EXEMPLO 4. Mostre que
$$\left\{ \begin{pmatrix} 1\\2\\3\\3 \end{pmatrix}, \begin{pmatrix} -2\\1\\0\\1 \end{pmatrix} \right\}$$
 é uma base para \mathbb{R}^3 .

SOLUÇÃO. Como dim $R^3 = 3$, basta mostrar que esses três vetores são linearmente independentes. Isso segue do fato de que

$$\begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{vmatrix} = 2$$

Teorema 3.4.4. Se V é um espaço vetorial de dimensão n > 0, então:

- (i) nenhum conjunto com menos de n vetores pode gerar V;
- (ii) qualquer subconjunto linearmente independente com menos de n elementos pode ser estendido para formar uma base para V;
- (iii) podem-se retirar elementos de qualquer conjunto gerador contendo mais de n vetores de modo a se obter uma base para V.

Demonstração. A observação (i) segue pelo mesmo argumento utilizado no Teorema 3.4.3 para provar (II). Para provar (ii), suponha que $\mathbf{v}_1, \ldots, \mathbf{v}_k$ são vetores linearmente independente e que k < n. De (i), $[\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}]$ é um subespaço próprio de V, logo existe um vetor \mathbf{v}_{k+1} que está em V, mas não pertence a $[\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}]$. Temos, então, que os vetores $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}$ são linearmente independentes. Se k+1 < n, podemos estender $\{\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}\}$, da mesma maneira, a um conjunto linearmente independente com k+2 vetores. Esse processo pode ser continuado até obtermos um conjunto $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n\}$ de vetores linearmente independentes.

Para provar (iii), suponha que $\mathbf{v}_1, \ldots, \mathbf{v}_m$ geram V e que m > n. Pelo Teorema 3.4.1, $\mathbf{v}_1, \ldots, \mathbf{v}_m$ são linearmente dependentes. Temos, então, que um dos vetores, por exemplo, \mathbf{v}_m , pode ser escrito como uma combinação linear dos outros. Logo, se retirarmos \mathbf{v}_m do conjunto, os m-1 vetores restantes ainda geram V. Se m-1 > n, podemos continuar a retirar vetores do conjunto até chegarmos a um conjunto gerador contendo n elementos.

BASES CANÔNICAS

No Exemplo 1 dissemos que o conjunto $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ era a base canônica para R^3 . Chamamos essa base de canônica por ela ser a mais natural para se representar vetores em R^3 . Mais geralmente, a base canônica para $R^n \notin \mathbf{o}$ conjunto $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$.

A maneira mais natural de representar matrizes em $R^{2\times2}$ é em termos da base $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ dada no Exemplo 2. Essa é, então, a base canônica para $R^{2\times2}$.

A maneira padrão de representar um polinômio em P_n é em termos das funções $1, x, x^2, ..., x^{n-1}$ e, por isso, a base canônica para P_n é $\{1, x, x^2, ..., x^{n-1}\}$.

Embora essas bases canônicas pareçam ser as mais simples e naturais para se usar, elas não são as bases mais apropriadas para muitos problemas aplicados. (Veja, por exemplo, o problema de mínimos quadráticos no Cap. 5 ou as aplicações de autovalores no Cap. 6.) De fato, a chave na resolução de muitos problemas aplicados é mudar de uma das bases canônicas para uma base que é, de alguma forma, mais natural para a aplicação em questão. Uma vez resolvido o problema na nova base, é fácil voltar e representar a solução em termos da base canônica. Na próxima seção vamos aprender a mudar de uma base para outra.

EXERCÍCIOS

- 1. Indique se os vetores dados no Exercício 1 da Seção 3 formam ou não uma base para R².
- **2.** Indique se os vetores dados no Exercício 2 da Seção 3 formam ou não uma base para R^3 .

3. Considere os vetores

$$\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$$

- (a) Mostre que \mathbf{x}_1 e \mathbf{x}_2 formam uma base para R^2 .
- (b) Por que x_1, x_2, x_3 têm que ser linearmente dependentes?
- (c) Qual a dimensão de $[\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}]$?

4. Considere os vetores

$$\mathbf{x}_1 = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} -3 \\ 2 \\ -4 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} -6 \\ 4 \\ -8 \end{pmatrix}$$

Qual a dimensão de $[\{x_1, x_2, x_3\}]$?

5. Considere

$$\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 2 \\ 6 \\ 4 \end{pmatrix}$$

- (a) Mostre que x_1 , x_2 , x_3 são linearmente dependentes.
- (b) Mostre que x_1 , x_2 são linearmente independentes.
- (c) Qual a dimensão de $[\{x_1, x_2, x_3\}]$?
- (d) Descreva geometricamente $[\{x_1, x_2, x_3\}]$.
- **6.** Alguns dos conjuntos no Exercício 2 da Seção 2 formavam subespaços de R³. Em cada um desses casos, encontre uma base para o subespaço e determine sua dimensão.
- **7.** Encontre uma base para o subespaço S de R^4 formado por todos os vetores da forma $(a + b, a b + 2c, b, c)^r$, onde $a, b \in c$ são números reais. Qual a dimensão de S?
- **8.** Considere os vetores $\mathbf{x}_1 = (1, 1, 1)^T \mathbf{e} \ \mathbf{x}_2 = (3, -1, 4)^T$.
 - (a) $\mathbf{x}_1 \in \mathbf{x}_2$ geram \mathbb{R}^3 ? Explique.
 - (b) Seja \mathbf{x}_3 um terceiro vetor em R^3 e defina $X = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3}$. Que condição (ou condições) X tem que satisfazer para que $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ formem uma base para R^3 ?
 - (c) Encontre um terceiro vetor \mathbf{x}_3 que estenda o conjunto $\{\mathbf{x}_1, \mathbf{x}_2\}$ a uma base para \mathbb{R}^3 .

9. Os vetores

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \quad \mathbf{x}_4 = \begin{pmatrix} 2 \\ 7 \\ 4 \end{pmatrix}, \quad \mathbf{x}_5 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

geram R^3 . Retire algum (ou alguns) elementos de $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5\}$ de modo a obter uma base para R^3 .

- **10.** Seja S o subespaço de P_3 formado por todos os polinômios da forma $ax^2 + bx + 2a + 3b$. Encontre uma base para S.
- **11.** Alguns dos conjuntos no Exercício 3 da Seção 2 formavam subespaços de $R^{2\times 2}$. Em cada um desses casos, encontre uma base para o subespaço e determine sua dimensão.
- **12.** Encontre a dimensão do espaço gerado por 1, $\cos 2x$, $\cos^2 x$ em $C[-\pi, \pi]$.
- **13.** Encontre a dimensão do subespaço de P_3 gerado pelos vetores dados em cada um dos itens a seguir.

(a)
$$x, x - 1, x^2 + 1$$

(b) $x, x - 1, x^2 + 1, x^2 - 1$
(c) $x^2, x^2 - x - 1, x + 1$
(d) $2x, x - 2$

14. Seja S o subespaço de P_3 formado por todos os polinômios p(x) satisfazendo p(0) = 0, e seja T o subespaço de todos os polinômios q(x) tais que q(1) = 0. Encontre bases para

(a)
$$S$$
 (b) T (c) $S \cap T$

15. Seja U o subespaço de R^4 formado pelos vetores da forma $(u_1, u_2, 0, 0)^T$ e seja V o subespaço de

todos os vetores da forma $(0, v_2, v_3, 0)^T$. Quais as dimensões de $U, V, U \cap V, U + V$? Encontre uma base para cada um desses subespaços.

16. É possível encontrar um par de subespaços bidimensionais U e V de R^3 tais que $U \cap V = \{0\}$? Justifique sua resposta. Interprete geometricamente sua conclusão.

[Sugestão: sejam $\{\mathbf{u}_1, \mathbf{u}_2\}$ e $\{\mathbf{v}_1, \mathbf{v}_2\}$ bases para U e V, respectivamente; mostre que $\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2$ são linearmente dependentes.]

5 MUDANÇA DE BASES

Muitos problemas aplicados podem ser simplificados mudando-se de um sistema de coordenadas para outro. Mudar sistemas de coordenadas em um espaço vetorial é, essencialmente, a mesma coisa que mudar de base. Por exemplo, ao descrever o movimento de uma partícula no plano em um instante particular, é muitas vezes conveniente usar uma base de R^2 formada por um vetor tangente unitário t e um vetor normal unitário t, em vez da base canônica $\{e_1, e_2\}$.

Nesta seção, vamos discutir o problema de mudar de um sistema de coordenadas para outro. Vamos mostrar que isso pode ser feito multiplicando-se um vetor de coordenadas dado \mathbf{x} por uma matriz invertível S. O produto $\mathbf{y} = S\mathbf{x}$ vai ser o vetor de coordenadas para o novo sistema.

MUDANÇA DE COORDENADAS EM R²

A base canônica para R^2 é $\{\mathbf{e}_1, \mathbf{e}_2\}$. Qualquer vetor \mathbf{x} em R^2 pode ser escrito como uma combinação linear

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

Os escalares x_1 e x_2 são as *coordenadas* de x em relação à base canônica. De fato, para qualquer base $\{y, z\}$ para R^2 , pelo Teorema 3.3.2, um dado vetor x pode ser representado de maneira única como uma combinação linear

$$\mathbf{x} = \alpha \mathbf{y} + \beta \mathbf{z}$$

Os escalares α e β são as coordenadas de x em relação à base $\{y, z\}$. Vamos ordenar os elementos da base de modo que y seja o primeiro vetor da base e z seja o segundo, e vamos denotar a base ordenada por $[y, z]^*$. Podemos, então, nos referir ao vetor $(\alpha, \beta)^r$ como sendo o vetor de coordenadas de x em relação à base [y, z].

EXEMPLO 1. Sejam $\mathbf{y} = (2, 1)^T \mathbf{e} \mathbf{z} = (1, 4)^T$. Os vetores $\mathbf{y} \mathbf{e} \mathbf{z}$ são linearmente independentes e, portanto, formam uma base para R^2 . O vetor $\mathbf{x} = (7, 7)^T$ pode ser escrito como uma combinação linear

$$x = 3y + z$$

Logo, o vetor de coordenadas de \mathbf{x} em relação a $[\mathbf{y}, \mathbf{z}]$ é $(3, 1)^T$. Geometricamente, esse vetor nos diz como sair da origem e chegar em (7, 7), movendo-nos primeiro na direção de \mathbf{y} e depois na direção de \mathbf{z} . O vetor de coordenadas de \mathbf{x} em relação à base ordenada $[\mathbf{z}, \mathbf{y}]$ é $(1, 3)^T$. Geometricamente, esse vetor nos diz como sair da origem e chegar em (7, 7) movendo-nos primeiro na direção de \mathbf{z} e depois na direção de \mathbf{y} (ver Fig. 3.5.1).

Uma vez decididos a trabalhar com uma nova base, temos o problema de encontrar as coordenadas em relação a essa nova base. Suponha, por exemplo, que, em vez de usarmos a base canônica $\{\mathbf{e}_1, \mathbf{e}_2\}$ para o \mathbb{R}^2 , queira usar uma base diferente, por exemplo,

$$\mathbf{u}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \qquad \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

^{*} Não confundir com o espaço gerado por y e z, que é denotado por [{y, z}]. A notação com colchetes para bases ordenadas não é padrão.(N.T.)