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Measure Rigidity?
Manfred Einsiedler

Measure rigidity is a commonly used shorthand
term for rigidity of invariant measures. Here the
term rigidity does not have a formal mathematical
definition. Rather, it is an informal description of

the frequently appearing phenomenon that, for
certain mathematical objects, the only examples
have much more algebraic structure than was orig-
inally demanded. A simple example would be the

statement that we have rigidity of continuous ho-
momorphisms of the real line. This is a shorthand
way of saying that all continuous homomorphisms
of the additive groupR to itself are in fact linear. (A
more subtle result is that one even has rigidity of

measurable homomorphisms of the real line.) As
the requirement to be a homomorphism is much
weaker than the requirement to be linear, this
is indeed an example where additional algebraic
structure is forced. One may say that a linear map

cannot be perturbed to a nonlinear continuous
homomorphism or that linear maps are rigid.

To explain what an invariant measure is, we
need to introduce a transformation on a space—a

dynamical system. Let X be a metric space. For
example, we could setX = T = R/Z, which is often
called the torus or the circle group and consists of
the cosets x = r + Z for r ∈ R. Let us agree that a
measure µ on a metric space X is simply a way of

assigning to every continuous function f ∈ C(X)
a number—its integral

∫
f (x)dµ(x) or

∫
fdµ with

respect to µ—so that the usual properties of an
integral hold: we require that f →

∫
fdµ is linear

and that f ≥ 0 implies
∫
fdµ ≥ 0. In fact, we will

be studying probability measures on X, and so
the integral of the constant function 1X is one.

The Riemann integral
∫ 1

0 f (r+Z)dr for f ∈ C(R/Z)
would in this sense define a probability measure,
which is called the Lebesgue measure mT.

Now let T : X → X be a continuous map.
A probability measure µ on X is invariant if∫
fdµ =

∫
f ◦ Tdµ. One should think of T as the

time evolution of the dynamical system, of f as
the outcome of a physical experiment, and of the
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integral as the expected value for the outcome of
f . Then the invariance of µ is simply the require-
ment that the expected value of the outcome is the
same now and one time unit later. The setM(T) of
invariant probability measures depends crucially
on the transformation T . For many maps T this set
M(T) is rather large, and it is impossible to give
a reasonable description. However, sometimes we
also have rigidity of invariant measures: the set of
invariant measures shows a surprising amount of
structure. We will give examples of both scenarios.

Let us start by studying the case of the circle ro-
tation defined byRα(x) = x+α, wherex ∈ T,α ∈ R
is a given number, and addition is understood as
modulo Z. Let us assumeα ∈ R\Q is irrational, as
this makes the dynamical system more interesting.
The standard substitution rule of the Riemann in-
tegral shows in fact that the Lebesgue measuremT

is invariant under Rα. We claim thatmT is the only
Rα-invariant measure. One way to see this uses
the characters en(x) = e2πinx ∈ C(T) with n ∈ Z.
Suppose µ is an unknown Rα-invariant probability
measure. Then by definition

∫
endµ =

∫
en ◦ Rαdµ.

For n = 0 this contains no new information, as
e0 = 1T is constant. So assume n ≠ 0; then we
have en(Rα(x)) = e2πinαen(x), which shows that∫
en ◦ Rαdµ = e2πinα

∫
endµ. As α ∈ R \Q we have

e2πiαn ≠ 1, and so
∫
endµ = 0. This agrees with the

value
∫
endmT that the Lebesgue measure mT as-

signs to en. Hence we have
∫
fdµ =

∫
fdmT for any

finite linear combination of characters en. As the
latter can be used to approximate any other contin-
uous function uniformly (by the Stone-Weierstrass
theorem), one sees that µ = mT. This is the most
basic example of rigidity of invariant measures
and also the strongest form of it: If M(T) con-
tains only one measure, then T is called uniquely
ergodic.

One may ask why one should care about rigidity
of invariant probability measures. The answer lies
in a simple construction. Let T : X → X be an
arbitrary continuous map from a compact met-
ric space X to itself. Then notice that for any
f ∈ C(X), x ∈ X, and any large N, the ergod-

ic (time) average
1

N

∑N−1
n=0 f (T

nx) is bounded by

‖f‖∞ = max{|f (x)| : x ∈ X} and is close to being
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invariant under T in the sense that the differ-

ence between the average for f and for f ◦ T is

bounded by
2‖f‖∞
N

. Fixing a function f , we can

choose a subsequence Nk along which the ergodic

average for f converges—we may think of the

limit as
∫
fdµ for some µ ∈ M(T). To completely

define µ on all functions f ∈ C(X), one has to
continue picking subsequences until one finally

arrives at a subsequence for which the ergodic

average converges for all functions. In a sense,

the measure µ describes the statistical behavior
of the orbit x, T(x), T 2(x), . . . , at least for cer-

tain very long stretches of time. Combined with

measure rigidity this can have very interesting con-

sequences. If T is uniquely ergodic and µ ∈M(T),
then no matter which subsequence (of a subse-

quence, etc.) one may have picked, the ergodic

average for that subsequence must converge to∫
fdµ because µ is the only T -invariant measure.

However, this independence of the subsequence

means that limN→∞
1

N

∑N−1
n=0 f (T

nx) =
∫
fdµ, both

for every f ∈ C(X) and for every x ∈ X. One may
summarize this by saying that unique ergodicity

implies equidistribution (with respect to µ) of the

orbit x, T(x), T 2(x), . . . for any x ∈ X. Not only

does this help to describe the closure of the orbit

(optimally as being equal to the support of µ), but
it also asymptotically describes (in terms of µ) the

amount of time the orbit will spend in various

parts of the space.

Another example of a uniquely ergodic trans-
formation is S : (x1, x2) → (x1 + 2α,x2 + x1) on

T2 where α ∈ R \ Q. Furstenberg proved the

unique ergodicity of S and used the orbit of (α,0)
to derive the equidistribution of the sequence
α,4α,9α, . . . , n2α, . . . in T, which re-proved a the-

orem of Weyl. The examples above are still quite

simple, but a similar understanding of invariant

probability measures for more general classes of
transformations can be a very powerful tool. In

fact, Marina Ratner proved a very general mea-

sure classification theorem (concerning unipotent

group actions of quotients of Lie groups) and
derived from it equidistribution and orbit closure

theorems; the orbit closure theorem is known as

Raghunathan’s conjecture. The measure classifi-

cation is indeed a good example of rigidity: by
assumption the measure is known to be invariant

under a small subgroup, and in the end it is known

to be a highly structured measure (called algebraic

or Haar) for which the support is the orbit of a

bigger group. However, unlike the above cases,
in general there will be many different invariant

probability measures. These theorems and their

extensions by Dani, Eskin, Margulis, Mozes, Rat-

ner, Shah, Tomanov, and others have found many
applications, in particular in number theory.

Another transformation on T is the times-two

map T2(x) = 2x for x ∈ T. Here the Lebesgue

measure mT is again invariant under T2, and so
is the measure defined by

∫
fdδ0 = f (0). More-

over, we can in fact apply our above construction
to produce many invariant probability measures.
Represent x ∈ [0,1) by its binary expansion,
and notice that application of T2 corresponds to
shifting the binary expansion of x. Choosing this
infinite sequence in the digits 0 and 1, we may
ensure, for example, that we never see the finite
sequence 000 or 111. Then the above construction
will lead to T2-invariant probability measures that

have support disjoint from (− 1

8
, 1

8
) + Z ⊂ T. For

this transformation the abundance of T2-orbits
of different types (any sequence in 0s and 1s
defines an orbit) is reflected in the abundance of
T2-invariant measures.

A highly interesting question was raised by
Furstenberg around 1967. He showed that the or-

bit set {2k3ℓ(x) : k, ℓ ≥ 1} is dense in T whenever
the starting point x ∈ T \ Q is irrational; here
the orbit is taken with respect to the semigroup
generated by T2 and the times-three map T3. As we
have discussed, there is often a correspondence
between orbits and invariant measures. Hence
it is natural to ask the following: What are the
probability measures on T that are at the same
time invariant under T2 and under T3? Certain
rational numbers r ∈ Q are periodic for both T2

and T3, and with these one can easily define in-
variant probability measures. Also, we know that
the Lebesgue measure is invariant. Are these (and
their convex combinations) the only ones? The
best-known result towards this conjecture is due
to Dan Rudolph, and several generalizations have
been obtained by Kalinin, A. Katok, Lindenstrauss,
Spatzier, and me. Similar to Raghunathan’s con-
jecture, these generalized conjectures are phrased
for dynamical systems defined on quotients of
Lie groups. However, in this case the dynamical
system is defined by (several commuting) diago-
nal matrices instead of unipotent matrices. Even
though Furstenberg’s question and its generaliza-
tions are still open, the partial results have already
found several applications. The most striking of
these may be Lindenstrauss’s proof of the equidis-
tribution of the arithmetic Laplace-eigenfunctions
(Hecke-Maaß cusp forms) on certain quotients of
the hyperbolic plane.
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