
a Quantum Group?
Shahn Majid

30 NOTICES OF THE AMS VOLUME 53, NUMBER 1

A quantum group is in the first place a remarkably nice
object called a Hopf algebra, the axioms for which are
so elegant that they were written down in the 1940s
well before truly representative examples emerged
from physics in the 1980s. So let us start with these
elegant axioms, but with the caveat that it’s the mod-
ern examples and their further structure that really
make the subject what it is. A Hopf algebra H obeys
the following axioms:
1. H is a unital algebra (H, ·,1) over a field k .
2. H is a counital coalgebra (H,∆, ε) over k . Here the

“coproduct” and “counit” maps ∆ : H → H⊗H
and ε : H → k are required to obey (∆⊗ id)∆ =
(id⊗∆)∆ and (ε⊗ id)∆ = (id⊗ ε)∆ =id.

3. ∆, ε are algebra homomorphisms.
4. There exists an “antipode” map S : H → H obey-

ing ·(id⊗S)∆ = ·(S⊗ id)∆ = 1ε .
There are three points of view leading indepen-

dently to these axioms. Each of them defines what a
quantum group is. For lack of space we will focus
mainly on the first of these.

The first point of view starts with the observation
that the functions k(G) on a finite group or the coor-
dinate algebra k[G] of an algebraic group form Hopf
algebras. For any finite set let k(G) be the pointwise
algebra of functions on G with values in k . We iden-
tify k(G)⊗k(G) = k(G×G) , i.e., functions in two vari-
ables. Then, when G is actually a group, we define for
all a ∈ k(G) ,

(∆a)(x, y) = a(xy), (Sa)(x) = a(x−1), ε(a) = a(e),

where e is the group unit element and x, y ∈ G are
arbitrary. We see that the group structure is encoded
in the coalgebra ∆, ε and antipode S . Similarly, for
every subset G ⊆ kn described by polynomial equa-
tions one has a “coordinate algebra” k[G] defined as
polynomial functions on kn, modulo the ideal of func-
tions that vanish on G . When k is algebraically closed
we obtain in this way a precise (functorial) corre-
spondence between such polynomial subsets and
nilpotent-free commutative algebras with a finite set
of generators. This is the basic setting of algebraic

geometry. When the subset G forms a group and the
group law is polynomial, the product map G×G → G
becomes under the correspondence an algebra ho-
momorphism ∆ going the other way. Likewise for the
rest of the Hopf algebra structure. Two examples are
as follows. The “affine line” is described by the coor-
dinate algebra k[x] (polynomials in one variable) with
additive coproduct ∆x = x⊗1 + 1⊗x corresponding
to addition in k . The reader can and should fill in 
the rest of the structure and verify that one has 
a Hopf algebra in fact for any field k . The “circle” 
is similarly described by the coordinate algebra 
k[t, t−1] (polynomials in t, t−1 with the implied rela-
tions tt−1 = t−1t = 1 ) and multiplicative coproduct
∆t = t ⊗ t corresponding to multiplication in k∗.
Again, the reader should fill in and verify the rest of
the Hopf algebra structure. Most familiar complex Lie
groups are likewise defined by polynomial equations
and have corresponding algebras C[G], as well as ver-
sions k[G] defined over general fields with the same
relations. Meanwhile, working over C, a “real form”
means the additional structure of a compatible
complex-linear involution making the coordinate al-
gebra into a ∗ -algebra. In this case one can denote the
above two examples as C[R] and C[S1] when taken
with x∗ = x and t∗ = t−1 respectively.

A general Hopf algebra H similarly has the struc-
tures ∆, ε, S but we do not assume that the algebra
of H is commutative as it is in the above examples.
This is the point of view of noncommutative geome-
try or “quantisation” in the mathematician’s (but not
physicist’s) sense of a noncommutative deformation
of a commutative coordinate or function algebra.
Much of group theory and Lie group theory proceeds
at this level; for example a translation-invariant inte-
gral 

∫
: H → k (in a certain sense involving ∆), if it 

exists, is unique up to scale and does indeed exist in
nice cases. Likewise the notion of a complex of 
differential forms (⊕nΩn,d) makes sense over any 
algebra H. At degree 1 the space Ω1 of 1-forms is 
required to be an H −H bimodule equipped with an
operation d : H → Ω1 obeying the Leibniz rule

d(ab) = (da)b + a(db), ∀a, b ∈ H
and such that Ω1 = HdH. This is a bit weaker than
in usual differential geometry even when H is 
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commutative because we do not demand that 1-forms
commute with elements of H. When H is a Hopf 
algebra one can ask that Ω1 is translation-invariant,
again in a certain sense involving the coproduct ∆.

In this sense a “quantum group” is not merely a
Hopf algebra but has additional structure analogous
to that of a Lie group. The flavour of this deeper 
theory is visible already in the geometry of the line
and the circle, even though these are commutative as
algebras. For example, one may classify all simple
translation-invariant differential structures (Ω1,d)
(those with no proper quotient). For C[x] they turn out
to be labelled by λ ∈ C and of the form

da(x) = a(x+ λ)− a(x)
λ

dx, dxa(x) = a(x+ λ)dx

of a finite difference on any a ∈ C[x]. Only the case
where λ = 0 has dx commuting with functions, so only
this case is seen in usual geometry. For C[t, t−1] the
translation-invariant (Ω1,d) are classified by q ∈ C∗
and have the form

da(t) = a(t)− a(qt)
(1− q)t

dt, dt a(t) = a(qt)dt

of a “q-derivative” on any a ∈ C[t, t−1] . These two 
examples indeed reflect the two main types of quan-
tum group known today. The most famous example
here is the “q-deformation” quantum group Cq[SL2]
with generators a, b, c, d , and with relations and 
coproduct

ba = qab, bc = cb
ca = qac, dc = qcd, db = qbd

da = ad + (q − q−1)bc, ad − q−1bc = 1

∆
(
a b
c d

)
=
(
a b
c d

)
⊗
(
a b
c d

)

where matrix multiplication is understood (so
∆a = a⊗a+ b⊗ c , etc.). One has similarly Cq[G] ver-
sions for all compact Lie groups G and their com-
plexifications. For an easy example of the other
“λ-deformation” type try Cλ[R1,3] defined as the al-
gebra with generators t, xi where i = 1,2,3; relations
[xi, t] = ıλxi ; and an additive coproduct as for C[x]
above. This is actually the enveloping algebra of a solv-
able Lie algebra (see below) but viewed as a noncom-
mutative coordinate algebra. Measurements from
NASA’s GLAST satellite in 2007 may be able to test if
our own spacetime could be like this, with λ ∼ 10−44

seconds if the effect comes from quantum gravity.
More nontrivial examples of this type are the “bi-
crossproduct” quantum groups to be mentioned later.

Our second point of view on what a quantum group
is starts with the observation that the group algebra
kG of any group and the enveloping algebra U (g) of
any Lie algebra again form Hopf algebras, this time
with a symmetric coproduct (their coalgebra is “co-
commutative”). The group algebra over k of any group

G is simply the vector space with basis G and prod-
uct that of G on basis elements, extended linearly. We
also have

∆x = x⊗x, εx = 1, Sx = x−1

for all x ∈ G, extended linearly. Similarly, let (g, [ , ] )
be a Lie algebra with [ , ] the Lie bracket. An easy (but
not very elegant) way to define U (g) is to choose a basis
of g and let U (g) be the free associative algebra with
the basis elements as generators and relations
vw −wv = [v,w ] for all basis elements v,w . Every-
thing is extended linearly so this equation also holds
for all v,w ∈ g . The coproduct is the additive one
∆v = v ⊗1+ 1⊗v on the generators. In these ex-
amples an action of the algebra kG or U (g) is equiv-
alent to a linear action of the underlying group or 
Lie algebra, while ∆ encodes the rule for how actions
extend to tensor products. Likewise a general Hopf 
algebra H can be viewed as a “generalised symmetry”
where an element h ∈ H acts by ∆h in the tensor
product. This in turn is needed, for example, to spec-
ify what it means for another algebra to be covariant
under H.

The most famous example here is Uq(sl2) with
generators e, f , qh, q−h (the abuse of notation is 
conventional) and

qheq−h = q2e, qhfq−h = q−2f , [e, f ] = qh − q−h
q − q−1

∆e = e⊗qh + 1⊗ e
∆f = f ⊗1+ q−h⊗ f , ∆qh = qh⊗qh.

We require q2 �= 1. One has similarly Uq(g) for all g
defined by a symmetrisable Cartan matrix. These
quantum groups have a rich algebraic structure lead-
ing to knot and 3-manifold invariants. Among the
deepest theorems is the existence of the Lusztig-
Kashiwara canonical basis inducing bases for highest
weight modules, which is remarkable even in the
classical case when q → 1.

A third point of view is that Hopf algebras are the 
next simplest category after Abelian groups admitting
Fourier transform. This point of view is responsible for
the large class of “bicrossproduct” quantum groups of
self-dual form. They are simultaneously “coordinate” and
“symmetry” algebras, and truly connected with quan-
tum mechanics. An example is C[R3 >�R]λ  �U(so1,3)
which is the Poincaré quantum group of the noncom-
mutative spacetime algebra Cλ[R1,3] above. Here 
special relativity still applies but as a quantum group
symmetry. At the same time this quantum group can 
be interpreted as the quantisation of a particle moving
in a curved geometry with black-hole-like features.
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