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Quantum Chaos?
Ze’ev Rudnick

A referee of one of my grant proposals com-
plained recently that the text did not explain

“what is quantum chaos”; the desire for an an-

swer to that question was the sole reason he had

agreed to review the proposal. I was bemused,
since that particular proposal had nothing to do

with the subject. However, the incident did make

me amenable to suggestions that I try and provide

such an explanation.
Quantum chaos began as an attempt to find

chaos, in the sense of extreme sensitivity to

changes in initial conditions, in quantum me-
chanical systems. That attempt failed, since it

was eventually realized that such sensitivity does

not exist. However, along the way it was found

that chaos (or the lack of it) is reflected in
quantum systems in other ways. I will describe

one such phenomenon, concerning the statistics

of the energy spectrum, and the mathematical

challenges it poses.
We will consider a simple model system, that

of a billiard particle (discussed in this column by

Yakov Sinai in the April 2004 Notices). The de-

scription of the system in the language of classical
mechanics is of a point particle moving without

friction in a billiard table—a bounded planar enclo-

sure where the particle reflects from the boundary
so that the angle of incidence equals the angle of

reflection. The total energy E is conserved during

the motion. The energy can attain a continuum of

values: the faster the particle travels, the greater
the energy.

A quantum mechanical description of this sys-

tem at a given instant of time includes the wave

function of the particle ψ(x, t), which vanishes
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at the boundary of the billiard. The probability

density of finding the particle in position x at time

t is |ψ(x, t)|2, once we have normalized the total

integral over the billiard to be unity. The time

evolution is described by Schrödinger’s equation
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∆ψ, where � is Planck’s constant, µ

is the mass of the particle, and ∆ = ∂2
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is

the Laplacian. A solution of the equation whose

amplitude does not change in time, that is a

stationary solution, is of the form ψn(x, t) =
e−itEn/�ϕn(x), where ϕn satisfies the eigenvalue

equation − �2

2µ
∆ϕn = Enϕn. The numbers En are

the quantal energy levels of the system. Unlike

the case of classical mechanics, where energy is a

continuous variable, here the energy levels are a

discrete set. It is convenient in our case to work with

the rescaled levels λn := 2µEn/�
2. A simple exam-

ple is the rectangular billiard with sides a and b, in

which case the levels are λm,n = π2
{
(
m

a
)2 + (n

b
)2
}
,

wherem, n range over all positive integers (this is

one of the very rare cases where one can explicitly

write down the levels!).

How can we relate the two different descrip-

tions of our billiard system? How is the classical

mechanics description reflected in the quantum

description when Planck’s constant � is small (or

equivalently in the case at hand, when λ →∞) rel-

ative to the characteristic actions of the system?

Are there universal laws to be found in the energy

spectrum? What are the statistical properties of

highly excited eigenfunctions? These are some of

the questions that quantum chaos tries to answer.

In this article I will focus on the statistics of the

spectrum. There has been substantial progress on

other aspects, see the recent reviews by Marklof

and Zelditch in [3].
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Figure 1. One of the regions proven by Sinai to
be classically chaotic is this region Ω
constructed from line segments and circular
arcs.

Traditionally, analysis of the spectrum recovers

information such as the total area of the billiard,

from the asymptotics of the counting function
N(λ) = #{λn ≤ λ}: As λ → ∞, N(λ) ∼ area

4π
λ

(Weyl’s law). Quantum chaos provides completely

different information: The claim is that we should
be able to recover the coarse nature of the dynam-

ics of the classical system, such as whether they

are very regular (“integrable”) or “chaotic”. The
term integrable can mean a variety of things, the

least of which is that, in two degrees of freedom,
there is another conserved quantity besides ener-

gy, and ideally that the equations of motion can be

explicitly solved by quadratures. Examples are the
rectangular billiard, where the magnitudes of the

momenta along the rectangle’s axes are conserved,

or billiards in an ellipse, where the product of an-
gular momenta about the two foci is conserved,

and each billiard trajectory repeatedly touches a

conic confocal with the ellipse. The term chaotic
indicates an exponential sensitivity to changes

of initial condition, as well as ergodicity of the
motion. One example is Sinai’s billiard, a square

billiard with a central disk removed; another class

of shapes investigated by Sinai, and proved by him
to be classically chaotic, includes the odd region

shown in Figure 1. Figure 2 gives some idea of how

ergodicity arises. There are many mixed systems
where chaos and integrability coexist, such as the

mushroom billiard—a semicircle atop a rectangu-

lar foot (featured on the cover of the March 2006
issue of the Notices to accompany an article by

Mason Porter and Steven Lansel).

Figure 2. This figure gives some idea of how
classical ergodicity arises in Ω.
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Figure 3. It is conjectured that the distribution
of eigenvalues π2(m2/a2 + n2/b2) of a
rectangle with sufficiently incommensurable
sides a, b is that of a Poisson process. The
mean is 4π/ab by simple geometric reasoning,
in conformity with Weyl’s asymptotic formula.
Here are plotted the statistics of the gaps
λi+1 − λi found for the first 250,000
eigenvalues of a rectangle with side/bottom
ratio

4
√

5 and area 4π , binned into intervals of
0.1, compared to the expected probability
density e−s .
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Figure 4. Plotted here are the normalized gaps
between roughly 50,000 sorted eigenvalues

for the domain Ω, computed by Alex Barnett,
compared to the distribution of the

normalized gaps between successive
eigenvalues of a large random real symmetric
matrix picked from the “Gaussian Orthogonal

Ensemble”, where the matrix entries are
independent (save for the symmetry

requirement) and the probability distribution
is invariant under orthogonal transformations.

One way to see the effect of the classical dy-

namics is to study local statistics of the energy

spectrum, such as the level spacing distribution

P(s), which is the distribution function of nearest-

neighbor spacings λn+1 − λn as we run over all

levels. In other words, the asymptotic propor-
tion of such spacings below a given bound x is∫ x
−∞ P(s)ds. A dramatic insight of quantum chaos

is given by the universality conjectures for P(s):
• If the classical dynamics is integrable, then

P(s) coincides with the corresponding quantity for

a sequence of uncorrelated levels (the Poisson en-

semble) with the same mean spacing: P(s) = ce−cs ,
c = area/4π (Berry and Tabor, 1977).

• If the classical dynamics is chaotic, then P(s)
coincides with the corresponding quantity for the

eigenvalues of a suitable ensemble of random

matrices (Bohigas, Giannoni, and Schmit, 1984).

Remarkably, a related distribution is observed for

the zeros of Riemann’s zeta function.

Not a single instance of these conjectures is
known, in fact there are counterexamples, but

the conjectures are expected to hold “generically”,

that is unless we have a good reason to think oth-

erwise. A counterexample in the integrable case

is the square billiard, where due to multiplici-

ties in the spectrum, P(s) collapses to a point
mass at the origin. Deviations are also seen in the
chaotic case in arithmetic examples. Nonetheless,
empirical studies offer tantalizing evidence for
the “generic” truth of the conjectures, as Figures
3 and 4 show.

Some progress on the Berry-Tabor conjecture in
the case of the rectangle billiard has been achieved
by Sarnak, by Eskin, Margulis, and Mozes, and by
Marklof. However, we are still far from the goal
even there. For instance, an implication of the
conjecture is that there should be arbitrarily large
gaps in the spectrum. Can you prove this for
rectangles with aspect ratio

4
√

5?
The behavior of P(s) is governed by the statis-

tics of the number N(λ,L) of levels in windows
whose location λ is chosen at random, and whose
length L is of the order of the mean spacing
between levels. Statistics for larger windows also
offer information about the classical dynamics and
are often easier to study. An important example
is the variance of N(λ,L), whose growth rate is
believed to distinguish integrability from chaos [1]
(in “generic” cases; there are arithmetic counterex-
amples). Another example is the value distribution
ofN(λ, L), normalized to have mean zero and vari-
ance unity. It is believed that in the chaotic case
the distribution is Gaussian. In the integrable case
it has radically different behavior: For large L, it
is a system-dependent, non-Gaussian distribution
[2]. For smaller L, less is understood: In the case
of the rectangle billiard, the distribution becomes
Gaussian, as was proved recently by Hughes and
Rudnick, and by Wigman.
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