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a Skein Module?
W. B. Raymond Lickorish

Consider all formal linear sums of oriented links
in a 3-manifold M . Coefficients are to be in
Z[v−1, v, z−1, z], the Laurent polynomials in v
and z. Impose on this all relations of the form
v−1L+ − vL− = zL0, where L+, L−, and L0 are three
links identical except near a point where they are
as in Figure 1. The result is the oriented linear
skein module of M .
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Figure 1. The only differences in L+L+L+, L−L−L−, and L0L0L0.

A link is, of course, a finite collection of disjoint
simple closed curves (strings) inM , two links being
the same if one can be moved to become the other
without breaking the strings (such a movement is
technically an ambient isotopy). A fundamental
theorem is that, when M is ordinary 3-space R3,
or the 3-sphere S3, this skein module is free of
dimension one with base the unknot U . Thus the
coordinate, or evaluation, of an oriented link L
with respect to U is a polynomial invariant PL(v, z)
of L.

Let T be the solid torus A × [0,1], where A
is an annulus. The union of a link in the solid
torus A× [0, 1

2] with a link in A× [ 1
2 ,1] is a link in

T . This defines a product, and the skein module
of T becomes a commutative algebra. A short
argument, using the above relation to “change
crossings”, shows this is generated as an algebra
by {Lr : r ∈ Z}, where Lr is a single string steadily
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encircling T , in as simple a way as possible, r
times. Finding an easy description of the skein
module of an arbitrary 3-manifold is usually not
possible. However, any orientable 3-manifold M
can be formed from S3 by surgery, by removing
and replacing differently solid tori fattening a link
L in S3. Evaluation of a certain carefully chosen
element of the skein module of T placed around
every component of L, can produce “quantum”
invariants of M . The intricate details of this are in
[3]. An evaluation of elements of skein modules,
linear sums of links (or later, tangles) in some
configuration, will always mean the multilinear
sum of all evaluations of unions of summands.

Evaluating a link in terms of a base of a skein
module can be seen as a partial calculation of a
link invariant. In a relative version of the above,
M has non-empty boundary ∂M containing 2N
specified “fixed” points;N of these have an inwards
orientation and N an outwards one. The theory
proceeds as before using tangles instead of links. A
tangle is a disjoint union of oriented simple closed
curves with N oriented arcs joining in pairs the
2N specified points. Two tangles are the same if
one can be moved to the other keeping ∂M fixed
during the movement. In a famous example of J. H.
Conway, M is a ball with four specified points. The
skein module ofM is then 2-dimensional with base
the two tangles t0 and t∞ of Figure 2. Any 2-string
tangle in the ball can be expressed as a linear
combination of t0 and t∞. The tangle t2n shown
with 2n crossings is v2nt0+zv(v2n−1)(v2−1)−1t∞,
for example, and wherever a copy of t2n occurs in
a calculation this can be substituted. If a sphere
S cuts a knot K contained in S3 in four points,
it divides K into a tangle in the ball inside S
and another in the ball outside. The polynomial
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Figure 2. t0t0t0 and t∞t∞t∞ are a module base.

PK(v, z) can be found by expressing these tan-
gles in terms of the bases of the two balls and
combining the bases together with a simple 2× 2
matrix. Now note that a π -rotation about one of
the three coordinate axes of Figure 2, together with
reversal of arrows if needed, leaves the two base
elements unchanged. Thus, if K is changed to K′
by removing the tangle inside S, giving it one of
the three π -rotations and replacing it, PK(v, z) and
PK′(v, z) are identical. The change from K to K′ is
Conway’s mutation. He invented skein theory in
the 1970s when the Alexander polynomial ∆L(t)
was the only relevant oriented link invariant (where∆L(t) = PL(1, t− 1

2 − t 1
2 )). Conway noted that the

only two (distinct) 11-crossing knots with∆K(t) = 1
are related by mutation.

For a ring R and any 3-manifold M , a skein
module is, then, just a quotient of the free R-
module generated by all tangles in M . In practice
the type of quotient must be chosen with care. A
second linear skein module can be constructed
from formal linear sums of unoriented links using
the ring Z[z−1, z] and all relations of the form
shown in Figure 3. The same fundamental theorem
then holds. Requiring links and tangles to be

Figure 3. Skein relation without orientations.

“framed”, by the giving at each point of a normal
direction (which in diagrams will always point at
the observer), enables the ring to be extended to
become Z[a−1, a, z−1, z].

The next example is altogether more amenable.
It has indeed been calculated for lens spaces
and certain knot complements and generalised by
“categorification”. It is the Kauffman Bracket skein
module of a 3-manifold M , all formal Z[A−1, A]
linear sums of framed unoriented tangles in M
modulo all relations of the forms of Figure 4 (i)
and (ii) (type (iii) is a consequence). Here (i) refers
to the union of a tangle L with an unknot in a ball
disjoint from L, and in (ii) the tangles are identical
except where shown. In R3 one can project to a
plane and use (ii) to lose crossings, then (i) to lose
closed curves. The upshot is that the module for
R3 is one-dimensional with base the untwisted

unknot U . The U -coordinate of a link L is, up to a

Figure 4. Kauffman bracket relations.

factor, the Jones polynomial PL(A−4, A−2 −A2) of
L. This formulation of L. H. Kauffman [1] led to the
main applications of the Jones polynomial.

The Kauffman Bracket skein module of the
solid torus T is just the polynomial algebra over
Z[A−1, A], a generator being one untwisted curve,
α say, encircling T once. Depict the ball B with
2n boundary points as a rectangle with n points
on each of the left and right sides. Concatenation
of rectangles makes the skein module of B into
an algebra. It is the nth Temperley-Lieb algebra of

dimension 1
n+1

(
2n
n

)
but generated as an algebra

by n elements {1, e1, e2, . . . , en−1} shown in Figure
5. This algebra has a unique element f (n), the Jones-

Figure 5. Temperley-Lieb generators.

Wenzl idempotent, such that f (n)ei = 0 = eif (n)
and (f (n) − 1) belongs to the algebra generated by
{e1, e2, ..., en−1}, (so f (n)f (n) = f (n)). Placing f (n) in
a solid torus T , and connecting the n points on
the left to those on the right directly around T ,
produces Sn(α), a Chebyshev polynomial in α. If
Sn(α) contained in T is placed, without twisting,
around the unknot and interpreted in the skein
module of S3, its coordinate (with ∅ as base) is∆n = (−1)n(A2(n+1) − A−2(n+1))(A2 − A−2)−1. Thus∆n = 0 if A is chosen to be a complex (4n + 4)th
root of unity. Then the (normalised) evaluation
of
∑n−1
r=0 ∆rSr(α) placed around each component

of a surgery link defining a 3-manifold, gives a
3-manifold invariant.

The evaluation of a link with Sc(r)(α) placed
around its r th component is the Jones polynomial
of the link coloured by the function c. The form
of the above 3-manifold invariant gives motivation
to the calculation of coloured invariants. As Sn(α)
is just f (n) with its end points joined around a
solid torus, this leads to consideration of config-
urations of many f (n)s joined together in subtle
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Mathematical Gates. The main entrance to the
Centre for Mathematical Sciences in

Cambridge is sealed by iron gates. Medallions
in these gates show the only two knots with at
most eleven crossings, other than the unknot,

that have trivial Alexander polynomial. One
gate shows the knot studied by S. Kinoshita

and H. Terasaka, whilst the other gate shows
the knot discovered by J. H. Conway in his

classification of eleven-crossing knots. Related
as they are by one of Conway’s mutations they

cannot be distinguished by any invariant
based on skein theory. The medallions were

created by John Robinson and donated by
Damon de Laszlo and Robert Hefner III.

ways. Such configurations are drawn as labelled
planar trivalent graphs, possibly with crossings,
where an integer a ≥ 0 labelling an edge indicates
the presence of a copy of f (a) in a strings parallel
to the edge. A vertex, where edges labelled a, b,
and c meet, denotes the element of the skein
module of a ball with a + b + c specified points
shown in Figure 6 (i) where x + y = c, y + z = a,
and z + x = b. For this to exist, {a, b, c} must be

Figure 6. Triad and graph for θ(a, b, c)θ(a, b, c)θ(a, b, c).

compatible, meaning that a+b+c is even, a ≤ b+c,
b ≤ c + a, and c ≤ a + b. The labelled graph of
Figure 6 (ii) evaluates to

θ(a, b, c) = ∆x+y+z !∆x−1!∆y−1!∆z−1!∆y+z−1!∆z+x−1!∆x+y−1!
,

where ∆n! denotes ∆n∆n−1∆n−2...∆1.

In the Kauffman Bracket skein module of the
ball with four specified boundary sets of a, b,
c, and d points, consider the submodule of all
skeins having f (a), f (b), f (c), and f (d) adjacent
to these sets (see Figure 7). It is not hard to
show that all the elements [(a, b)j(c, d)], with
both triples compatible, form a base of this
submodule. So do the elements [(b, c)i(d, a)].
The terms in the change of base matrix, defined

by [(a, b)j(c, d)] =
∑
i

{a b i
c d j

}
[(b, c)i(d, a)],

are called “6j-symbols”. A cumbersome closed

Figure 7. The ball with four point sets.

formula is known for them. An arc labelled a
over-crossing one labelled b has j th coordinate

(−1)
a+b−j

2 ∆jθ(a, b, j)−1Aa+b−j+(a2+b2−j2)/2 with re-
spect to base {[(a, b)j(a, b)]}. Using this, an
expression for any coloured Jones polynomial can
be derived in terms of the ∆n, the θ(a, b, c), and
the 6j symbols.

Finally, the evaluation τ of the edges of
a tetrahedron labelled with {c, b, j} around
a face and {a, d, i} on the edges opposite is

∆−1
i θ(i, b, c)θ(i, a, d)

{a b i
c d j

}
. When A4n+4 = 1,

the Turaev-Viro 3-manifold invariant is

kv
∑
s

{∏
e
∆se∏

f

θ(sf )
∏
t
τ(ŝt)

}
,

where k = (A2 − A−2)2/(−2n − 2). Here e, f , and
t are the edges, faces, and tetrahedra of a tri-
angulation with v vertices, and s runs through
edge-labellings compatible around any face, with
face sums at most 2n − 2. A tetrahedron with
labelling dual to s on t (three labels at a vertex now
encircle a face) is denoted ŝt .
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