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a Cross Ratio?
François Labourie

Quadruples of distinct lines are endowed with a
unique invariant, the projective cross ratio: two
quadruples are equivalent under a linear transfor-
mation if and only if they have the same cross ratio.
The projective cross ratio turns out to characterise
the geometry of the projective line. In projective
coordinates, the cross ratio is computed as a
ratio involving four terms with some “crossing
symmetries”, hence its name.

Consider four pairwise distinct lines (x, y, z, t)
in the plane, all passing through the origin. There
exist essentially unique coordinates so that x is
generated by (1,0), y by (0,1), z by (1,1) and t
by (b,1). Then, b := b(x, y, z, t) is the projective
cross ratio of the four lines. The projective cross
ratio satisfies a certain set R of functional rules.
We single out two of these rules: a multiplicative
cocycle rule (1) on the first and second variables
and an additive rule (2):

b(x, y, z, t) = b(x,w, z, t)b(w, y, z, t),(1)

b(x, y, z, t) = 1− b(t, y, z, x).(2)

Conversely, any set endowed with a function b of
quadruples of points satisfyingR can be realised as
a subset of the projective line so that the function b
is the restriction of the projective cross ratio. This
elementary though remarkable statement asserts
that the projective cross ratio completely charac-
terises the projective line. Consequently, we may
define the projective cross ratio as a function on
quadruples satisfying some functional rules.

The projective cross ratio has many descendants
in algebraic geometry: invariants of configurations
of planes, lines, or flags. We shall not pursue this
development here but rather restrict to real and
complex projective lines and the relationships of
the cross ratio with negatively curved manifolds,
hyperbolic dynamics, and Teichmüller theory.

François Labourie is professor of mathematics at Uni-
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Cross ratio and distance.

One can describe the real hyperbolic plane as
a metric extension of the real projective line. In
the complex line C, seen as an affine chart of
the complex projective line, a circle is the set of
complex lines intersecting a given real plane and
thus is in bijection with a real projective line. In
the Poincaré disk model, the hyperbolic plane is
the disk bounded by the unit circle U, which we
identify with a real projective line. The geodesics
of the hyperbolic plane are circles orthogonal to U.
A pair of points in the real projective line U then
determines a unique geodesic. The cross ratio is
related to the hyperbolic distance as follows. A
horosphere centred at a point x of the projective
line is a circle in the Poincaré model tangent to U
at the point x. Let γ be the unique geodesic joining
two points A and B in the hyperbolic plane; let
x and y be the end points at infinity of γ; let Cx
and Cy be the horospheres centred at x and y and
passing through A and B, respectively; let finally
z and t be the centres of the two horospheres
tangent to both Cx and Cy . Then the hyperbolic
distance between A and B is the logarithm of the
projective cross ratio of the four points x, y, z, t .
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This construction allows us to derive the hyperbolic
distance from the cross ratio and vice versa.

Conversely, the real projective line appears as
the boundary at infinity of the hyperbolic plane. In
the Poincaré disk model, two oriented geodesics
end up at the same point in U if they are asymptotic,
that is, they eventually remain at finite distance
from each other. This permits the extension of these
ideas to Hadamard surfaces. A two-dimensional
Riemannian manifold M is a Hadamard surface
if it is simply connected, negatively curved, and
complete. This boundary at infinity ∂∞M ofM is the
set of equivalence classes of asymptotic oriented
geodesics. For the hyperbolic plane, the boundary
at infinity is the projective line U. A horosphere is
now the limit of metric spheres passing through a
given point but whose centres go to infinity.

Otal generalised the cross ratio to ∂∞M by
reversing the construction of the picture. Starting
from four points in ∂∞M , draw four horospheres
and define the cross ratio of x, y, z, t as the expo-
nential of the distance between the two points
A and B, with some sign convention. In general,
the corresponding function satisfies all rules of R
except the additive relation (2). Define a cross ratio
as any function which satisfies this relaxed set of
rules. Using these ideas, Otal proved that a metric
of negative curvature on a surface is characterised
by the length of closed geodesics. Bourdon used
similar cross ratios to define a coarse geometry
on the boundary at infinity of a general negatively
curved metric space.

We now turn to dynamics and Teichmüller theo-
ry. Assume thatM is the universal cover of a closed
surface S. Although ∂∞M was defined from the
metric geometry of M , it depends only on π1(S).
Therefore we denote it ∂∞π1(S). The boundary at
infinity is homeomorphic to a circle and admits
an action of π1(S). Thus: every negatively curved
metric on S gives rise to a π1(S)-invariant cross
ratio on ∂∞π1(S).

A cross ratio has a dynamical interpretation.
Consider the quotient of the space of triples of
pairwise distinct points of ∂∞π1(S) by the diag-
onal action of π1(S). This quotient, which we
denote US, is compact. A cross ratio gives rise to
a one-parameter group of transformations {φt}
on US, defined by φt(x, y, z) = (x, y,w) where
t = b(x, y, z,w). The mutiplicative cocycle rule (1)
translates into φt+s = φt ◦φs . This construction
recovers the geodesic flow when the cross ratio
comes from a negatively curved metric. In general,
there is an intimate relation between dynamics and
the cross ratio.

What is the space MS of all cross ratios on
∂∞π1(S)? The Fricke space of hyperbolic structures
on S, usually identified with the Teichmüller
space T (S) of complex structures on S by the
Uniformisation Theorem, naturally sits in MS as
the subset of projective cross ratios. Every such

cross ratio identifies ∂∞π1(S) with the projective
line and thus defines a representation of π1(S)
in PSL(2,R) and a hyperbolic structure on S.
Similarly, a space of representations of π1(S) in
PSL(n,R), called the Hitchin component, has been
identifed by the author as the space of cross ratios
satisfying rules generalising the additive rule (2).
Finally,MS also contains the space of all negatively
curved metrics on S.

The spaceMS is suspected to have an interest-
ing structure generalising the Poisson structure on
Hitchin components described by Goldman. Recall
that a Poisson structure on a set Y is a Lie algebra
structure on a set of functions on Y , such that the
Lie bracket satisfies a Leibniz rule with respect to
multiplication. This notion arises from classical
mechanics and leads to quantum mechanics. By
construction, every quadruple of points (x, y, z, t)
of the boundary at infinity defines a function on
MS by b , b(x, y, z, t). These functions, when
restricted to Fricke space, yield a natural class of
functions whose Poisson brackets have been com-
puted by Wolpert and Penner. These functions were
later quantised—that is represented as operators
on Hilbert spaces—by Chekhov, Fock, and Penner.
A more sophisticated construction led Fock and
Goncharov to quantise Hitchin components.

In other directions, cross ratios are instrumen-
tal in generalising many properties of classical
Teichmüller theory, such as McShane identities, to
a higher Teichmüller-Thurston theory, that is, the
study of Hitchin components.

The complex projective cross ratio strongly
relates to hyperbolic 3-dimensional geometry. Two
recent and beautiful examples are W. Neumann’s
study of Hilbert’s third problem in hyperbolic
geometry, and the Quantum Hyperbolic Geome-
try developed by Baseilhac, Bonahon, Benedetti,
Kashaev, etc.

The simple functional rules satisfied by the
ubiquitous cross ratio are flexible enough to de-
scribe various geometric and dynamical situations.
Yet they are rigid enough to carry important infor-
mation about dynamics, Poisson structures, and
surface group representations.

Further Reading
[1] F. Labourie, Cross ratios, surface groups, PSL(n,R)
and diffeomorphisms of the circle, Publ. Math. IHES
(2007), no. 106, 139–213.

[2] J.-P. Otal, Sur la géometrie symplectique de l’espace
des géodésiques d’une variété à courbure négative, Rev.
Mat. Iberoamericana (1992), no 3, 441-456.

[3] W. D. Neumann, Hilbert’s 3rd problem and invariants
of 3-manifolds, The Epstein Birthday Schrift, 383–411
(electronic), Geom. Topol. Monogr., 1, Geom. Topol. Publ.,
1998.

[4] W. Thurston, Three-Dimensional Geometry and
Topology, vol. 1, Princeton University Press (1997).

November 2008 Notices of the AMS 1235


