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Lehmer’s Number?
Eriko Hironaka

Lehmer’s number, λ ≈ 1.17628, is the largest real

root of the polynomial

fλ(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

This number appears in various contexts in num-

ber theory and topology as the (sometimes con-

jectural) answer to natural questions involving

notions of “minimality” and “small complexity”.

Its story begins within number theory. Lehmer’s

number λ is the conjectural answer to

What is the smallest size of an algebraic integer

greater than one?

Since two algebraic integers are algebraically con-

jugate if they are roots of the same minimal

polynomial, any natural notion of the size of an

algebraic integer should be constant on conjugacy

classes. Given an irreducible monic integer poly-

nomial f , the Mahler measure of f , or M(f), is the

absolute value of the product of roots with norm

greater than one. By size of an algebraic integer

α we mean the Mahler measure of the minimal

polynomial of α. The Mahler measure of α is one

if and only if α is a root of unity. Since Lehmer’s

number λ is the only root of fλ outside the unit

circle, λ is its own Mahler measure.

A related notion of size is the maximal norm

of algebraic integers conjugate to α, which we will

call the length of α. By this definition, the length

of an algebraic integer can be arbitrarily close to
one (e.g., consider

n
√

2 for n large). It is not known

whether the same is true for Mahler measures.

Lehmer in [1] formulated the problem in this way:
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Given any δ > 0, is there an algebraic integer
whose Mahler measure is strictly between 1 and

1+ δ?

Algebraic integers with small Mahler measure were
important to Lehmer in his study of prime number-

generating functions. Using computing machines
he built himself, he found the smallest Mahler

measures for even degrees up to 10. Recent com-
puter searches by D. Boyd, M. Mossinghoff, and
G. Rhin verify that Lehmer’s number λ is the

smallest Mahler measure greater than one for all
degrees up to 40 (see Mossinghoff’s website [2]).

Lehmer’s number λ has special number-
theoretic properties. First, the coefficients of its

minimal polynomial fλ are the same when read
from the left or from the right. We call such

a polynomial reciprocal, since this implies that
the set of algebraic conjugates of λ contains all

its reciprocals. Second, Lehmer’s number λ is
the only one of its algebraic conjugates that lies

outside the unit circle. Such an algebraic integer
is called either a Salem number (reciprocal case)

or a Pisot number (nonreciprocal case).
What is known about Lehmer’s question re-

stricted to Salem and Pisot numbers is similar to
what is known for more general Mahler measures.

For nonreciprocal polynomials f , C. Smyth showed
in 1970 that

M(f) ≥ M(x3 − x− 1) = θ(≈ 1.32472) > λ.

This generalizes A. Siegel’s result that θ is the
smallest Pisot number and shows that θ is also

the smallest Mahler measure of nonreciprocal
polynomials, reducing Lehmer’s question to the

reciprocal case. Similarly, Lehmer’s number is
both the smallest known Salem number and the

smallest known Mahler measure greater than one.
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Figure 1. Manifestations of Lehmer’s number as mapping class, pretzel knot, and Coxeter graph.

Lehmer’s question is equivalent to asking
whether an algebraic integer with small length
must have a correspondingly large number of
algebraic conjugates outside the unit circle. The
number of exterior conjugates can be thought of
as the complexity of α.

Lehmer’s question and its offshoots have natu-
ral analogs in geometry and topology. For example,
D. Lind, K. Schmidt, T. Ward, and others have stud-
ied the logarithm of a multivariable version of
Mahler measure as the topological entropy of an
associateddynamical system on then-dimensional
torus. D. Silver and S. Williams showed that the
Mahler measure of the Alexander polynomial of a
knot or link complement is the growth rate of its
classical torsion numbers.

There is evidence for the minimality of Lehmer’s
number among Mahler measures in the contexts
of mapping classes, fibered links, and Coxeter
systems. Lehmer’s number itself can be found in
the cross-section of these fields of study.

An irreducible mapping class is an isotopy
class of homeomorphisms of a compact oriented
surface to itself so that no power preserves a
nontrivial subsurface. By the Thurston-Nielsen
classification, irreducible mapping classes are
either periodic (analogous to roots of unity) or are
of a type called pseudo-Anosov. There is a natural
notion of length greater than one for pseudo-
Anosov mapping classes: if φ is pseudo-Anosov,
the surface has a local Euclidean structure (with
singularities) so that φ expands by a real number
α > 1 in one direction and contracts by α−1 in
another. The number α is called the (geometric)
dilatation of φ.

The dilatations α are special algebraic integers,
called Perron numbers, and are roots of reciprocal
monic integer polynomials. The logarithm of α is
the length of a geodesic determined byφ in Teich-
müller space. As with lengths of algebraic integers,
the dilatations of mapping classes on surfaces of
genus g can be made arbitrarily close to one as g
grows large. More precisely, R. Penner showed that
the minimal dilatation αg for a genus g surface

satisfies the asymptotic relation log(αg) ≍
1

g
.

One source of mapping classes comes from
fibered knots and links. A knot or link K in S3

is fibered if its complement is the mapping torus

for a mapping class φ defined on a surface S
that spans K in S3. The Alexander polynomial
of K is the characteristic polynomial of the ac-
tion of φ on the first homology of S. Its largest
root, the homological dilatation of φ, is bounded
above by the geometric dilatation. By a theorem of
T. Kanenobu, any reciprocal monic integer polyno-
mial is the Alexander polynomial of a fibered link.
In particular, Lehmer’s number λ is the homolog-
ical dilatation of the (-2,3,7)-pretzel knot (shown
in Figure 1, center) and is the Mahler measure of
its Alexander polynomial.

One can also associate mapping classes to sim-
ply laced Coxeter systems. Given a simple graph Γ
with ordered vertices, there is an associated linear
transformation called the Coxeter element of Γ .
From bipartite graphs Γ that are neither spherical
nor affine, W. Thurston constructed an associated
pseudo-Anosov mapping class so that the homo-
logical and geometric dilatations are both equal
to the spectral radius of the Coxeter element. The
monodromy φ of the (-2,3,7)-pretzel knot is the
mapping class associated to the Coxeter graph
E10 (Figure 1, right) and is the product of positive
Dehn twists along simple closed curves dual to
E10 on a genus 5 surface (Figure 1, left). Thus,
Lehmer’s number is the geometric dilatation of φ
and the spectral radius of the Coxeter element of
E10.

Results from graph theory imply that to find
Coxeter elements with small spectral radius it
suffices to look at simple extensions of spherical
and affine Coxeter graphs. C. McMullen showed
further that the spectral radius of any element
of a Coxeter group is either one or greater than
Lehmer’s number λ. This answers Lehmer’s ques-
tion not only for Coxeter systems but also for the
corresponding subclasses of mapping classes and
fibered links.
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