. While
there is some local variation, the eigenvalues are
very neatly distributed. For contrast, Figure 1b
shows 100 points put down independently at 
random on the unit circle. There are holes and
clusters that do not appear in Figure 1a. For details,
applications and a lot of theory supplementing
these observations, see Diaconis (2003).

So far, I have answered the question “what is a
random orthogonal matrix?” For a random unitary
matrix replace the normal distribution on lR with
the normal distribution on C. This has density
e−|z|2

π dz . We choose a random complex normal
variable Z on a computer by choosing real 
independent normals Y1 and Y2 and setting
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Z = 1
2Y1+i 1

2Y2 . For a random symplectic matrix,
use the quaternions and Z = 1

4 (Y1 + iY2+
jY3 + kY4). Random matrices in orthogonal, uni-
tary, and symplectic groups are called the classical
circular ensembles in the physics literature.

There are also noncompact ensembles; to choose
a random Hermitian matrix, fill out an n× n array
by putting picks from the standard complex nor-
mal above the diagonal, picks from the standard
real normal on the diagonal, and finally filling
below the diagonal by using complex conjugates
of what is above the diagonal. This is called GUE
(the Gaussian unitary ensemble) in the physics 
literature because the random matrices have dis-
tribution invariant under multiplication by the 
unitary group. There are other useful ensembles
considered in the classical book by Mehta (2004).
One of the interesting claims argued there is that
only three universal families (orthogonal, unitary,
and symplectic) need be considered; many large n
problems have answers the same as for these 
families, no matter what probability distribution
governs the matrices involved.

Historically, random matrix theory was started
by statisticians studying correlations between 
different features of a population (height, weight,
income...). This led to correlation matrices with
(i, j) entry the correlation between the ith and jth
features. If the data was based on a random sam-
ple from a larger population, these correlation 
matrices are random; the study of how the eigen-
values of such samples fluctuate was one of the first
great accomplishments of random matrix theory.
These values and the associated eigenvectors are
a mainstay of a topic called “principle components
analysis”. This seeks low-dimensional descriptions
of high-dimensional data; it is widely used across

applied areas from psychology to oceanography
and is a crucial ingredient of search engines such
as Google. See Diaconis (2003) for more details.

Physicists began to study random matrix theory
in the 1950s as a useful description of energy dif-
ferences in things like slow neutron scattering.
This has grown into an enormous literature which
has been developed to study new materials (quan-
tum dots) and parts of string theory. There have
also been wonderful applications of random ma-
trix theory in combinatorics and number theory.
One can find the literature on all of these topics
by browsing in Forrester et al (2003).

Returning finally to random matrices as math-
ematical objects, the reader will see that we have
been treating them as “real” rather than as ab-
stract mathematical objects. From a matrix one
passes to the eigenvalues and then perhaps to a
spectrum renormalized to have average spacing one
and then to the histogram of spacings. All of this
is mechanically translatable to the language of
measurable functions. However, this is a bit like
working in assembly language instead of just 
naturally programming your Mac. Random matrix
theory has evolved as the high order descriptive 
language of this rich body of results.
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Figure 1a. Eigenvalues of a random orthogonal
matrix.

Figure 1b. Random points on the circle.


