
?W H A T I S . . .

the Schwarzian
Derivative?

Valentin Ovsienko and Sergei Tabachnikov

Almost every mathematician has encountered, at

some point of his or her education, the following

rather intimidating expression and, most likely,

tried to forget it right away:

(1) S (f (x)) =
f ′′′(x)

f ′(x)
−

3

2

(
f ′′(x)

f ′(x)

)2

.

Here f (x) is a function in one (real or complex)

variable and f ′(x), f ′′(x), ... are its derivatives.

This is the celebrated Schwarzian derivative, or

the Schwarzian, for short. It was discovered by

Lagrange in his treatise “Sur la construction des

cartes géographiques” (1781); the Schwarzian also

appeared in a paper by Kummer (1836), and it was

named after Schwarz by Cayley.

Expression (1) is ubiquitous and tends to ap-

pear in seemingly unrelated fields of mathematics:

classical complex analysis, differential equations,

and one-dimensional dynamics, as well as, more

recently, Teichmüller theory, integrable systems,

and conformal field theory. Leaving these numer-

ous applications aside, we focus on the basic

properties of the Schwarzian itself.

Two examples. a) The first example is perhaps

the oldest one. Consider the simplest second-order

differential equation, the Sturm-Liouville equation,

(2) ϕ′′(x)+ u(x)ϕ(x) = 0
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where the potential u(x) is a (real or complex

valued) smooth function. The space of solutions

is two-dimensional and spanned by any two lin-

early independent solutions, ϕ1 and ϕ2. Suppose

that we know the quotient f (x) = ϕ1(x)/ϕ2(x);

can one reconstruct the potential? The reader

can carry out the relevant computations to check

that u =
1

2
S(f ). The geometrical meaning of this

formula is as follows. The quotient t = ϕ1/ϕ2

is an affine coordinate on the projective line P1

so that t = f (x) is a parametrized curve in P
1.

This curve has non-vanishing speed, i.e., f ′ ≠ 0,

since the Wronski determinant of two solutions

of (2) is a non-zero constant. The Schwarzian then

reconstructs a Sturm-Liouville equation from such

a curve.

b) The next example is due to C. Duval, L. Guieu,

and the first author (2000). Consider the Lorentz

plane with the metric g = dxdy and a curve

y = f (x). If f ′(x) > 0, then its Lorentz curvature

can be easily computed: ̺(x) = f ′′(x) (f ′(x))−3/2,

and the Schwarzian enters the game when one com-
putes ̺′ = S(f )/

√
f ′. Thus, informally speaking,

the Schwarzian derivative is curvature.

The following beautiful theorem of E. Ghys

(1995) is a manifestationof thisprinciple: for an ar-

bitrary diffeomorphism f of the real projective line,

its Schwarzian derivative S(f ) vanishes at least at

4 distinct points. Ghys’ theorem is analogous to

the classical 4 vertex theorem of Mukhopadhyaya

(1909): the Euclidean curvature of a smooth closed

convex curve in R2 has at least 4 distinct extrema.

Not a function. A surprise hidden in formula

(1) is that the Schwarzian is actually not a func-

tion. The difference between a function and a

more complicated tensor field is in its behavior
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under coordinate changes. Choose another coor-

dinate y . What is the formula for S(f )(y)? For
a function the answer is simply f (y) = f (x(y)),
but for its derivative, due to the Chain Rule, it is
different: f ′(y) = f ′(x(y)) x′(y); this is why the
invariant (geometric) quantity is not the derivative
but the differential df = f ′(x) dx—a distinction
that tortures countless calculus students. The
geometric quantity corresponding to (1) is the
quadratic differential: S(f ) = S (f (x)) (dx)2. In

other words, S(f ) is a quadratic function on the
tangent spaceTR, just like a metric but without the
non-vanishing condition. We denote by Q2(RP

1)

the space of the quadratic differentials on the real
projective line RP1.

Main properties. 1. S(f ) = S(g) if and only
if g(x) = (af (x) + b)/(cf (x) + d), where a, b, c, d
are (real or complex) constants with ad − bc ≠ 0.
In particular, S(f ) = 0 if and only if f is a
linear-fractional transformation:

(3) f (x) =
ax+ b

cx+ d
.

Note that f (−d/c) = ∞, but f (x) is well-defined
for x = ∞. We can understand f as a diffeomor-

phism of RP1. The transformations (3) with real
coefficients form a group of projective symmetries

of RP1, which is SL(2,R)/{±1}. It follows that the
Schwarzian is a projective invariant.

2. Given two diffeomorphisms f , g of RP1, one
has: S

(
g ◦ f

)
= S(g)◦f+S(f ),where the first sum-

mand is the action of f on a quadratic differential,
(u ◦ f )(x) = u(f (x)) (f ′(x))2.

From discrete projective invariants to differ-
ential ones. The reader may be familiar with
projective invariants; see F. Labourie’s article [1].
Recall that a quadruple of points in P1 has a nu-
merical invariant. Choose an affine coordinate that
represents the points by four numbers t1, t2, t3, and

t4; the cross-ratio

[t1, t2, t3, t4] =
(t1 − t3)(t2 − t4)

(t1 − t2)(t3 − t4)

is invariant under the projective transformations

of the projective line. What is the relation of this
discrete invariant to the Schwarzian?

Consider a diffeomorphism f of RP
1. The

Schwarzian measures how f changes the cross-
ratio of infinitesimally close points. Let t be a point

in RP1 and v a tangent vector to RP1 at t . Extend
v to a vector field in a vicinity of t and denote
by φs the corresponding local flow. Consider four
points: t, t1 = φε(t), t2 = φ2ε(t), t3 = φ3ε(t). The
cross-ratio does not change in the first order in ε:

[f (t), f (t1), f (t2), f (t3)] =

[t, t1, t2, t3]− 2ε2S(f )(t)+O(ε3).

The coefficient of ε2 depends on the diffeomor-
phism f , the point t , and the tangent vector v ,
but not on its extension to a vector field. It is

homogeneous of degree 2 in v , and therefore S(f )
is indeed a quadratic differential.

Schwarzian as a cocycle. Let G be a group
acting on a vector space V , i.e., there is a homo-
morphism ρ : G → End(V). A map c : G → V is a
1-cocycle on G with coefficients in V if

ρ̃g : (v, λ)֏ (ρgv + λc(g), λ)

is again a G-action on V ⊕R. The cocycle c is non-
trivial if this action is not isomorphic to that with
c = 0. In this case, c defines a class of cohomology
of G, the notion that plays a fundamental role in
geometry, algebra, and topology.

Diffeomorphisms of RP
1 form an infinite-

dimensional group, Diff(RP1), which acts on all

tensor fields on RP1. Property 2 means precisely
that the Schwarzian is a 1-cocycle with coef-
ficients in the space of quadratic differentials

Q2(RP
1). Moreover, one can prove uniqueness:

the Schwarzian is the only projectively invariant
1-cocycle on Diff(RP1). This serves as a good
intrinsic definition.

The algebra of vector fields, Vect(RP1), is the

Lie algebra of the group Diff(RP1). Every differen-

tiable map on Diff(RP1) corresponds to a map on

Vect(RP1), its infinitesimal version. The infinites-
imal version of the Schwarzian is easy to compute
(substitute f (x) = x + ε X(x) in (1) and differen-
tiate with respect to ε at ε = 0): s(X(x) d/dx) =
X′′′(x) (dx)2. This is a projectively invariant 1-

cocycle on Vect(RP1)with coefficients inQ2(RP
1).

Moreover, the invariant pairing between quadratic
differentials and vector fields yields a 2-cocycle on

Vect(RP1) with trivial coefficients:

ω

(
X(x)

d

dx
, Y(x)

d

dx

)
=

∫

RP
1
X′′′(x)Y(x) dx.

This is the Gelfand-Fuchs cocycle (1967); it defines

a central extension of Vect(RP1) called the Vira-
soro algebra, perhaps the most famous infinite-
dimensional Lie algebra, defined on the space

Vect(RP1)⊕R by the commutator

[(X,α), (Y , β)] = ([X, Y], ω(X,Y)) ,

where [X, Y] is the commutator of vector fields.
The Schwarzian contains complete information

about the Gelfand-Fuchs cocycle; for instance, the
2-cocycle condition follows from Property 2. The
relations between the Schwarzian and the Vira-
soro algebra were discovered, independently, by
A. Kirillov and G. Segal (1980).

Multi-dimensional versions of the Schwarzian.
Here is a “universal method” of discovering a
multidimensional Schwarzian:
a) choose a group of diffeomorphisms and a
subgroup G that has a nice geometrical meaning,
b) find a G-invariant 1-cocycle on the group of
diffeomorphisms,
c) (the most important step) check that no one did
it before.
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One of the most interesting multi-dimensional
Schwarzians is that of Osgood and Stowe (1992).
Consider a Riemannian surface (M,g) and the
group Diffc(M) of all conformal transformations
of M . The Riemann uniformization theorem im-
plies that M is conformally flat. One can (locally)
express the metric as g = (1/F)ψ∗g0, where ψ is
a conformal diffeomorphism of M , F is a smooth
function, and g0 is a metric of constant curvature.
The conformal Schwarzian is given by

S(ψ) =
∇dF

F
−

3

2

dF ⊗ dF

F2
+

1

4

g−1(dF, dF)g

F2
,

where∇ is the covariant derivative corresponding
to the Levi-Civita connection. This is a 1-cocycle
on Diffc(M), invariant with respect to the (local)
Möbius subgroup SO(3,1) associated to the metric
g0. The construction also makes sense if dimM >
2, but the conformal group is finite-dimensional
in this case.

Lagrange and the Schwarzian Derivative
The name “Schwarzian de-
rivative” was coined by
Cayley, but he points
out that Schwarz him-
self says that it occurs
already, at least implicit-
ly, in Lagrange’s essay on
cartes géographiques. Fe-
lix Klein learned about
Lagrange’s work through
a private communication
from Schwarz (noted in
§III.5 of Lectures on the
Icosahedron). It is not quite
straightforward, however,
in reading Lagrange, to see
what he is doing, and it is
not clear to what extent lat-
er mathematicians went to

the original work. Joseph Sylvester, in “Method
of reciprocants” records that he tried to track
down Lagrange’s use of the Schwarzian, but then
only concludes that “There are two papers by
Lagrange … but I have not been able to discover
the Schwarzian derivative in either one of them.”
Even in modern times Lagrange’s role has been
missed—for example, George Heine in an article
in the recent book Euler at 300: An Appreciation
says that Lagrange’s work had little influence on
either mathematics or cartography.

Schwarz was, however, correct—Lagrange did
introduce some version of the Schwarzian de-
rivative S(f ), and for an interesting purpose. He
considers the Earth as a general body of revolu-
tion, taking into account the known non-sphericity.

Among other generalizations, let us mention the
“Lagrangian Schwarzian” modeled on symmetric
matrices, Ovsienko (1989); a more general non-
commutative Schwarzian of Retakh and Shander
(1993); and various generalized Schwarzians with
coefficients in the space of differential operators.

Last but not least, the Schwarzian derivative
plays a key role in Teichmüller theory, namely,
the Bers embedding of the Teichmüller space of
a Riemann surface into an appropriate complex
space. However, this vast topic deserves a separate
treatment.
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He studies the maps given by a conformal mapping
from a spherical region to the plane that takes
all the meridians and all the parallels to arcs of
circles (as does stereographic projection). This is
equivalent to describing local conformal mappings
z ֏ f (z) for which the image of each horizontal
and each vertical line is a circular arc. He proves
that the conditions on horizontals and verticals
are equivalent and that both are equivalent, in con-
temporary notation, to the equation ImS(f ) = 0.
This implies in turn that S(f ) = constant. He
solves this equation and explicitly describes its
solutions. The Schwarzian derivative S(f ) appears
in his paper as φ′′/φ where φ = 1/

√
f ′), which

excuses Sylvester to some extent for missing it.
All this was found again much later, but appar-

ently quite independently of Lagrange’s original
work. What is sometimes called Arnold’s Law as-
serts, “Discoveries are rarely attributed to the
correct person.” One might add to this (Michael)
Berry’s Law, prompted by the observation that the
sequence of antecedents under the previous law
seems endless: “Nothing is ever discovered for the
first time.”

Lagrange’s article on cartes géographiques is in
Volume IV of his collected works. This is not, un-
fortunately, available at http:gallica.bnf.fr
as are Volumes II and VIII, but we have made a
scan of it available at

http:www.math.ubc.ca/˜cass/cartes.pdf.
It is this volume, incidentally, that contains as

frontispiece the well known portrait of Lagrange
reproduced here.

—Bill Casselman, Valentin Ovsienko,
and Sergei Tabachnikov
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