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an Infinite Swindle?
Valentin Poénaru

The infinite comes with magic and power.

Here is a nice geometric example of what an

infinite process can do. Start with a closed surface

S and a simple closed curve that is homotopically

nontrivial, C ⊂ S. Let f be a hyperbolic diffeomor-

phism of S. Bill Thurston has shown that, when

the infinite sequence of iterates of f is applied to

C, i.e., when one goes to fC, f 2C, f 3C, . . . then, as

n gets larger and larger, the strands of f nC gather

more and more into parallel sheaves, until in the

limit there appears a foliation F with a transverse

Lebesgue type measure.

In a situation like the one just described, the

final pattern reveals itself more and more as n

grows, like in a usual convergent infinite computa-

tion. An infinite swindle is also an infinite iterative

process of sorts, but one in which the grand final

pattern is never, even partially, visible at any finite

stage; it only reveals itself at the bitter end, out of

the blue, as if by magic.

We will start with a simple example. Consider

two solid tori T1 and T2, with T1 embedded in the

interior of T2, like in Figure 1; T1 is the blue torus,

and T2 is the gray torus. Where T1 links with itself,

there are two choices, and we have chosen one.

Next, embed T2 into a third solid torus T3, just like

T1 ⊂ T2 (see Figure 2), and iterate indefinitely

(1) T1 ⊂ T2 ⊂ T3 ⊂ . . .
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Figure 1.

Figure 2.

The union
∞⋃

n=1

Tn is an open 3-manifold called

the Whitehead manifold Wh
3
. Wh

3
is contractible,

although if you stop the sequence (1) at any finite

stage, you get a non-simply connected object. And

it is not homeomorphic to R3, since it fails to be
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simply connected at infinity. This venerable object

was discovered by Henry (J. H. C.) Whitehead, more

than seventy years ago, as a counterexample to
his own wrong proof for the Poincaré Conjecture.

Now consider two standard smooth spheres of
dimensions n − 1 and n, with a smooth embed-

ding between them, Sn−1 i
-→ Sn. The image i Sn−1

splits Sn into two smooth compact submanifolds,
called Schoenflies balls. The question of what a

Schoenflies ball really is (or, equivalently, what
the pair (Sn, i Sn−1) looks like) is the celebrated

Schoenflies problem. (Notice that I have studiously
and deliberately put myself in a DIFF, i.e., smooth,

setting and, in this paper we will go TOP, i.e.,

purely topological rather than DIFF, only when
forced to do so.)

One should be aware that a lot of funny things
might happen as soon as the dimension n is three

or more. For instance, in the mid-1920s, for n = 3,
J. W. Alexander showed, via a rather tedious ar-

gument, that Schoenflies 3-balls are standard. At
the same time, he also came up with his famous

“Alexander’s horned sphere”, a reminder that in

dimensions strictly higher than two, in the ab-
sence of some additional local conditions beyond

mere continuity (and such conditions are largely
fulfilled in the smooth case), things can get very

wild. Do not always trust your intuition.
In a related context, consider the following

“easy” lemma. In some arbitrary dimension, call

it m, take a smooth embedding Bm
j
-→ Sm; the

pair (Sm, jBm) is then standard. This may look
deceptively quite similar to what we are after, i.e.,

the pair (Sn, iSn−1). But our “easy” lemma, stated
above, does not require any breathtaking new idea,

only good solid technology.
The next advance came only in the late 1950s,

with the revolutionary work of Barry Mazur. At the

time, what people expected was a painful climb
up the ladder of increasing dimensions, from 3 to

4, from 4 to 5, and so on. Barry’s work, handling
all the dimensions at once, came like a thunder-

bolt and was also a psychological revolution that,
together with other developments, paved the way

for what came next in high-dimensional topology.
We need to introduce now the concept of con-

nected sum of n-manifolds with boundary. Let
Mn

1 ,M
n
2 be compact manifolds that are connected

and have connected boundaries. An (n − 1)-ball,

together with embeddings

(2) ∂Mn
1 ⊃ B

n−1 ⊂ ∂Mn
2 ,

is also given. There are some orientation issues
involved here, which we will skip in a cavalier man-

ner. One can make sense of the union ofMn
1 andMn

2

along Bn−1 as a new connected n-manifold denoted

Mn
1 #Mn

2 . Up to diffeomorphism, this “connected
sum” is independent of the precise set-up (2).

All this should be intuitively clear, but of course

a lot of technicalities have been pushed under
the rug. We now have a composition law among
bounded n-manifolds that (up to diffeomorphism
at least) is commutative and associative. More-
over, the standard DIFF n-ball Bn acts as a unit,
i.e., Mn #Bn = Mn.

Figure 3. If Sn−1 is embedded into Sn in a
non-standard way, are the components X and

Y of its complement copies of Bn?

Figure 4. To obtain X#Y , pull each of X and Y
into themselves, then glue together along a

copy of Bn−1. Since Bn−1 × B1 is homeomorphic
to F = Bn, the “easy” lemma implies that X#Y

is homeomorphic to Bn.
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Let us take one step further, to an infinite
sequenceMn

1 ,M
n
2 ,M

n
3 , . . . and replace (2) by the cas-

cade ∂Mn
1 ⊃ B

n−1
1 ⊂ ∂Mn

2 ⊃ B
n−1
2 ⊂ ∂Mn

3 ⊃ B
n−1
3 ⊂

. . . , with Bn−1
2 ⊂ ∂Mn

2 − B
n−1
1 , and so on. Then

(3) Mn
1 #Mn

2 #Mn
3 #Mn

4 # . . .

is an unambigously well-defined non-compact
smooth n-manifold, with non-empty boundary
with a single end. Try this same game now for the
special case when all the Mn

i ’s are copies of the
standard n-ball Bn. It should not be very hard to
prove that what (3) becomes, in this special case,
is

(4) Bn #Bn #Bn # . . . = Bn − { p ∈ ∂Bn} .

So, let us go back to Sn−1 i
-→ Sn, which splits

Sn into two Schoenflies balls, call them Xn, Y n. If
one applies our easy lemma to some arbitrarily
chosen Bn−1 ⊂ Sn−1, one can see that, if one splits
Sn open along iBn−1, then what one gets is Xn #Y n.
A second application of the same easy lemma, this
time in dimension n, yields the diffeomorphism

(5) Xn #Y n = Bn .

Now comes the big step. Like in (3), we introduce
the following, perfectly legitimate object

(6) Zn = Xn #Y n #Xn #Y n # . . .

Using the formulae (4), (5), as well as the asso-
ciativity of the composition law #, we can express
the Zn above in two different ways, namely

Zn = Xn # (Y n #Xn)# (Y n #Xn)# . . .

= Xn − {a boundary pointp ∈ ∂Xn} ,

and

Zn = (Xn #Y n)# (Xn #Y n)# . . .

= Bn − {a boundary pointq ∈ ∂Bn} .

The upshot is that

(7) ∆
n − {p ∈ ∂∆n} =

DIFF
Bn − {q ∈ ∂Bn} ,

where ∆n means a general n-Schoenflies ball. This
is what is called an infinite swindle. Via the stan-
dard one-point compactification, which replaces
let us say the “. . .” in (6) by “. . . ∪ {∞}”, one also
gets, from (7), the homeomorphism

(8) ∆
n =

TOP
Bn .

But several questions may pop up at this point.
Firstly, how come the argument above works,
while the following deceptively similar “proof”
that 1 = 0 is humbug?:

(9) 1−1+1−1+1−. . . = (1−1)+(1−1) = . . . = 0

= 1+ (−1+ 1)+ (−1+ 1)+ . . . = 1 .

Well, you may have noticed that in my little ex-
position above, I went to some length in stressing
that the Zn in (6) is a mathematically well-defined
object. This is certainly not the case for the left-
hand side of (9). Equation (6) is a special case of
(3), for which we have been very careful to specify

a very unambiguous recipe for its construction, at
least as a topological space, by gluing together in
a proper manner infinitely many compact pieces.
It also has an unambiguous smooth structure, as
it turns out. The relation between (9) and (7) is not
unlike the one between the old Greek pun, in which
Epimenides the Cretan says that “all Cretans are
liars”, and Gödel’s incompleteness theorem.

Secondly, and more seriously, you may wonder
what happens with the discrepancy DIFF versus
TOP, in (7) versus (8). Here is what goes on (I will
not come back to the simpler cases n ≤ 3, where
everything is as it should be).

In all dimensions n ≥ 6 Smale’s h-cobordism
theorem allows us to replace the TOP in (8) by
DIFF. To do that for n = 5 we need, in addition to
Smale’s work, the work of Kervaire and Milnor on
surgery. But there, things stop; when one moves
to n = 4, the issue is not yet settled. The smooth
4-dimensional Schoenflies problem (i.e., the ques-
tion whether ∆4 is smoothly standard) is an open
mystery, to this day.

This is a good time to take another look at our

seemingly innocent Whitehead manifold Wh
3
. As

everybody knows, there are no knots in dimension
four, and, starting from this fact, it is quite easy
to see that there is a diffeomorphism

(10) Wh
3 × (0,1) = R4

(or Wh
3 × R = R4, if you like). By R4 we will mean

here the standard, well-known, smooth R4.
While forn 6= 4 it is known (via work of Stallings)

that Rn has no DIFF structures other than the one
everybody knows, exactly for n = 4 there are also
exotic R4’s (actually loads of them).

Starting from the fact that in (1) every Tn is
included in the interior of the next Tn+1, one can

rewrite the Wh
3 × (0,1) from (10) as follows

Wh
3 × (0,1) = (

◦

T × (0,1))∪ (
◦

T 2 × (0,1))(11)

∪(
◦

T 3 × (0,1))∪ . . .

Now one can add a piece of boundary at the
infinity of the open manifold above and replace it
by

(12) (
◦

T 1×(0,1])∪(
◦

T 2×(0,1))∪(
◦

T 3×(0,1))∪. . . ,

where the first (0,1) becomes (0,1]. So, what kind
of an object is this (12)? Well, it is a smooth
non-compact manifold with non-empty boundary,
call it M4, which is such that

(13) intM4 = R4 , ∂M4 = S1 ×
◦

D2 .

It actually turns out that our M4 is one of the
so-called “Casson handles” (CHs). These CHs com-
prise a whole class of 4-manifolds, discovered by
Andrew Casson in the mid-1970s. His motivation
was to circumvent the failure of the “Whitney
process” in dimension four. In higher dimensions,
where it works very well, the Whitney process was
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an essential ingredient for Smale’s h-cobordism
theorem. Casson’s own construction of the CHs
is an intricate, tricky, infinite business, much too
complex to be described here: it is like a very

high-powered version of the construction of Wh
3
.

Casson constructed a whole Cantor set’s worth of
CHs. In a certain sense, the moduli space for the
CHs is a Cantor set, our M4 being a very precise
point of it, something like a 0.1111 . . . The various
CHs all share the properties of ourM4 listed above,
including of course (13). Why should we care? Well,
the main step in Michael Freedman’s proof of the
4-dimensional TOP Poincaré Conjecture was to
show that all CHs are topologically standard, in
the sense that, for any CH one has

(14) CH =
TOP

D2 ×
◦

D2 .

So our M4 form (12) actually turns out to

be homeomorphic to D2 ×
◦

D2. See whether you
manage to prove this little fact with bare hands,
without playing Freedman’s full symphony of
infinite processes!

It turns out that, if one could replace, in full
generality, TOP by DIFF in (14), then there would be
no exotic R4’s. But, since exotic R4’s do exist there

must also be CHs not diffeomorphic to D2 ×
◦

D2.
One can even explicitly name some.

For more than one reason, the mysteriously
deep chasm between DIFF and TOP in dimension
four, and exactly there, is an important issue. One
of the attractions of the 4-dimensional smooth
Schoenflies problem is that it touches on this
issue.
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