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Amenability of metric spaces usually manifests it-
self in the existence of large sets with relatively small

boundary. Think of Euclidean n-space. Here the vol-
ume of the ball of radius r is proportional to rn while
the area of its boundary, the sphere of radius r , is

proportional to rn−1. Thus the area of the boundary
is roughly 1/r of the volume of the ball, and the ratio

tends to 0 as r increases. Such amenability proper-
ties are very useful in many contexts. Unfortunately,

it usually does not take much to prevent them from
being satisfied. A simple example of a space that is
not amenable in this sense is the hyperbolic plane

H
2. Property A is a weak amenability-type condition

that is much less restrictive than the one described

above and is satisfied by many known metric spaces.
It was introduced in [3] and turns out to be of great
importance in many areas of mathematics. We start

with the definition.

Definition ([3]). A discrete metric space X has Prop-
erty A if for every ε > 0 and every R > 0 there is a

family {Ax}x∈X of finite subsets of X ×N and a num-
ber S > 0 such that

(1)
#(Ax∆Ay)

#(Ax ∩Ay)
< ε whenever d(x, y) ≤ R,

(2) Ax ⊆ B(x, S)×N for every x ∈ X.

Here Ax∆Ay = (Ax \ Ay) ∪ (Ay \ Ax) denotes
the symmetric difference. In simple words, these

conditions mean that when points x and y are at
most R apart, then the sets Ax and Ay are almost

equal, but if the distance between x and y is at
least 2S, then Ax and Ay are disjoint. Property A
is a large-scale geometric property, meaning that

it is preserved by quasi-isometries—the copy of N
appearing in the definition of the sets Ax is exactly

to guarantee this invariance. We can thus say that
a locally compact metric space has Property A if it

is quasi-isometric to a discrete metric space with
Property A.

Let us look at some examples. Observe that any

finite metric space X has Property A trivially: simply
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take Ax = X × {1} for all x ∈ X, and the ratio in the
above definition vanishes. Next in line is the set of

integers Z, with the usual Euclidean metric. To show
Property A for Z, given R and ε, choose an integer
r ≥ 2Rε−1 and define Ax to be the ball of radius r

centered at x for all x ∈ Z.
The most interesting case is when X in the defini-

tion above is a finitely generated group G, equipped
with a metric in the following way. Having fixed

a finite set of generators, we declare the distance
between two elements g, h ∈ G to be the smallest
number of generators and their inverses necessary

to write g−1h as a word. Such a metric is called the
word length metric on G. For example, if we con-

sider Z as an additive group generated by a single
element {1}, the word length metric is simply the
usual metric on Z induced by absolute value.

In this setting the resemblance of Property A to
amenability can be easily seen through Følner’s crite-

rion. A group G is called amenable if for every ε > 0
and every R > 0 there exists a finite set F ⊆ G such

that

#(F ∆gF)

#F
< ε,

whenever the distance of g to the identity element
is less than R. Above gF is the translation of F by
element g, and the sets F are called Følner sets.

It follows from the definition that amenable
groups satisfy Property A: given ε > 0 and a corre-

sponding Følner set F , one simply takes Ag = gF ,
and it can be easily verified that the sets Ag defined

this way satisfy the required condition. In fact, close
examination of definitions reveals that for groups,
Property A is “non-equivariant” amenability—simply

imagine what “equivariant Property A” would mean
to end up exactly with amenability, modulo some

simple calculations.
But Property A covers a much wider class of

groups than that of amenable groups. Typical exam-
ples of non-amenable groups are the free groups on
n ≥ 2 generators Fn, but as it turns out, free groups

satisfy Property A. To give the proof recall that the
Cayley graph of a free group is a tree. In this tree

fix a geodesic ray γ that originates at the identity,
and given n ∈ N for every x ∈ F2 define the set Ax
to be the the unique geodesic segment of length 2n

from x in the direction of the ray γ. It is not hard
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to check that for any ε there is an n ∈ N such that

the required conditions are satisfied. This method
of proof can be generalized to show that hyperbolic

groups and the hyperbolic plane H
2 mentioned

earlier have Property A.

Another natural example is furnished by discrete
linear groups, i.e., subgroups of the group GLn(F)
of invertible n × n matrices over a field F . The fact

that they satisfy Property A was proved by Guent-
ner, Higson and Weinberger. The list of classes of

groups for which Property A has been verified also
includes one-relator groups, Coxeter groups, groups
acting on finite dimensional CAT(0) cube complexes,

and many more.
The original motivation for introducing Property

A, see [3], was that it is a sufficient condition to
coarsely embed a group into a Hilbert space. A

coarse embedding is a natural notion of inclusion
in large-scale geometry. We recall the definition.

Definition (Gromov). A function f : X → Y between
metric spaces is a coarse embedding if

ϕ−(dX(x1, x2)) ≤ dY (f (x1), f (x2)) ≤ϕ+(dX(x1, x2))

for all x1, x2 ∈ X, whereϕ−,ϕ+ : [0,∞)→ [0,∞) are
nondecreasing functions and limt→∞ϕ−(t) = ∞.

In [3] the Novikov conjecture was proved under

the assumption of coarse embeddability into Hilbert
spaces. The Novikov conjecture is a rigidity state-
ment about high-dimensional, compact, smooth

manifolds. A compact manifold is said to be aspher-
ical if its universal cover is contractible (a typical

example is a torus Tn with Rn as its universal cover).
The Borel conjecture claims that every aspherical

manifold M is rigid in the sense that if another
compact manifold N is homotopy equivalent to M ,
then N is actually homemorphic to M . In the case

of aspherical manifolds, the Novikov conjecture is
an infinitesimal version of the Borel conjecture. It

asserts that the rational Pontryagin classes, i.e., cer-
tain characteristic classes associated to the tangent

bundle of the manifold, are homotopy invariants.
For more general manifolds the Novikov conjec-
ture claims that higher signatures are homotopy

invariants.
Thus the results of [3] yield the following impli-

cation:

if G has Property A then the Novikov conjecture is
true for all closed manifolds with fundamental

group G.

This theorem sparked significant interest in the

notion of Property A, and as a result Higson and
Roe characterized Property A in terms of existence

of a topologically amenable action on some com-
pact space. The notion of amenability for group
actions was introduced by Zimmer in ergodic the-

ory and later adapted to the topological setting by
Anantharaman-Delaroche and Renault.

Another connection arose in the theory of C∗-
algebras. The work of Guentner and Kaminker and
subsequently Ozawa showed that, for groups, Prop-

erty A is equivalent to exactness of C∗r (G), the

reduced C∗-algebra of G. Exactness of C∗-algebras

was introduced by Kirchberg, and a long-standing
problem was whether C∗r (G) is exact for every G.

These results immediately prompted the ques-
tion of whether there exist metric spaces and, more

importantly, finitely generated groups, that do not
have Property A. However this question turned out
to be quite difficult, and still only a handful of exam-

ples is known. One of them is due to Gromov, who
observed that a metric space constructed out of a

sequence of expanders does not admit a coarse em-
bedding into a Hilbert space and therefore cannot
satisfy Property A. We refer to [2] for a description

of expanders. For finitely generated groups the
problem of finding examples that would not satisfy

Property A is much harder. A natural idea is to try
to find a group that would metrically contain, in

its Cayley graph, a sequence of expanders. Such a
group could not satisfy Property A for the same
reason given earlier. Gromov implemented this idea

in the realm of his random groups, but a search
for more examples is under way. If found, such

groups might shed some light on many problems
in geometric group theory as well as for example
index theory, where groups without Property A

served as counterexamples to some versions of the
Baum-Connes conjecture.

Another major question is to what degree Prop-
erty A captures coarse embeddability into a Hilbert

space. In particular, it was not known whether the
two notions coincide. An example of a metric space
distinguishing the two properties was given in [1]

and can be described as follows. Take discrete cubes
{0,1}n, n = 1,2, . . . . We define two points in a cube

to be at distance k if they differ in exactly k coor-
dinates. It is not hard to see that the disjoint union
of these cubes (with the distance between cubes de-

fined appropriately) embeds coarsely into a Hilbert
space. However using the fact that the cube {0,1}n

has a structure of an amenable group—namely that
of Zn2—it was proved that such a disjoint union of

cubes does not have Property A.
It would be extremely interesting to find more

examples of finitely generated groups that do not

satisfy Property A, especially ones that do embed
coarsely into a Hilbert space. Such groups would

have to exhibit completely new geometric phenom-
ena. At present these issues are far from being

understood.
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