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a Rota-Baxter Algebra?
Li Guo

A Rota-Baxter algebra, also called a Baxter alge-
bra, is an associative algebra with a linear operator
that generalizes the algebra of continuous func-
tions with the integral operator. More precisely,
for a given commutative ring k and λ ∈ k, a
Rota-Baxter k-algebra (of weight λ) is a k-algebra
R together with a k-linear map P : R → R such that

(1) P(x)P(y) = P(P(x)y)+ P(xP(y))+ λP(xy)

for all x, y ∈ R. Such a linear operator is called a
Rota-Baxter operator (of weight λ). Note that the
relation (1) still makes sense when the associa-
tive algebra R is replaced by a k-module with a
bilinear binary operation, such as the Lie bracket.
Despite its simple form, the Rota-Baxter operator
has appeared in a wide range of areas in pure and
applied mathematics, providing a unified frame-
work to study these different areas. Advances in
one of these areas often stimulated developments
in Rota-Baxter algebra, which, in turn, inspired
progress in other related areas.

Let R be the R-algebra of continuous functions
on R and P the integral operator sending a func-

tion f (x) in R to the function P(f )(x) :=
∫ x

0 f (t) dt.
Then the integration by parts formula
∫ x

0

P(f )′(t)P(g)(t)d t

= P(f )(x)P(g)(x)−

∫ x

0
P(f )(t)P(g)′(t)dt

is just (1) with λ = 0.
In the discrete context, consider the algebra of

sequences in a k-algebra A, with componentwise
addition and multiplication. Define an operator
P that sends a sequence (a1, a2, a3, · · · , an, · · · )
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in A to the sequence of partial sums (0, a1, a1 +

a2, · · · ,
∑

k<n ak, · · · ). Then it is easy to check that

P is a Rota-Baxter operator of weight 1.

Despite its natural connection with integral

analysis, the Rota-Baxter algebra was not intro-

duced as an abstraction of integral analysis, as

in the well-known differential case, but was intro-

duced in 1960 by Glenn Baxter [1] in his proba-

bility study of fluctuation theory, in particular the

Spitzer identity with the algebraic formulation

(2) b = exp(−P(log(1− ax)))

for the solution of the fixed point equation

b = 1+ P(bax)

in the power series ring A[[x]], where (A, P) is

any commutative Rota-Baxter algebra of weight

−1. It was then studied in the 1960s and 1970s by

Cartier and the school of Rota [3] in connection

with combinatorics. For example, they showed that

the well-known Waring’s formula,

exp



−

∞
∑

k=1

(−1)kpk(x1, . . . , xm)t
k/k





=

∞
∑

n=0

en(x1, . . . , xm)t
n, ∀ m ≥ 1

between the power sum symmetric functions

pk(x1, · · · , xm) and the elementary symmetric

functions en(x1, · · · , xm), is equivalent to Spitzer’s

identity in a free Rota-Baxter algebra.

In part to acknowledge Rota’s contribution in

Rota-Baxter algebra and in part to distinguish this

algebraic structure from the well-known Yang-

Baxter equation, named after the distinguished

physicists, the term Rota-Baxter algebra has been

used recently in place of Baxter algebra. Quite

remarkably, even though the two Baxters are not
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related genealogically, they are mathematically—
the operator form of a skew-symmetric solution of
the classical Yang-Baxter equation in a Lie algebra
is just a Rota-Baxter operator of weight zero on
this Lie algebra. An analogous relationship has
been established for associative algebras through
the work of Aguiar and several other authors.

Another connection of Rota-Baxter algebra with
mathematical physics was found in the seminal
work of Connes and Kreimer in the late 1990s
in their Hopf algebra approach to renormaliza-
tion of quantum field theory. There divergent
Feynman integrals, through dimensional regular-
ization, acquire Laurent series expansions in the
Laurent series ring C[ε−1, ε]], which gives back
the divergent integrals when ε = 0. The splitting
of C[ε−1, ε]] as a vector space direct sum of the
two subrings C[[ε]] and ε−1C[ε−1]means that the
projection C[ε−1, ε]]→ ε−1C[ε−1] is a Rota-Baxter
operator of weight −1. This operator and the Hopf
algebra structure on the Feynman diagrams uncov-
ered by Connes and Kreimer allowed them to give
an algebraic formulation for the BPHZ process of
QFT renormalization, which is named after Bogoli-
ubov, Parasiuk, Hepp, and Zimmermann for their
work in the 1950s and 1960s. In particular, the
algebraic Birkhoff decomposition of Connes and
Kreimer decomposes a regularized Feynman rule
into the renormalized part and the counterterm.

Quite unexpectedly, the algebraic Birkhoff de-
composition can be naturally derived from the
generalization of a factorization theorem for Rota-
Baxter algebras whose original form was discov-
ered by Atkinson in 1963 and was independently
established for Lie algebras as a fundamental
theorem of integrable systems by Reyman and
Semenov-Tian-Shansky in 1979. This generaliza-
tion of the Atkinson factorization theorem al-
so implies the factorization theorem of Barron,
Huang, and Lepowsky in vertex operator algebras;
the even-odd decomposition of Aguiar, Bergeron,
and Sottile in combinatorial Hopf algebras; and
the Lie algebra polar decomposition of Zanna et
al. in matrix exponentials of ODEs.

Free commutative Rota-Baxter algebras were
first constructed by Rota and Cartier in the 1970s.
A third construction was later obtained in terms
of the mixable shuffle product that includes both
the shuffle product from iterated integrals and
its discrete analogue of quasi-shuffle product of
Hoffman. The latter two products play a promi-
nent role in the study of multiple zeta values,
where stuffle instead of quasi-shuffle had been
used. For example, it is conjectured that all al-
gebraic relations among multiple zeta values can
be derived by intertwining the shuffle and stuffle
relations among these values that come from their
definition as iterated sums and from their inte-
gral representations shown by Kontsevich. More
recently, the algebraic framework of Connes and

Kreimer on renormalization of Feynman integrals
has been adapted to study divergent multiple zeta
values.

In the middle 1990s Loday introduced an op-
erad called dendriform dialgebra with motivation
from algebraic K-theory. This operad has two
binary operations, ≺ and ≻, that satisfy certain
relations so that the binary operator

(3) x ⋆ y := x ≺ y + x ≻ y

is associative.Aguiar showed that for a Rota-Baxter
algebra (R, P) of weight 0, the binary operations
x ≺P y = xP(y) and x ≻P y = P(x)y define a den-
driform dialgebra structure on R, giving rise to a
functor from the category of Rota-Baxter algebras
of weight 0 to the category of dendriform dialge-
bras analogous to the functor from the category
of associative algebras to the category of Lie alge-
bras. Further investigation of this analog led to the
study of the adjoint functor that assigns a den-
driform dialgebra to its enveloping Rota-Baxter
algebra. As in the case of enveloping (associa-
tive) algebras of Lie algebras obtained from free
associative algebras, the enveloping Rota-Baxter
algebras are obtained from free noncommutative
Rota-Baxter algebras. These free Rota-Baxter al-
gebras carry natural combinatorial structures of
trees and Motzkin paths.

A large part of the theoretical study of Rota-
Baxter algebras can be summarized in the follow-
ing relationship diagram:

Rota-Baxter

operator
//

&&MMMMMMMMMM

Dendriform

operad
oo

xxqqqqqqqqqq

Mixable shuffle

product

ffMMMMMMMMMM

88qqqqqqqqqq

As it turns out, the dendriform dialgebra is just
the first case of a class of closely related operads
that share the property of “splitting of associativi-
ty”, as in (3). Also, there are several operators, such
as the averaging operator and Nijenhuis operator,
resembling the Rota-Baxter operator, particular-
ly in their special form of products. The study
of these three classes of objects should great-
ly enrich our understanding of these operators,
operads, and products.
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