$$W[x^2, x|x|] = \begin{vmatrix} x^2 & x|x| \\ 2x & 2|x| \end{vmatrix} \equiv 0$$

Como o wronskiano é identicamente nulo, ele não nos dá informação sobre se as funções são linearmente independentes ou não. Para responder essa pergunta, suponha que

$$c_1 x^2 + c_2 x |x| = 0$$

para todo x em [-1, 1]. Em particular, para x = 1 e para x = -1, temos

$$c_1 + c_2 = 0$$

$$c_1-c_2=0$$

e a única solução desse sistema é $c_1 = c_2 = 0$. Portanto, as funções x^2 e xlxl são linearmente independentes em C[-1, 1], apesar de $W[x^2, x|x|] \equiv 0$.

Esse exemplo mostra que a recíproca do Teorema 3.3.3 não é válida.

EXEMPLO 8. Mostre que os vetores 1, x, x^2 , x^3 são linearmente independentes em P_4 .

SOLUÇÃO

$$W[1, x, x^{2}, x^{3}] = \begin{vmatrix} 1 & x & x^{2} & x^{3} \\ 0 & 1 & 2x & 3x^{2} \\ 0 & 0 & 2 & 6x \\ 0 & 0 & 0 & 6 \end{vmatrix} = 12$$

Como $W[1, x, x^2, x^3] \neq 0$, os vetores são linearmente independentes.

EXERCÍCIOS

1. Determine se os vetores dados são ou não linearmente independentes em R^2 .

(a)
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$

(b)
$$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 4 \\ 6 \end{pmatrix}$

(c)
$$\begin{pmatrix} -2\\1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\3 \end{pmatrix}$, $\begin{pmatrix} 2\\4 \end{pmatrix}$

(a)
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ (b) $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 6 \end{pmatrix}$ (c) $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$ (d) $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$

(e)
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$

 \angle . Determine se os vetores dados são ou não linearmente independentes em R^3 .

(a)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

(a)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

(c)
$$\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$

(c)
$$\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$ (d) $\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2 \\ -4 \end{pmatrix}$

(e)
$$\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$

3. Descreva geometricamente o espaço gerado por cada um dos conjuntos de vetores no Exercício 2.

 \blacktriangle . Determine se os vetores dados são ou não linearmente independentes em $R^{2\times 2}$.

106

(a)
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$

- **5.** Determine se os vetores dados são ou não linearmente independentes em P_3 .
 - (a) $1, x^2, x^2 2$
- (b) $2, x^2, x, 2x + 3$
- (c) $x + 2, x + 1, x^2 1$
 - (d) $x + 2, x^2 1$
- **6.** Mostre que os vetores dados são linearmente independentes em C[0, 1].
 - (a) $\cos \pi x$, $\sin \pi x$
- (b) $x^{3/2}$, $x^{5/2}$
- (c) $1, e^x + e^{-x}, e^x e^{-x}$ (d) e^x, e^{-x}, e^{2x}
- **7.** Determine se os vetores cos x, 1, sen² (x/2) são linearmente independentes em $C[-\pi, \pi]$.
- **8.** Considere os vetores $\cos(x + \alpha)$ e sen x em $C[-\pi, \pi]$. Para que valores de α os dois vetores vão ser linearmente dependentes? Interprete graficamente sua resposta.
- **9.** Dadas as funções $2x \in |x|$, mostre que:
 - (a) esses dois vetores são linearmente independentes em C[-1, 1];
 - (b) esses dois vetores são linearmente dependentes em C[0, 1].
- **10.** Prove que qualquer conjunto finito de vetores contendo o vetor nulo tem que ser linearmente dependente.
- 11. Sejam \mathbf{v}_1 e \mathbf{v}_2 dois vetores em um espaço vetorial V. Mostre que \mathbf{v}_1 e \mathbf{v}_2 são linearmente dependentes se e somente se um dos vetores é um múltiplo do outro.
- 12. Prove que qualquer subconjunto não-vazio de um conjunto linearmente independente de vetores $\{v_1, ..., v_n\}$ também é linearmente independente.
- **13.** Seja A uma matriz $m \times n$. Mostre que, se os vetores colunas de A são linearmente independentes, então $N(A) = \{0\}.$

[Sugestão: para todo
$$x \in R^n$$
, $Ax = x_1a_1 + x_2a_2 + ... + x_na_n$]

- **14.** Sejam $\mathbf{x}_1, ..., \mathbf{x}_k$ vetores linearmente independentes em \mathbb{R}^n e seja A uma matriz invertível $n \times n$. Defina $y_i = Ax_i$ para i = 1, ..., k. Mostre que $y_1, ..., y_k$ são linearmente independentes.
- **15.** Seja $\{v_1, ..., v_n\}$ um conjunto gerador para o espaço vetorial V e seja v um outro vetor qualquer em V. Mostre que $\mathbf{v}, \mathbf{v}_1, \dots, \mathbf{v}_n$ são linearmente dependentes.
- **16.** Sejam $v_1, v_2, ..., v_n$ vetores linearmente independentes em um espaço vetorial V. Mostre que v_2 , ..., \mathbf{v}_n não podem gerar V.

BASE E DIMENSÃO

Mostramos, na Seção 3, que um conjunto gerador para um espaço vetorial é mínimo se seus elementos são linearmente independentes. Os elementos de um conjunto gerador mínimo formam as peças básicas para a construção de todo o espaço vetorial e, por causa disso, dizemos que eles formam uma "base" para o espaço vetorial.

Definição. Os vetores $v_1, v_2, ..., v_n$ formam uma base para um espaço vetorial V se e somente se

- (i) $v_1, ..., v_n$ são linearmente independentes;
- (ii) $\mathbf{v}_1, ..., \mathbf{v}_n$ geram V.

EXEMPLO 1. A "base canônica" para o $R^3 \in \{e_1, e_2, e_3\}$. No entanto, poderíamos usar outra base qualquer, como, por exemplo, $\{(1, 1, 1)^T, (0, 1, 1)^T, (2, 0, 1)^T\}$ ou $\{(1, 1, 1)^T, (1, 1, 0)^T, (1, 0, 1)^T\}$. Veremos, em breve, que qualquer base para R^3 tem exatamente três elementos.

EXEMPLO 2. Considere o conjunto $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ em $\mathbb{R}^{2\times 2}$, onde