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Figure 1. The closed geodesic on the right is
not a systole since it is contractible.

Let us take a look at Figure 1, which represents a

surface S in ordinary three-dimensional Euclidean
space (throughout we will assume surfaces and

other objects are compact). A closed curve on S is a
curve that looks topologically like a circle. Because

our surface S has the topology of a torus, there
are closed curves on S that are not contractible
to a point. We define the systole of S, Sys(S),

to be the smallest length of such curves. By a
compactness argument, this lower bound is pos-

itive and is realized by at least one curve, which
is a closed geodesic. On surfaces or on general

Riemannian manifolds geodesics are those curves
that are locally length-minimizing.

The medical term systole comes from the Greek

word for “contraction”. (If you have extra systolic
beats in the medical and not geometrical sense,
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you had better consult your cardiologist.) The
mathematical term systole was coined in 1980.

As the figure intuitively shows, given Sys(S),

the total area of S, Area(S), cannot be too small.

A natural question is, What is the relationship
between Sys(S) and Area(S)? We are looking for

a kind of isoperimetric inequality, but in this case

it’s a game without boundary. The first person

to tackle this problem was Loewner, who in 1949
proved that for any surface of the topological type

of a torus, Area(S) ≥
√

3

2
Sys2(S). This is an isosys-

tolic inequality. Loewner proved that equality is

attained only and exactly for the flat equilateral

torus. The proof is not too hard if one knows the
basic conformal representation theorem.

Now, any mathematical mind will ask for gen-

eralizations of Loewner’s theorem, and they could

go in at least three directions. First: Consider
surfaces more general than the torus, the sim-

plest being the projective plane. Pu, a student of

Loewner, proved in 1952, with the same method

that Loewner had used, that Area(S) ≥ 2

π
Sys2(S),

with equality holding only for the standard metric
on S. Second: Consider generalizations in high-

er dimension. Third: Consider generalizations to

submanifolds (that is, generalizing the initial case

of curves) of any dimension. In any of these prob-
lems, the question splits in two: 1) What is the

optimal ratio if it is nonzero? and 2) For which

metric is it attained?
Today geometers are fascinated by those prob-

lems for several reasons. For one thing, despite

the efforts of many, not a single one of those

generalizations was obtained before 1983, when
Gromov was the first to crack the nut. Also,

Gromov’s proofs are technically extremely hard,

and, even more importantly, they introduced some
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completely new concepts in geometry. And finally,

many “elementary” questions remain open today.

But what is even more fascinating for Riemannian

geometers is the fact that we finally get inequalities

on a Riemannian manifold that are true without

any curvature restriction; i.e., they are valid for

any Riemannian structure on the manifold.

Let us now see what the state of affairs is

today and look at the main ideas, concepts, and

techniques that enter into the proof. The first case

to look at is that of surfaces with any number

of holes (the torus is a surface with one hole). In

1960 Accola and Blatter got an inequality, but with

a constant that was getting smaller and smaller

as the number of holes became larger and larger.

Their papers launched the search in this subject.

It is interesting to remark that their proofs, which

were quite similar, were extensions of Loewner’s

method in that they used the conformal represen-

tation. For us it is the only case where complex

analysis on surfaces gives a result that is dead

wrong. One had to wait for Gromov in order to

have a constant that grows with the genus. Ex-

act constants are not known, and in fact are not

that interesting, but one has optimal asymptotic

results for them when the number of holes goes

to infinity.

Metrics for which the equality is attained are

not known, except for the Klein bottle and, as seen

above, for the torus and the projective plane. In

fact, they are forced to be singular (not smooth)

even for this case.

Now let’s leave surfaces and consider Riemann-

ian structures on manifoldsM of higher dimension

d, first for closed curves and for the same definition

for the systole Sys(M). We ask ifVol(M)/Sysd(M)

has, for the set of all Riemannian structures onM ,

a positive lower bound. We of course need M to

be nonsimply connected (the algebraic topology

wording for asking that not all closed curves in M

be contractible). But this condition is not enough;

look for example at the product of circle by a

sphere. Then the systole is the length of the circle,

but the volume of the sphere can be as small as

desired. We should have enough families of non-

contractible curves; in other words, those curves

should fill M in every direction. Such manifolds

are called essential by Gromov. A typical example

is the projective space (of any dimension) RPd .

Gromov proved that there is in fact an isosystolic

inequality for any essential manifold. Still, as op-

posed to the case of RP 2, we do not know for d ≥ 3

if this constant is that of the canonical metric on

RPd , with equality holding only for that canonical

metric.

The proof of Gromov is one of the most baffling

we know in geometry and exemplifies his mathe-

matical style. He attacks mathematical problems

in three characteristic ways: with radically new
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Figure 2. Intuitively, it seems clear that the
ratio A/L2, where L is the length of the
shortest non-contractible curve, grows as the
genus does. But it is very difficult to prove.

techniques, with new and extremely simple invari-

ants that are incredibly hard to study, and with

very involved and hard calculations.

One trick and two new invariants. One first

embedsM isometrically in the infinite-dimensional

space C0(M), which consists of the continuous

functions on M . The embedding simply sends a

point to the function that is the distance to that

point. And now we fill up the image of M in

C0(M) by submanifolds of dimension d+1 whose

boundary is this image. In this situation one can

prove (hard) an infinite-dimensional isoperimetric

inequality between the volume of M and the vol-

ume of the filler. This is an inequality like that for

minimal surfaces. One needs thereafter to study

the filling volume and the filling radius of M .

Those two invariants are so deep, even though

they are elementary and natural, that the filling

volume of the circle is only conjectured to be 2π

(think of a hemisphere). One finishes the proof

with an inequality between the filling volume and

the filling radius, and the main point is that the

filling radius is directly linked to the systole.

Systolic freedom almost everywhere. The nat-

ural generalization is to look at what replaces, for

higher-dimensional submanifolds in Riemannian

manifolds of any dimension, the notion of non-

contractible. From algebraic topology the most

important notion is that of the homology class of

such a submanifold, which is an integral homology

class. For a Riemannian manifold M of dimension

d we define its k-dimensional systole Sysk(M) as

the infimum of the (k-dimensional) volume of all

its submanifolds of dimension k whose homology

class is nonzero. Then we look at the quotient

Volk/d(M)/Sysk(M) and ask whether this quo-

tient, considering all the Riemannian structures

on M , is always bounded away from zero. When it

is zero, one can talk of systolic freedom (or systole

softness). The surprising discovery, completely

nonintuitive for us and initiated by Gromov, is

that this infimum is zero for most manifolds and

all pairs (d ≥ 3, k ≥ 2). The first shock comes with

the complex projective plane, for which the pair is
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(4,2), because the projective complex lines fill up
our space completely in every direction.

To get more definitive results one has to intro-
duce a notion of algebraic topology called stable
homology, and this time the invariant attached to
a submanifold is its stable homology class, which
is a real homology class. Here also it is Gromov
who gave deep impetus to the subject. But here
one classical tool is available, namely the calculus
of differential forms, as well as the basic relation
between topology and differential calculus and the
basic interplay given by the theorem of de Rham.

For the stable systole problem, the freedom
question was completely solved in 2007 by
M. Brunnbauer (his papers are available on the
arXiv).

Despite their quite recent introduction, sys-
toles are already used in various domains, namely
in algebraic geometry (to characterize Jacobians
among flat tori; this is the so-called Schottky prob-
lem, which has many algebraic solutions but here
is given a geometrical one) and in deep algebraic
topology. One-dimensional systoles, which arise
when one studies displacements by isometries in
essential manifolds, are linked to the notions of
entropy and the spherical volume.

Further Reading
Pages 325–353 of the author’s book contain a more
explicit and detailed exposition of the state of sys-
tolic affairs up to 2003 and all the references and
credits. The book by Katz covers almost all the re-
sults and references for more recent developments
and gives fascinating historical data.
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