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a Toric Variety?
Ezra Miller

A toric varietyXP is a certain algebraic variety—or,
over the real or complex numbers, a differen-
tiable manifold with some singularities allowed—
modeled on a convex polyhedron P . Examples
include all (products of) projective spaces, which
are modeled on (products of) standard simplices.
Algebraically, toric geometry is the study of sparse
polynomials, whose nonzero coefficients are at-
tached to specified monomials. In general, toric
varieties admit equivalent descriptions arising
naturally in many mathematical areas, including
symplectic geometry, algebraic geometry, theoret-
ical physics, and commutative algebra, as we shall
see. These perspectives, combined with intimate
connections to pure and applied topics as wide-
ranging as integer programming, representation
theory, geometric modeling, number theory, alge-
braic topology, and enumerative combinatorics,
lend toric varieties their importance, especially in
view of their concreteness as examples.

In the symplectic setting [2], the space XP is
constructed by specifying a surjection to the poly-
hedron P ⊆ Rn. The faces of P are all assumed
to possess normal vectors with rational numbers
for coordinates. (Thus P could be a regular cube
but not a regular icosahedron.) The fiber over
any point p ∈ P is declared to be a real compact
torus T d—a product of d circles. The dimension
of this torus equals that of the smallest face of P
containing p. As p moves to the boundary of this
face, a certain subtorus of the fiber is required to
shrink and, at the boundary, collapse. Set theoret-
ically, then, XP is a disjoint union, over all faces
F of P , of products F◦ × T dim(F), where F◦ is the
relative interior of F .

Example 1. If P is an interval of length ℓ then
XP is a sphere of diameter ℓ. The moment map
collapses the circles of latitude, which shrink to-
ward the north and south poles as their collapsed
images move to the endpoints of P ; see the figure.
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Example 2. If P is the positive orthant in Rn then

XP is the complex vector space Cn. The moment
map squashes each of the n copies of C to a ray by
collapsing the concentric circles around the origin
to points. The decomposition of XP as a disjoint
union over the faces of P is Cn =

⋃
I(C

×)I , where
C× is the group of nonzero complex numbers, and

(C×)I is the algebraic torus indexed by the subset
I ⊆ {1, . . . , n}.

As in the figure, the projection XP → P is called
the moment map. It is an instance of a general
construction wherein a particularly well-behaved
group action on a symplectic manifoldX induces a
map from X to the dual of the group’s Lie algebra.

When the vertices of P have integer coordinates,
XP is a disjoint union of algebraic tori, one for each
face of P , as is Cn. If P has dimension n, then XP
carries a global action of the algebraic torus (C×)n.
Restricting to the piece of XP corresponding to

the interior P ◦ yields the regular action of (C×)n

on itself. This description is definitive [3]: a toric
variety over C is a complex algebraic variety with
an action of (C×)n and a dense open subset iso-
morphic to (C×)n carrying the regular action. That
is, a toric variety is an algebraic torus orbit closure.

The same works for fields other than C, such as
the real numbers R or algebraically closed fields
of positive characteristic. With this definition, the
connection to polyhedra is a fundamental theo-
rem: the quotient of a complex toric variety XP by
the global action of the compact torus T n ⊆ (C×)n

is the moment map to P in the dual Rn to the Lie
algebra of T n.
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The term variety indicates a relation to polyno-
mials, which occurs in this integer-vertex case. Any
subgroup of (C×)n isomorphic to (C×)d has an or-
bit closure in Cn through the point (1, . . . ,1). This
affine toric variety is parametrized by monomi-
als: the inclusion (C×)d ֓ Cn takes (τ1, . . . , τd) to
(τa1 , . . . , τan), where τai = τ

ai1
1 · · ·τ

aid
d is a mono-

mial for each i. For example, the parabola in the
plane C2 is the curve parametrized by t ֏ (t, t2).
Every toric variety has a finite open cover by affine
toric varieties; hence torus orbit closures in Cn

are, in a toric sense, locally universal.
The parametrized view of (not necessarily

affine) toric varieties is key in applications to
geometric modeling, because every polynomial
parametrization of a space is the projection of a
monomial one. Thus projections of toric varieties
over the real numbers generalize Bézier curves,
which come from rational normal curvesXP , where
P is an interval of integer length. Geometrically,
the moment map carries the positive real part of
a toric variety XP homeomorphically to P itself,
and the wavy polyhedral patch X+P (R) can be
used for modeling purposes. When P is a lattice
triangle, for instance, X+P (R) is a Bézier triangle in
a Veronese embedding of the projective plane.

Incommutative algebra,monomialparametriza-
tions give rise to simple implicit equations. As
with any variety in Cn, an affine toric variety can be
expressed as the set of points in Cn where a family
f1, . . . , fr of polynomials in variables x1, . . . , xn all
simultaneously vanish. The crucial observation
is that in the toric case, one can always choose
all of the fj to be binomials, of the form xu − xv

for some nonnegative integer vectors u and v

of length n. The binomials can be interpreted
as linear equations on the exponent vectors of
the parametrizing monomials. In the parabola
example, the parametrized curve (x, y) = (t, t2) is
implicitly defined as the set of points where the
binomial y − x2 vanishes; this binomial says that
the exponent on the second t-monomial is twice
the exponent on the first one. In this way, the
binomials forXP encode crucial information about
the lattice points in P , and the integer vectors
joining them. Aside from endowing the vanishing
ideal of XP with particularly rich algebraic and
combinatorial structure, the binomials thereby
convert toric varieties into vehicles for investi-
gating integer programming, where the goal is to
find a (path to a) vertex of P that maximizes some
given linear cost function.

The combinatorial structure of toric varieties
makes various flavors of cohomology explicitly
computable. These computations have surprising-
ly wide applications, the overarching idea being
that the topology of XP usefully distills the com-
binatorics of P itself, and vice-versa. For instance,
Brion’s formula interprets a statement in equi-
variant K-theory of toric varieties as a shockingly

elegant expression for the sum of the monomi-
als corresponding to the lattice points in P . The
underlying geometry is that global sections of
holomorphic line bundles on XP correspond to
lattice points in polytopes related to P . Brion’s
formula is the key to A. Barvinok’s polynomial-
time algorithms for enumerating lattice points in
polytopes. Concrete cohomological computations
also form the basis for R. Stanley’s approach to
the enumerative combinatorics of polytopes. The
question is how to count faces of convex polytopes.
Translating into the toric world, Morse theory in-
dicates an efficient way to encode the numbers
of faces, and the Hard Lefschetz theorem from
algebraic geometry implies unimodality for the
encoded face numbers.

In theoretical physics, toric varieties arise in the
context of gauged linear sigma models. Quantum
field theory considers maps from a Riemann sur-
face into Cn, which carries an action of a compact
d-torus T d . Ground states for this theory, obtained
by setting the potential energy to zero, constitute
a certain fiber of the moment map of Cn; modulo
gauge equivalence—the T d-action—this results in
a toric variety XP . (When n = 2 and XP is the
complex projective line, gauge equivalence is the
Hopf fibration S3 → S2.) Duality for polytopes in
this setting gives rise to the phenomenon known
as mirror symmetry.

A huge amount of active research has ties to
toric methods. The symplectic setting has seen
increasingly deep Euler–Maclaurin type summa-
tion formulas. Generalizations of toric spaces are
ubiquitous, including log schemes, which are toric
étale locally; quasitoric manifolds and torus mani-
folds, which are more flexible topological versions
of toric varieties; and toric stacks, which take geo-
metric account of extra arithmetic data beyond
the polyhedron P . For the purpose of pushing
Stanley’s enumerative combinatorics to the set-
ting of nonrational polytopes, there has even been
success in abstracting toric cohomological com-
putations polyhedrally, without constructing any
sort of toric space at all! The future will surely see
other types of developments, as well.
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