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a Gaussian Entire
Function?

Fedor Nazarov and Mikhail Sodin

Random analytic functions have been attracting
the attention of mathematicians since the 1930s,
though the focus of interest has been changing
with time. Just as the distribution of eigenvalues is
the essence of the random matrix theory, central
to the study of random analytic functions are their
zero sets. Our random functions are Gaussian and
live on the complex plane. The instance when the
random zero set is invariant in distribution with
regard to (w.r.t., for short) isometries of the plane is
the most interesting one. Here we will introduce the
reader to a remarkable model of Gaussian entire
functions with invariant distribution of zeros.

A Gaussian entire function f (z) is the sum∑
k ζkfk(z) of entire functions fk with independent

standard complex Gaussian random coefficients
ζk (whose density w.r.t. the area measure in C is
1
π e

−|ζ|2 ). We assume that∑
k

|fk(z)|2<∞ locally uniformly in C,

and also that the functions fk are linearly inde-
pendent over `2, i.e.,

∑
k akfk with {ak} ∈ `2 does

not vanish identically unless all ak = 0. The first
condition implies that almost surely (a.s., for short)
the random function f is entire.

Each Gaussian entire function can be uniquely
identified with some Hilbert space H of entire
functions (the image of the mapping

`2 3 {ak},
∑
k

akfk

with the scalar product borrowed from `2) so that
the covariance function

Cf (z,w) = E
{
f (z)f (w)

}
=
∑
k

fk(z)fk(w)
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is the reproducing kernel inH ; i.e.,

g(w) = 〈g,C(·, w)〉H for every g ∈H , w ∈ C.

The functions fk form an orthonormal basis inH .
Reversing the order, one can start with a Hilbert
spaceH of entire functions with the reproducing
kernel CH , take an orthonormal basis {fk} in H ,
and build a Gaussian entire function fH =

∑
k ζkfk

with covariance CH . Since the Gaussian process
is determined by its covariance function, this
construction does not depend on the choice of the
basis inH .

The properties of the (random) zero set Zf =
f−1{0} are encoded in its (random) counting
measure nf defined by nf (A) = #

(
Zf ∩A

)
for any

Borel set A. Recall that for every analytic function
f , we have

nf = 1
2π∆ log |f |

with the Laplacian taken in the sense of distri-
butions. This makes it possible to use complex
analysis tools for the study of the distribution of
zeroes of Gaussian analytic functions. Using this
formula, and taking the expectation of both sides,
we get Enf = 1

2π∆E log |f | . Note that f (z)√
Cf (z,z)

is the

standard complex Gaussian random variable, so

E log |f | = 1
2 logCf (z, z)+ const .

This way, we arrive at the elegant Edelman-Kostlan
formula

Enf (z) = 1
4π∆ logCf (z, z) .

The surprising Calabi rigidity tells us that the
mean Enf determines the distribution of Zf . Alas,
this uniqueness gives us no hint as to how to find
the distribution of nf from its mean Enf .

All the aforementioned results are valid for
Gaussian analytic functions in other plane domains.
It is the gaussianity that is crucial, not the domain
of f .
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Figure 1. Samples of the Poisson process (figure by B. Virág), limiting Ginibre process, and zeroes
of a GEF (figure by M. Krishnapur). The last two processes are quite different, though the eye does

not easily distinguish them.

It is not at all obvious that there exist Gaussian
entire functions with zeros having a translation-
invariant distribution. It is not difficult to see that
Gaussian entire functions cannot be translation
invariant themselves.1 Fortunately, a weaker prop-
erty called projective invariance is sufficient for the
translation invariance of zeros. Namely, if there
is a family of nonrandom functions φλ (λ ∈ C)
without zeros such that the random functions
φλ(z)f (z+λ) and f (z) have the same distribution,
then the distribution of Zf is translation invariant.

Letting fk(z) = zk/
√
k!, we get Cf (z,w) = ezw ,

which is the kernel for the classical Fock-Bargmann
space of entire functions, that is, the closure of
polynomials in L2

(
C, 1

π e
−|z|2). The Gaussian entire

function associated with this Hilbert space is
projective invariant w.r.t. isometries of C. The
rotation and reflection invariance are obvious. To
show the translation invariance, note that the
Gaussian entire function

f (z + λ)e−zλ− 1
2 |λ|2 , λ ∈ C,

has the same covariance function as f .
By the Edelman-Kostlan formula,

Enf = 1
4π∆|z|2 = 1

πm,

where m is the area measure (we treat the average

Enf as a measure). Replacing f by fL(z) = f (
√
L
π z),

this average can be changed to Lm with any
L > 0. On the other hand, if zeros of a Gaussian
entire function F have a translation-invariant
distribution, then the mean EnF is a translation-
invariant measure on C. Hence, it is proportional to
the area measurem; i.e., EnF = Lm with a constant
L > 0. Then by the Calabi rigidity, the zero sets
ZF and ZfL have the same distribution. In other
words, the only freedom in this construction is
the scaling z, tz with t > 0, and the Gaussian
Entire Function (GEF, for short) with translation-
invariant zeros is essentially unique. Geometers

1B. Weiss showed that, unexpectedly, there are translation-
invariant random entire functions, not Gaussian, of
course.

know this in a different wording: z , {zk/
√
k!}k≥0

is an isometric embedding of the Euclidean plane
into the projective Hilbert space P

(
`2

)
equipped

with the Fubini-Study metric, and this embedding
is essentially unique.

The construction leading to projective invariance
has been known since the 1930s, though the
corresponding Gaussian functions were introduced
only in the 1990s by Kostlan, Bogomolny-Bohigas-
Lebouef, Shub-Smale, and Hannay. It is worth
mentioning that there are similar constructions for
other domains with transitive groups of isometries
(hyperbolic plane, Riemann sphere, cylinder, and
torus).

Few natural translation-invariant random point
processes on the plane are known. The most
widely studied one is the Poisson process, where
for any collection of disjoint subsets of the
plane, the numbers of points in these subsets are
independent, and the mean number of points in a set
is proportional to its area. This process is invariant
w.r.t. all measure-preserving transformations of
the plane, which is far more than we asked for.
Another example is a one-component plasma of
charged particles of one sign confined by a uniform
background of the opposite sign. It contains as a
special case the large N limit of Ginibre ensemble
of eigenvalues of N×N matrices with independent
standard complex Gaussian entries.2 One more
example is the random zero set Zf of GEF f .

The Poisson process can be easily recognized
since its points can clump together while, in
contrast, the Ginibre eigenvalue process and the
GEF zero process have local repulsion between
points: it is unlikely that one would see two points
very close to each other. The latter two look rather
alike, although some of their characteristics are
quite different. For instance, as Forrester and
Honner observed, if h is a smooth function with

2Though one-component plasma has been studied by
physicists for a long time, it seems that almost all rigor-
ous mathematical results still pertain only to the special
case of Ginibre ensemble.
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compact support, then the variance of the linear
statistics of zeros nf (r ;h) =

∑
Zf h

( a
r

)
decays as

‖∆h‖2
L2r−2 for r → ∞, while in the Ginibre case

the corresponding variance tends to the limit
proportional to ‖∇h‖2

L2 (for the Poisson process
the variance grows with r as ‖h‖2

L2 r2).
The decay of the variance of smooth linear

statistics for zeros of GEF yields another surprising
rigidity. We fix a bounded plane domain G and
suppose that we know the configuration of zeros of
f outside of G. Then taking any smooth compactly
supported test-function h that equals 1 in some
neighborhood of the origin, we recover the number
of zeros of f inside G:

nf (G)= lim
r→∞

{r2

π

∫∫
C
hdm−

∑
a∈Zf \G

h
(
a
r

)}
a.s.

At the end of this introductory tour, we will take
a brief look at the random potential

Uf (z)= log |f (z)|− 1
2 |z|

2

and at its gradient field ∇Uf . Their distributions
are invariant w.r.t. isometries of C, and

1
2π∆Uf = div(∇Uf ) = nf − 1

πm.
The potential Uf equals −∞ on Zf and has no other
local minima since its Laplacian is negative on
C\Zf . The gradient curves oriented in the direction
of decay of Uf and terminating at a ∈ Zf form
a basin Ba. Different basins are separated by the
gradient curves joining local maxima with saddle
points. Remarkably, all bounded basins have the

same area π :

1− 1
π
m(Ba)=

1
2π

∫∫
Ba
∆Uf = 1

2π

∫
∂Ba

∂Uf
∂n
=0 .

One can prove that the probability of a long gra-
dient curve decays exponentially with its diameter,
so, a.s., all basins are bounded. Thus, one obtains a
random partition of C into nice bounded domains
of equal area with many intriguing properties.

We hope that we have aroused the reader’s
curiosity by now. Note that we have presented only
a tiny portion of results and questions concerning
Gaussian analytic functions and their zeros.

Further Reading
For those new to this subject, we recommend
the book Zeros of Gaussian Analytic Functions and
Determinantal Point Processes, J. B. Hough, M. Krish-
napur, Y. Peres, B. Virág, Amer. Math. Soc., 2009.
The electronic version is available at stat-www.
berkeley.edu/˜peres/GAF_book.pdf.

The lecture by M. Sodin at the 4th ECM,
Stockholm, 2004 (arXiv:math/0410343), surveys
results obtained by that time. Further develop-
ments can be found in recent papers written by
the authors with A. Volberg, by B. Tsirelson, and
by A. Nishry, and posted in the arXiv.

Complex-geometry-oriented readers might be
interested in reading the papers by P. Bleher,
M. Douglas, B. Shiffman, and S. Zelditch, which are
also posted in the arXiv.

Figure 2. Random partition of the plane into domains of equal area generated by the gradient
flow of the random potential Uf (figure by M. Krishnapur). The lines are gradient curves of Uf , the
black dots are random zeros. Many basins meet at the same local maximum, so that two of them
meet tangentially, while the others approach it cuspidally, forming long, thin tentacles.
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