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A minor of a graph G describes a substructure of
G that is more general than a subgraph. If we take
a subgraph of G and then contract some connected
pieces in this subgraph to single points, the re-
sulting graph is called a minor of G . Formally, a
graph M is a minor of another graph G if G con-
tains pairwise disjoint trees Tv ⊆ G , one for each
vertex v of M , such that whenever u and v are ad-
jacent vertices of M , there is an edge in G joining
Tu and Tv. Closely related to this definition are the
operations of deletion and contraction of an edge,
each of which clearly produces a minor. Conversely,
we can obtain any minor M of a graph G , by first
deleting all edges except those in subgraphs Tv
(v ∈ V (M) ) and those connecting Tu , Tv for
uv ∈ E(M), and secondly contracting the edges in
the trees Tv.

The first important appearance of graph mi-
nors is in the following version of the Kuratowski
Theorem:

A graph G can be embedded in the plane
(is planar) if and only if neither the com-
plete graph K5 nor the complete bipar-
tite graph K3,3 is a minor of G .

In topology, this theorem is usually expressed in
an equivalent form saying that no subgraph of G
is homeomorphic to K5 or K3,3.

Wagner proved in 1937 that the Four Color The-
orem is equivalent to the statement that the ver-
tices of every graph without K5 minors can be col-
ored with four colors so that adjacent vertices
receive different colors. This led Hadwiger to

conjecture that every Kn -minor-free graph is
(n− 1)-colorable. Hadwiger’s Conjecture is still
wide open and is one of the most challenging prob-
lems in graph theory.

At the beginning of the 1980s, Neil Robertson
and Paul Seymour developed the theory of graph
minors in a series of twenty long papers. It took
twenty-one years [2, 3] to publish this seminal
work, which had a tremendous impact not only on
various branches of graph theory but also on many
other areas, most notably theoretical computer
science. The ultimate result of Robertson and Sey-
mour was the proof of Wagner’s Conjecture [3]
that (finite) graphs are well-quasi-ordered by the
graph minor relation, which is equivalent to the fol-
lowing statement:

In every infinite collection of graphs,
there are two such that one is a minor
of the other.

A class M of graphs is minor-closed if for every
G ∈M , all minors of G are also in M. Examples
of minor-closed classes are the collection of all
planar graphs and, more generally, all graphs that
can be embedded in a fixed surface. Every minor-
closed class M can be described by specifying the
set of all minor-minimal graphs that are not in M
— these graphs are called the forbidden minors for
M.

The well-quasi-ordering of graphs with respect
to the minor relation is equivalent to the follow-
ing important result:

For every minor-closed family of graphs,
the set of forbidden minors is finite.

This is a far-reaching generalization of the Ku-
ratowski Theorem with a slight disadvantage that
its proof is nonconstructive—it does not yield a
procedure for finding the forbidden minors for
the family M, nor does it yield a constructive
bound on the number of forbidden minors.

Robertson and Seymour also proved that for
every fixed graph M , there is an algorithm that has
time complexity O(n3) and that for a given graph
G of order n decides if M is a minor of G . This yields
another powerful result:
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Figure 1. The Kuratowski graphs K3,3 and K5.
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For every minor-closed family M of
graphs there exists a cubic time algo-
rithm for testing membership in M—
one simply checks if a given graph con-
tains some forbidden minor for M.

For instance, any of the following questions can
be solved in O(n3) time, where n is the order of the
input graph G :
(1) Let Σ be a fixed surface and G a graph. Can G

be embedded in Σ?
(2) Is G linklessly embeddable in R3

(3) Is G knotlessly embeddable in R3?
A linkless embedding of a graph is one where

no two cycles are linked, and a knotless embedding
is one where no cycle is knotted. It is known that
the set of forbidden minors for linkless embeddings
consists of precisely seven graphs which can be ob-
tained from the Petersen graph by a sequence of
Y∆ and ∆Y operations (the “Petersen family”). On
the other hand, only sporadic examples of forbid-
den minors for knotless embeddings are known
(one of them is K7).

The set of forbidden minors is not known for
embeddings of graphs in general surfaces. Excep-
tions are the sphere, whose forbidden minors are
K5 and K3,3 by the Kuratowski Theorem, and the
projective plane, which has 35 forbidden minors.
Computer searches have shown that there are sev-
eral thousands of forbidden minors for embed-
dings in the torus, and there is no indication how
to obtain the complete list. Despite these difficul-
ties, in some specific cases, like testing embedda-
bility of graphs in a fixed surface, efficient algo-
rithms have been devised using different
approaches.

Another significant consequence of Robertson
and Seymour’s work concerns the related structure.
Wagner proved that graphs that do not contain K5
as a minor are precisely those that can be built from
planar graphs and subgraphs of a certain cubic
graph on 8 vertices by pasting these together in a
tree-like manner. The paper “Graph Minors XVI”
shows that a similar structure is obtained if we ex-
clude any fixed graph M as a minor. Every graph
that does not contain M as a minor can be built
from building blocks, each of which is a graph that
can be “nearly embedded” in some surface in which
M cannot be embedded. Different building blocks
intersect each other in bounded size subgraphs and
form a tree-like structure. This is a “rough struc-
ture result” in the sense that none of its ingredi-
ents can be eliminated, and in the sense that the
structure itself describes a minor-closed family
such that certain other graphs are excluded from
this family.

To be slightly more precise, each building block
B is a graph that contains a “small” vertex set A
such that B −A can be written as the union of a
graph G embedded in some surface S of bounded

genus (so that M itself cannot be embedded in S ),
and a bounded number of other “path-like” graphs
that are attached to G only along the face bound-
aries on S . This shows that up to “small” and “well-
behaved” perturbations, graphs with minor M ex-
cluded are essentially 2-dimensional. This is a
surprising fact—graph minors have been intro-
duced with the aim of proving and generalizing the
Kuratowski theorem, and yet, the structure theory
of graph minors cannot be done without studying
graphs embedded in surfaces.

The theory of graph minors has several power-
ful consequences for theoretical computer science,
most notably in computational complexity and in
the theory of algorithms. Besides the aforemen-
tioned consequences of well-quasi-ordering, the
concept of “tree-like” structure, formally giving
rise to the notion of the tree-width of graphs, has
been widely applied in the theory of algorithms.

Extensive research is being carried out today to
extend graph minor results to matroids. The goal
in this area is to prove a conjecture of Gian-Carlo
Rota, claiming that matroids representable over
any finite field are well-quasi-ordered with respect
to matroid minors. Part of this extensive project
has already been accomplished by Jim Geelen, Bert
Gerards, and Geoff Whittle.

In closing, let us briefly return to edge-deletions
and edge-contractions since they are closely re-
lated to some other aspects of graph minors. In the
1950s, Tutte introduced a two-variable polyno-
mial, now known as the Tutte polynomial, defined
for a graph G recursively as follows. If G has no
edges, then T (G;x, y) = 1. Otherwise, let e be an
edge of G .  If e is a loop, then T (G;x, y) =
y T (G− e;x, y) ; if e is a cutedge, then T (G;x, y) =
xT (G/e;x, y); otherwise T (G;x, y) =T (G− e;x, y)+
T (G/e;x, y) . It can be shown that the Tutte poly-
nomial is well-defined for arbitrary graphs. Its co-
efficients are nonnegative integers, and it turns
out that T (G;x, y) is essentially the same as the par-
tition function of the Potts model, studied in the-
oretical physics in relation to phase transition and
critical phenomena. The special case when
y = −1/x is equivalent to the Jones polynomial of
an alternating link via a projection of the link in
the plane and medial graph construction.

Proofs of graph minor results are usually hard
and technical. This explains why most textbooks
cover only the basic facts about minors. An ex-
ception is [1], which is also a good reference for fur-
ther reading.
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