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a Paraproduct?
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The term paraproduct is nowadays used rather

loosely in the literature to indicate a bilinear oper-

ator that, although noncommutative, is somehow

better behaved than the usual product of func-

tions. Paraproducts emerged in J.-M. Bony’s theory

of paradifferential operators [1], which stands as a

milestone on the road beyond pseudodifferential

operators pioneered by R. R. Coifman and Y. Meyer

in [3]. Incidentally, the Greek word παρα (para)

translates as beyond in English, and au délà de
in French, just as in the title of [3]. The defining

properties of a paraproduct should therefore go

beyond the desirable properties of the product.

As a first step and to illustrate these properties,

let us consider the bilinear operator

Π0(f , g)(s) =

∫ s
−∞

f ′(t)g(t) dt, f , g ∈ C1
0 (R).

By Leibniz’s rule, fg = Π0(f , g)+ Π0(g, f ), that is,

Π0 reconstructs the product fg. In addition, Π0

provides an exact linearization formula, that is, if

H ∈ C∞(R), then

H(f ) = H(0)+Π0(f ,H
′(f )),

as opposed to the one given by the product

H(f ) = H(0)+ fH′(f )+ error .

Árpád Bényi is associate professor of mathematics at
Western Washington University. His email address is
arpad.benyi@wwu.edu.

Diego Maldonado is assistant professor of mathematics at
Kansas State University. His email address is dmaldona@
math.ksu.edu.

Virginia Naibo is assistant professor of mathematics at
Kansas State University. Her email address is vnaibo@

math.ksu.edu.

Π0 also satisfies a Leibniz-type rule,

Π0(f , g)
′ = f ′g,

but it fails to obey one of the main properties of
the product, namely Hölder’s inequality.

So what is a paraproduct? A bilinear, non-
commutative operator Π that satisfies product
reconstruction and linearization formulas (up to
smooth errors), a Hölder-type inequality, and a
Leibniz-type rule such as

∂αΠ(f , g) = Π̃(∂αf , g),
where Π̃ satisfies a Hölder-type inequality. For Π0,
Π̃(f , g) equals fg when α = 1. Π0 comes close
to being a paraproduct, but it is not well suited
for Lp-spaces as it does not satisfy a Hölder-type
inequality.

We now turn our attention to the evolution of
the various forms of paraproducts. Each of the
paraproducts Πl below has transformed in time
into a successor Πl+1, and this natural flow was
motivated by the need of analysts to settle specific
problems.

In retrospect, the first version of a paraproduct
is implicit in A. P. Calderón’s work on commutators
[2]. Let U = {s+ it : s ∈ R, t > 0} and 1 < p,q < ∞.
For F ∈ Hp(U) and G ∈ Hq(U) (Hardy spaces),
Calderón defined the bilinear operator

Π1(F, G)(s) = −i

∫∞
0
F ′(s + it)G(s + it) dt.

Again, by Leibniz’s rule, Π1 reconstructs the
product FG (on the real line), its derivative
obeys Leibniz’s rule (just as the product does),
it satisfies an exact linearization formula, and,
as Calderón showed, it verifies the following
Hölder-type inequality: if 1/r = 1/p + 1/q,

‖Π1(F, G)‖Lr (R) ≲ ‖F‖Hp(U) ‖G‖Hq (U) .
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Let us now “deconstruct” Π1. Define f1 and f2 to

be the real and imaginary boundary values of F ,

that is,

F(s + it) = (f1 ∗ Pt)(s)+ i(f2 ∗ Pt)(s),

where Pt(x) = t−1P(t−1x) are dilations of the

Poisson kernel P(x) = π−1(1 + x2)−1. Defining

Q = P ′ and taking derivatives yields

F ′(s + it) =
1

t
(f1 ∗Qt)(s)+ i

1

t
(f2 ∗Qt)(s).

Similarly, if we write G in terms of its boundary

values, we see that Π1(F, G)(s) can be expressed

as a sum of four operators of the form

Π2(f , g)(s) =

∫∞
0
(Qt ∗ f )(s)(Pt ∗ g)(s)

dt

t
.

In n dimensions and based on a real-variable ap-

proach, J.-M. Bony [1] considered bilinear operators

of the form

Π3(f , g) =

∫∞
0
(ψt ∗ f )(φt ∗ g)

dt

t
.

In analogy with Π2, we have φt(x) = t
−nφ(x/t),

ψt(x) = t
−nψ(x/t), whereφ is a Schwarz function

in R
n such that its Fourier transform φ̂ is real,

radially symmetric, and supported in the ball

B1(0), φ̂ = 1 in B1/2(0), and ψ is defined (on

the Fourier side) by ψ̂(ξ) = φ̂(ξ/2) − φ̂(ξ). The

discrete version of Π3 (think t = 2−j ) takes the

form

Π4(f , g) =
∑
j∈Z

(ψj ∗ f )(φj ∗ g),

with ψj(x) = 2jnψ(2jx), φj(x) = 2jnφ(2jx). The

properties of ψ give us the equality

fg =
∑
j∈Z

∑

k∈Z

(ψj ∗ f )(ψk ∗ g)

= Π4(f , g)+Π4(g, f )+
∑
j∈Z

(ψj ∗ f )(ψj ∗ g),

which is a product reconstruction formula with an

error term. A convenient modification of Π4 is

Π5(f , g) =
∑
j∈Z

(ψj ∗ f )(φj−2 ∗ g),

which now yields

fg = Π5(f , g)+Π5(g, f )+ R(f , g),

R(f , g) being the tridiagonal sum in |j − k| ≤ 1.

The operator Π5 is called Bony’s paraproduct, and

it has a number of outstanding properties. As

the last identity shows, there is a reconstruction

formula for the product with an error term. It is

not an exact reconstruction, so why is it so useful?

Consider f ∈ Cα and g ∈ Cβ (Hölder spaces) with
0 < α < β. Since a product is as smooth as its

roughest factor, we will have fg ∈ Cα. However,

Bony showed that Π5(g, f ) ∈ C
α, Π5(f , g) ∈ C

β,

and R(f , g) ∈ Cα+β, thus identifying the bad, the

good, and the best part of fg. Moreover, for

H ∈ C∞(R), Π5 linearizesH at a function f in such

a way that

H(f ) = H(0)+Π5(f ,H
′(f ))+ eH(f ),

where the error eH(f ) is smoother than f . Another

advantage is that, as straightforward calculations

on the Fourier side show, Π5 can be rewritten as

Π5(f , g) =
∑
j∈Z

Ψj ∗ ((ψj ∗ f )(φj−2 ∗ g)),

where Ψ̂ is supported in an appropriate annulus.

The acute reader will notice that this is not possible

with Π4, and this is whyΠ5 was introduced! Letting

〈·, ·〉 denote the usual Schwarz function-tempered

distribution dual pairing, if h is another Schwarz

function, then

〈Π5(f , g), h〉 =
∑
j∈Z

〈(ψj ∗ f )(φj−2 ∗ g),Ψj ∗ h〉,

and this relation provides immediate access to the

Littlewood-Paley pieces of h. Mapping properties

forΠ5, including the ones of Hölder-type Lp×Lq →

Lr , follow by duality.

To further see some of the paraproduct proper-

ties in action, we will prove the classical fractional

Leibniz rule, which states that
∥∥Dα(fg)

∥∥
Lr ≲ ‖D

αf‖Lp1

∥∥g
∥∥
Lq1

+ ‖f‖Lp2

∥∥Dαg
∥∥
Lq2 ,

where D̂αh(ξ) = |ξ|αĥ(ξ) for α > 0, and 1 <

p1, p2, q1, q2, r < ∞ with 1/r = 1/p1 + 1/q1 =

1/p2+1/q2. The following short argument (see, for

instance, Muscalu, Pipher, Tao, and Thiele (2004))

exploits the product reconstruction and Leibniz’s

rule for paraproducts:
∥∥Dα(fg)

∥∥
Lr

=
∥∥Dα(Π(f , g))+Dα(Π(g, f ))

∥∥
Lr

=
∥∥Π̃(Dαf , g)+ Π̃(Dαg, f )

∥∥
Lr

≲ ‖Dαf‖Lp1

∥∥g
∥∥
Lq1 + ‖f‖Lp2

∥∥Dαg
∥∥
Lq2 �

More flexible versions ofΠ5 arise when considering

Π6(f , g) =
∑
j∈Z

φ1
j ∗ ((φ

2
j ∗ f )(φ

3
j ∗ g)),

for general functionsφm,m = 1,2,3. For example,
Π̃5 = Π6 for suitable functions φm’s. In turn, Π6

has evolved as follows. Let us write Q ∈ D if Q is

a dyadic cube, that is,

Q = {x ∈ Rn : ki ≤ 2jxi ≤ ki + 1; i = 1, . . . , n},

for some k ∈ Zn and j ∈ Z. In this case, we write

Q = Qjk. Let also xQ = 2−jk denote the lower left

corner of Q. Simple computations show that Π6

can be written as

Π6(f , g)(x) =

∫ ∫
K(x, y, z)f (y)g(z) dydz,
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where K(x, y, z) is the bilinear kernel given by
∑
j∈Z

k∈Zn

|Qjk|
−

1
2−

∫

Qjk

φ1
j,x(w)φ

2
j,y(w)φ

3
j,z(w)dw,

with φmj,x(w) = 2jn/2φm(2j(x −w)), m = 1,2,3. If

we replace the average above by the value of the
integrand at xQ, we can rewrite the kernel as

∑
Q∈D

|Q|−
1
2φ1

Q(x)φ
2
Q(y)φ

3
Q(z)+ E(x, y, z),

whereφmQ(x) = φ
m
j,x(xQ),m = 1,2,3, and the error

term E(x, y, z) is the bilinear kernel of a smooth-
ing operator. The functions φmQ are examples of
the so-called molecules associated with a cube
Q. For general families of molecules {φmQ}Q∈D,
m = 1,2,3, which are not necessarily dilations
and translations of a fixed profile but have
suitable cancellation properties, the associated
molecular paraproduct Π7 has kernel

∑
Q∈D

|Q|−
1
2φ1

Q(x)φ
2
Q(y)φ

3
Q(z),

that is,

Π7(f , g)(x) =
∑
Q∈D

|Q|−
1
2 〈φ2

Q, f 〉〈φ
3
Q, g〉φ

1
Q(x).

Π7 represents one of the modern versions of the
paraproducts. Molecules based on the Haar system
yield so-called dyadic paraproducts.

Since their 1965 debut, paraproducts have
played a central role in analysis and PDEs. They
are connected to the bilinear Calderón-Zygmund
theory and constitute the building blocks of many
other bilinear operators. Their applications in-
clude, just to name a few, the celebrated T1 and
Tb theorems, the boundedness of Calderón com-
mutators and the bilinear Hilbert transform, and
the theories of pointwise multipliers of function
spaces and of compensated compactness.
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