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an Oka Manifold?
Finnur Lárusson

The prototypical complex manifold is the com-
plex plane C. In three cases out of four we find
something interesting by considering the class
of complex manifolds X with “many” or “few”
holomorphic maps X → C or C→ X. The trick, of
course, is to come up with a fruitful interpretation
of the words “many” and “few”.

As undergraduates, most of us take a course in
complex analysis on domains in C. Many of the the-
orems proved in such a course extend to a class of
manifolds called Stein manifolds. Stein manifolds
play a fundamental role in higher-dimensional
complex analysis and complex geometry, similar
to affine varieties in algebraic geometry.

One of the many equivalent definitions of a Stein
manifold X says, roughly speaking, that there are
many holomorphic maps X → C, enough in fact to
embed X as a closed complex submanifold of Cm

for some m. Another is the famous Theorem B of
H. Cartan that for every coherent analytic sheaf
F on X, the cohomology groups Hk(X,F) vanish
for all k ≥ 1. A third is a convexity property: there
is a proper smooth function X → [0,∞) which is
strictly plurisubharmonic. Plurisubharmonicity is
ordinary convexity weakened just enough to make
it biholomorphically invariant. The equivalence of
any two of these definitions is a deep theorem.

While it is nontrivial to interpret the word
“many”, the word “few” has a straightforward inter-
pretation as “no nonconstant”. A complex manifold
X is Brody hyperbolic if every holomorphic map
C → X is constant. It turns out that the notion
of Kobayashi hyperbolicity, equivalent to Brody
hyperbolicity for compact manifolds but stronger
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in general, is more important. A complex manifold
X is Kobayashi hyperbolic if there is a metric (a
nondegenerate distance function) d on X such that
d(f (z), f (w)) ≤ δ(z,w) for all holomorphic maps
f from the open unit disc D = {z ∈ C : |z| < 1} to
X, and all z,w ∈ D. Here δ denotes the Poincaré
distance on D. Picard’s little theorem says that the
twice-punctured planeC\{0,1} is Brody hyperbolic;
it is in fact Kobayashi hyperbolic.

Hyperbolicity problems in higher-dimensional
complex geometry have been intensively studied
in recent years. Many deep problems remain un-
solved, some to do with a mysterious connection
with arithmetic. S. Lang conjectured that a smooth
complex projective variety defined over a number
field K is Kobayashi hyperbolic if and only if it has
only finitely many rational points over each finite
extension of K. In the one-dimensional case, this is
a celebrated theorem of G. Faltings.

It is only recently that a good notion of a
complex manifold X having “many” holomorphic
maps C→ X has emerged. The new notion has its
origins in a seminal paper of M. Gromov, the 2009
Abel laureate, published in 1989 [2]. Gromov’s
ideas and results have been developed further over
the past ten years, primarily by F. Forstnerǐc, partly
in joint work with J. Prezelj. Forstnerǐc has proved
the equivalence of over a dozen properties, saying,
in one way or another, that a complex manifold
is the target of many holomorphic maps from C
[1]. He has named such manifolds Oka manifolds,
after K. Oka, a pioneer in several complex variables.
In the remainder of this article, we will motivate
the definition of an Oka manifold, sketch what
is known about them, and mention two major
applications of the ambient theory.
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(What about the fourth class, of complex man-
ifolds with “few” holomorphic maps to C? Even
if we interpret “few” as “no nonconstant”, this
class seems too big to be of interest. It contains all
compact manifolds and a whole lot more.)

Runge and Weierstrass. The story begins with
two well-known theorems of nineteenth-century
complex analysis concerning a domain Ω in C. The
Runge approximation theorem says that if K is a
compact subset of Ω with no holes in Ω, then every
holomorphic map K → C can be approximated,
uniformly on K, by holomorphic maps Ω→ C. (By
a holomorphic map K → C we mean a holomorphic
function on some open neighborhood of K.) The
Weierstrass theorem says that if T is a discrete
subset of Ω, then every map T → C extends to a
holomorphic map Ω→ C.

In the formative years of modern complex anal-
ysis, in the mid-twentieth century, these theorems
were extended to higher dimensions, generalizingΩ
to a Stein manifold S. The Oka-Weil approximation
theorem replaces the topological condition that K
have no holes in S with the subtle, nontopological
condition that K be holomorphically convex in S.
This means that for every x ∈ S \ K, there is a
holomorphic function f on S with |f (x)| > supK|f |.
The Cartan extension theorem, on the other hand,
generalises T to a closed complex subvariety of
S and says that every holomorphic map T → C
extends to a holomorphic map S → C.

We usually consider these theorems as results
about Stein manifolds, and of course they are, but
we can also view them as expressing properties
of the target C. We can then formulate them for a
general target. To avoid topological obstructions,
which are not relevant here, we restrict ourselves
to very special S, K, and T .

CAP and CIP. A complex manifold X satisfies
the convex approximation property (CAP) if, when-
ever K is a convex compact subset of Cm for
some m, every holomorphic map K → X can be
approximated, uniformly on K, by holomorphic
maps Cm → X. A complex manifold X satisfies the
convex interpolation property (CIP) if, whenever T
is a contractible subvariety of Cm for somem, every
holomorphic map T → X extends to a holomorphic
map Cm → X.

It is rather easy to see that CIP implies CAP. (This
is not to say that the Cartan extension theorem
implies the Oka-Weil approximation theorem: the
proof that CIP implies CAP uses the Oka-Weil
theorem.) Forstnerič’s work contains a difficult,
roundabout proof of the converse; no simple proof
is known.

We define a complex manifold to be Oka if it
satisfies the equivalent properties CAP and CIP.

Oka Properties. There are more than a dozen
other so-called Oka properties that are nontrivially
equivalent to CAP and CIP. If S is a Stein manifold
and X is an Oka manifold, then every continuous

map f : S → X can be deformed to a holomorphic
map. If f is already holomorphic on a subvariety
T of S, then the restriction f |T may be kept fixed
during the deformation. If f is already holomorphic
on a holomorphically convex compact subset K of
S, then the restriction f |K may be kept arbitrarily
close to being fixed during the deformation. All
this can be done parametrically. If we have a family
of maps f , depending continuously on a parameter
in a compact subset P of Rk, then the maps can
be deformed with continuous dependence on the
parameter. If the maps parameterized by a compact
subset of P are already holomorphic on S, then
they may be kept fixed during the deformation.

It follows that the inclusion O(S,X)↩ C(S,X)
is a weak homotopy equivalence. Here, the spaces
O(S,X) of holomorphic maps and C(S,X) of
continuous maps S → X are endowed with the
compact-open topology.

Examples. The “classical” examples of Oka
manifolds, by renowned work of H. Grauert from
around 1960, are complex Lie groups and their
homogeneous spaces. Among other examples are
the complement in Cn of an algebraic or a tame
analytic subvariety of codimension at least 2, the
complement in complex projective space of a
subvariety of codimension at least 2, Hopf mani-
folds, Hirzebruch surfaces, and the complement
of a finite set in a complex torus of dimension at
least 2. A Riemann surface is Oka if and only
if it is not hyperbolic. Our understanding of the
geography of Oka manifolds is poor. For example,
it is an open problem to determine which compact
complex surfaces are Oka.

Gromov’s Oka Principle. The most important
sufficient condition for the Oka property to hold
is ellipticity, introduced by Gromov in [2]. It is yet
another way to say that a complex manifold X is
the target of many holomorphic maps fromC. More
precisely, X is elliptic if there is a holomorphic
map s : E → X, called a dominating spray, defined
on the total space of a holomorphic vector bundle
E over X, such that s(0x) = x and s|Ex → X is a
submersion at 0x for all x ∈ X. The theorem that
ellipticity implies the Oka property is one version
of Gromov’s Oka principle.

A Stein manifold is elliptic if and only if it is Oka.
There are no known examples of Oka manifolds
that are not elliptic. So why focus on the Oka
property rather than ellipticity? One reason is that
the Oka property has good functorial properties
that we cannot at present prove or disprove for
ellipticity.

Model categories. There is abstract homotopy
theory lurking in the background. The author has
shown that the category of complex manifolds can
be embedded into a model category in the sense of
D. Quillen (roughly speaking, a category in which
one can do homotopy theory) in such a way that a
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manifold is cofibrant if and only if it is Stein, and
fibrant if and only if it is Oka.

Applications. The fact that the complement
in Cn, n ≥ 2, of an algebraic subvariety of codi-
mension at least 2 is Oka is a crucial ingredient
in the proof of Forster’s conjecture by Y. Eliash-
berg and Gromov, and by J. Schürmann. For each
n ≥ 2, Forster’s conjecture identifies the smallest
N(n) = n+[n/2]+1 such that every n-dimensional
Stein manifold embeds into CN(n).

B. Ivarsson and F. Kutzschebauch have used Gro-
mov’s Oka principle, as developed by Forstnerǐc, to
solve the holomorphic Vaserstein problem posed by
Gromov [3]. They show that the inclusion of the ring
of holomorphic functions on a contractible Stein
manifold into the ring of continuous functions
does not induce an isomorphism of K1-groups,
whereas by Grauert’s Oka principle it does induce
an isomorphism of K0-groups. Here, amusingly,
Gromov’s Oka principle reveals a limitation of a
more general Oka principle.
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