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PREFACE

This solutions manual is designed to accompany the seventh edition of Linear
Algebra with Applications by Steven J. Leon. The answers in this manual supple-
ment those given in the answer key of the textbook. In addition this manual contains
the complete solutions to all of the nonroutine exercises in the book.

At the end of each chapter of the textbook there are two chapter tests (A and
B) and a section of computer exercises to be solved using MATLAB. The questions
in each Chapter Test A are to be answered as either true or false. Although the true-
false answers are given in the Answer Section of the textbook, students are required
to explain or prove their answers. This manual includes explanations, proofs, and
counterexamples for all Chapter Test A questions. The chapter tests labelled B
contain workout problems. The answers to these problems are not given in the
Answers to Selected Exercises Section of the textbook, however, they are provided
in this manual. Complete solutions are given for all of the nonroutine Chapter Test
B exercises.

In the MATLAB exercises most of the computations are straightforward. Con-
sequently they have not been included in this solutions manual. On the other hand,
the text also includes questions related to the computations. The purpose of the
questions is to emphasize the significance of the computations. The solutions man-
ual does provide the answers to most of these questions. There are some questions
for which it is not possible to provide a single answer. For example, aome exercises
involve randomly generated matrices. In these cases the answers may depend on
the particular random matrices that were generated.

Steven J. Leon
sleon@umassd.edu
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CHAPTER
1

SECTION 1

2. (d)




1 1 1 1 1
0 2 1 −2 1
0 0 4 1 −2
0 0 0 1 −3
0 0 0 0 2




5. (a) 3x1 + 2x2 = 8
x1 + 5x2 = 7

(b) 5x1 − 2x2 + x3 = 3
2x1 + 3x2 − 4x3 = 0

(c) 2x1 + x2 + 4x3 = −1
4x1 − 2x2 + 3x3 = 4
5x1 + 2x2 + 6x2 = −1

(d) 4x1 − 3x2 + x3 + 2x4 = 4
3x1 + x2 − 5x3 + 6x4 = 5
x1 + x2 + 2x3 + 4x4 = 8

5x1 + x2 + 3x3 − 2x4 = 7
9. Given the system

−m1x1 + x2 = b1

−m2x1 + x2 = b2

one can eliminate the variable x2 by subtracting the first row from the
second. One then obtains the equivalent system

−m1x1 + x2 = b1

(m1 − m2)x1 = b2 − b1

1
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(a) If m1 6= m2, then one can solve the second equation for x1

x1 =
b2 − b1

m1 − m2

One can then plug this value of x1 into the first equation and solve for
x2. Thus, if m1 6= m2, there will be a unique ordered pair (x1, x2) that
satisfies the two equations.

(b) If m1 = m2, then the x1 term drops out in the second equation

0 = b2 − b1

This is possible if and only if b1 = b2.
(c) If m1 6= m2, then the two equations represent lines in the plane with

different slopes. Two nonparallel lines intersect in a point. That point
will be the unique solution to the system. If m1 = m2 and b1 = b2, then
both equations represent the same line and consequently every point on
that line will satisfy both equations. If m1 = m2 and b1 6= b2, then the
equations represent parallel lines. Since parallel lines do not intersect,
there is no point on both lines and hence no solution to the system.

10. The system must be consistent since (0, 0) is a solution.
11. A linear equation in 3 unknowns represents a plane in three space. The

solution set to a 3 × 3 linear system would be the set of all points that lie
on all three planes. If the planes are parallel or one plane is parallel to the
line of intersection of the other two, then the solution set will be empty. The
three equations could represent the same plane or the three planes could
all intersect in a line. In either case the solution set will contain infinitely
many points. If the three planes intersect in a point then the solution set
will contain only that point.

SECTION 2
2. (b) The system is consistent with a unique solution (4,−1).
4. (b) x1 and x3 are lead variables and x2 is a free variable.

(d) x1 and x3 are lead variables and x2 and x4 are free variables.
(f) x2 and x3 are lead variables and x1 is a free variable.

5. (l) The solution is (0,−1.5,−3.5).
6. (c) The solution set consists of all ordered triples of the form (0,−α, α).
7. A homogeneous linear equation in 3 unknowns corresponds to a plane that

passes through the origin in 3-space. Two such equations would correspond
to two planes through the origin. If one equation is a multiple of the other,
then both represent the same plane through the origin and every point on
that plane will be a solution to the system. If one equation is not a multiple of
the other, then we have two distinct planes that intersect in a line through the
origin. Every point on the line of intersection will be a solution to the linear
system. So in either case the system must have infinitely many solutions.
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In the case of a nonhomogeneous 2 × 3 linear system, the equations cor-
respond to planes that do not both pass through the origin. If one equation
is a multiple of the other, then both represent the same plane and there are
infinitely many solutions. If the equations represent planes that are parallel,
then they do not intersect and hence the system will not have any solutions.
If the equations represent distinct planes that are not parallel, then they
must intersect in a line and hence there will be infinitely many solutions.
So the only possibilities for a nonhomogeneous 2 × 3 linear system are 0 or
infinitely many solutions.

9. (a) Since the system is homogeneous it must be consistent.
14. At each intersection the number of vehicles entering must equal the number

of vehicles leaving in order for the traffic to flow. This condition leads to the
following system of equations

x1 + a1 = x2 + b1

x2 + a2 = x3 + b2

x3 + a3 = x4 + b3

x4 + a4 = x1 + b4

If we add all four equations we get

x1 + x2 + x3 + x4 + a1 + a2 + a3 + a4 = x1 + x2 + x3 + x4 + b1 + b2 + b3 + b4

and hence
a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

15. If (c1, c2) is a solution, then

a11c1 + a12c2 = 0
a21c1 + a22c2 = 0

Multiplying both equations through by α, one obtains

a11(αc1) + a12(αc2) = α · 0 = 0
a21(αc1) + a22(αc2) = α · 0 = 0

Thus (αc1, αc2) is also a solution.
16. (a) If x4 = 0 then x1, x2, and x3 will all be 0. Thus if no glucose is produced

then there is no reaction. (0, 0, 0, 0) is the trivial solution in the sense that
if there are no molecules of carbon dioxide and water, then there will be no
reaction.
(b) If we choose another value of x4, say x4 = 2, then we end up with
solution x1 = 12, x2 = 12, x3 = 12, x4 = 2. Note the ratios are still 6:6:6:1.

SECTION 3

1. (e)




8 −15 11
0 −4 −3

−1 −6 6



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(g)




5 −10 15
5 −1 4
8 −9 6




2. (d)

 36 10 56

10 3 16




5. (a) 5A =




15 20
5 5

10 35




2A + 3A =




6 8
2 2
4 14


 +




9 12
3 3
6 21


 =




15 20
5 5

10 35




(b) 6A =




18 24
6 6

12 42




3(2A) = 3




6 8
2 2
4 14


 =




18 24
6 6

12 42




(c) AT =

 3 1 2

4 1 7




(AT )T =

 3 1 2

4 1 7




T

=




3 4
1 1
2 7


 = A

6. (a) A + B =

 5 4 6

0 5 1


 = B + A

(b) 3(A + B) = 3

 5 4 6

0 5 1


 =


 15 12 18

0 15 3




3A + 3B =

 12 3 18

6 9 15


 +


 3 9 0

−6 6 −12




=

 15 12 18

0 15 3




(c) (A + B)T =

 5 4 6

0 5 1




T

=




5 0
4 5
6 1




AT + BT =




4 2
1 3
6 5


 +




1 −2
3 2
0 −4


 =




5 0
4 5
6 1




7. (a) 3(AB) = 3




5 14
15 42
0 16


 =




15 42
45 126
0 48




(3A)B =




6 3
18 9
−6 12





 2 4

1 6


 =




15 42
45 126
0 48



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A(3B) =




2 1
6 3

−2 4





 6 12

3 18


 =




15 42
45 126
0 48




(b) (AB)T =




5 14
15 42
0 16




T

=

 5 15 0

14 42 16




BT AT =

 2 1

4 6





 2 6 −2

1 3 4


 =


 5 15 0

14 42 16




8. (a) (A + B) + C =

 0 5

1 7


 +


 3 1

2 1


 =


 3 6

3 8




A + (B + C) =

 2 4

1 3


 +


 1 2

2 5


 =


 3 6

3 8




(b) (AB)C =

 −4 18

−2 13





 3 1

2 1


 =


 24 14

20 11




A(BC) =

 2 4

1 3





 −4 −1

8 4


 =


 24 14

20 11




(c) A(B + C) =

 2 4

1 3





 1 2

2 5


 =


 10 24

7 17




AB + AC =

 −4 18

−2 13


 +


 14 6

9 4


 =


 10 24

7 17




(d) (A + B)C =

 0 5

1 7





 3 1

2 1


 =


 10 5

17 8




AC + BC =

 14 6

9 4


 +


 −4 −1

8 4


 =


 10 5

17 8




9. Let

D = (AB)C =

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22





 c11 c12

c21 c22




It follows that

d11 = (a11b11 + a12b21)c11 + (a11b12 + a12b22)c21

= a11b11c11 + a12b21c11 + a11b12c21 + a12b22c21

d12 = (a11b11 + a12b21)c12 + (a11b12 + a12b22)c22

= a11b11c12 + a12b21c12 + a11b12c22 + a12b22c22

d21 = (a21b11 + a22b21)c11 + (a21b12 + a22b22)c21

= a21b11c11 + a22b21c11 + a21b12c21 + a22b22c21

d22 = (a21b11 + a22b21)c12 + (a21b12 + a22b22)c22

= a21b11c12 + a22b21c12 + a21b12c22 + a22b22c22

If we set

E = A(BC) =

 a11 a12

a21 a22





 b11c11 + b12c21 b11c12 + b12c22

b21c11 + b22c21 b21c12 + b22c22



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then it follows that

e11 = a11(b11c11 + b12c21) + a12(b21c11 + b22c21)
= a11b11c11 + a11b12c21 + a12b21c11 + a12b22c21

e12 = a11(b11c12 + b12c22) + a12(b21c12 + b22c22)
= a11b11c12 + a11b12c22 + a12b21c12 + a12b22c22

e21 = a21(b11c11 + b12c21) + a22(b21c11 + b22c21)
= a21b11c11 + a21b12c21 + a22b21c11 + a22b22c21

e22 = a21(b11c12 + b12c22) + a22(b21c12 + b22c22)
= a21b11c12 + a21b12c22 + a22b21c12 + a22b22c22

Thus
d11 = e11 d12 = e12 d21 = e21 d22 = e22

and hence
(AB)C = D = E = A(BC)

12.

A2 =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




A3 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




and A4 = O. If n > 4, then

An = An−4A4 = An−4O = O

13. (b) x = (2, 1)T is a solution since b = 2a1 +a2. There are no other solutions
since the echelon form of A is strictly triangular.
(c) The solution to Ax = c is x = (−5

2
,−1

4
)T . Therefore c = −5

2
a1 − 1

4
a2.

15. If d = a11a22 − a21a12 6= 0 then

1
d


 a22 −a12

−a21 a11





 a11 a12

a21 a22




=




a11a22 − a12a21
d

0

0 a11a22 − a12a21
d




= I


 a11 a12

a21 a22




[
1
d


 a22 −a12

−a21 a11




]

=




a11a22 − a12a21
d

0

0 a11a22 − a12a21
d




= I

Therefore
1
d


 a22 −a12

−a21 a11


 = A−1
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16. Since
A−1A = AA−1 = I

it follows from the definition that A−1 is nonsingular and its inverse is A.
17. Since

AT (A−1)T = (A−1A)T = I

(A−1)T AT = (AA−1)T = I

it follows that
(A−1)T = (AT )−1

18. If Ax = Ay and x 6= y, then A must be singular, for if A were nonsingular
then we could multiply by A−1 and get

A−1Ax = A−1Ay
x = y

19. For m = 1,
(A1)−1 = A−1 = (A−1)1

Assume the result holds in the case m = k, that is,

(Ak)−1 = (A−1)k

It follows that

(A−1)k+1Ak+1 = A−1(A−1)kAkA = A−1A = I

and
Ak+1(A−1)k+1 = AAk(A−1)kA−1 = AA−1 = I

Therefore
(A−1)k+1 = (Ak+1)−1

and the result follows by mathematical induction.
20. (a) (A+B)2 = (A+B)(A+B) = (A+B)A+(A+B)B = A2+BA+AB+B2

In the case of real numbers ab + ba = 2ab, however, with matrices
AB + BA is generally not equal to 2AB.

(b)

(A + B)(A − B) = (A + B)(A − B)
= (A + B)A − (A + B)B
= A2 + BA − AB − B2

In the case of real numbers ab−ba = 0, however, with matrices AB−BA
is generally not equal to O.

21. If we replace a by A and b by the identity matrix, I, then both rules will
work, since

(A + I)2 = A2 + IA + AI + B2 = A2 + AI + AI + B2 = A2 + 2AI + B2

and

(A + I)(A − I) = A2 + IA − AI − I2 = A2 + A − A − I2 = A2 − I2



8 CHAPTER 1

22. There are many possible choices for A and B. For example, one could choose

A =

 0 1

0 0


 and B =


 1 1

0 0




More generally if

A =

 a b

ca cb


 B =


 db eb

−da −ea




then AB = O for any choice of the scalars a, b, c, d, e.
23. To construct nonzero matrices A, B, C with the desired properties, first find

nonzero matrices C and D such that DC = O (see Exercise 22). Next, for
any nonzero matrix A, set B = A + D. It follows that

BC = (A + D)C = AC + DC = AC + O = AC

24. A 2 × 2 symmetric matrix is one of the form

A =

 a b

b c




Thus

A2 =

 a2 + b2 ab + bc

ab + bc b2 + c2




If A2 = O, then its diagonal entries must be 0.

a2 + b2 = 0 and b2 + c2 = 0

Thus a = b = c = 0 and hence A = O.
25. For most pairs of symmetric matrices A and B the product AB will not be

symmetric. For example

 1 1

1 2





 1 2

2 1


 =


 3 3

5 4




See Exercise 27 for a characterization of the conditions under which the
product will be symmetric.

26. (a) AT is an n × m matrix. Since AT has m columns and A has m rows,
the multiplication AT A is possible. The multiplication AAT is possible
since A has n columns and AT has n rows.

(b) (AT A)T = AT (AT )T = AT A
(AAT )T = (AT )T AT = AAT

27. Let A and B be symmetric n × n matrices. If (AB)T = AB then

BA = BT AT = (AB)T = AB

Conversely if BA = AB then

(AB)T = BT AT = BA = AB

28. If A is skew-symmetric then AT = −A. Since the (j, j) entry of AT is ajj

and the (j, j) entry of −A is −ajj, it follows that is ajj = −ajj for each j
and hence the diagonal entries of A must all be 0.
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29. (a)

BT = (A + AT )T = AT + (AT )T = AT + A = B

CT = (A − AT )T = AT − (AT )T = AT − A = −C

(b) A = 1
2(A + AT ) + 1

2(A − AT )
31. The search vector is x = (1, 0, 1, 0, 1,0)T. The search result is given by the

vector
y = ATx = (1, 2, 2, 1, 1, 2, 1)T

The ith entry of y is equal to the number of search words in the title of the
ith book.

34. If α = a21/a11, then

 1 0

α 1





 a11 a12

0 b


 =


 a11 a12

αa11 αa12 + b


 =


 a11 a12

a21 αa12 + b




The product will equal A provided

αa12 + b = a22

Thus we must choose

b = a22 − αa12 = a22 −
a21a12

a11

SECTION 4

2. (a)

 0 1

1 0


, type I

(b) The given matrix is not an elementary matrix. Its inverse is given by



1
2 0

0 1
3




(c)




1 0 0
0 1 0

−5 0 1


, type III

(d)




1 0 0
0 1/5 0
0 0 1


, type II

5. (c) Since
C = FB = FEA

where F and E are elementary matrices, it follows that C is row equivalent
to A.

6. (b) E−1
1 =




1 0 0
3 1 0
0 0 1


, E−1

2 =




1 0 0
0 1 0
2 0 1


, E−1

3 =




1 0 0
0 1 0
0 −1 1



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The product L = E−1
1 E−1

2 E−1
3 is lower triangular.

L =




1 0 0
3 1 0
2 −1 1




7. A can be reduced to the identity matrix using three row operations

 2 1

6 4


 →


 2 1

0 1


 →


 2 0

0 1


 →


 1 0

0 1




The elementary matrices corresponding to the three row operations are

E1 =

 1 0

−3 1


 , E2 =


 1 −1

0 1


 , E3 =




1
2 0
0 1




So
E3E2E1A = I

and hence

A = E−1
1 E−1

3 E−1
3 =


 1 0

3 1





 1 1

0 1





 2 0

0 1




and A−1 = E3E2E1.

8. (b)

 1 0

−1 1





 2 4

0 5




(d)




1 0 0
−2 1 0

3 −2 1







−2 1 2
0 3 2
0 0 2




9. (a)




1 0 1
3 3 4
2 2 3







1 2 −3
−1 1 −1

0 −2 3


 =




1 0 0
0 1 0
0 0 1







1 2 −3
−1 1 −1

0 −2 −3







1 0 1
3 3 4
2 2 3


 =




1 0 0
0 1 0
0 0 1




10. (e)




1 −1 0
0 1 −1
0 0 1




12. (b) XA + B = C
X = (C − B)A−1

=

 8 −14

−13 19




(d) XA + C = X
XA − XI = −C
X(A − I) = −C
X = −C(A − I)−1

=

 2 −4

−3 6



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13. (a) If E is an elementary matrix of type I or type II then E is symmetric.
Thus ET = E is an elementary matrix of the same type. If E is the
elementary matrix of type III formed by adding α times the ith row of
the identity matrix to the jth row, then ET is the elementary matrix
of type III formed from the identity matrix by adding α times the jth
row to the ith row.

(b) In general the product of two elementary matrices will not be an ele-
mentary matrix. Generally the product of two elementary matrices will
be a matrix formed from the identity matrix by the performance of two
row operations. For example, if

E1 =




1 0 0
2 1 0
0 0 0


 and E2 =




1 0 0
0 1 0
2 0 1




then E1 and E2 are elementary matrices, but

E1E2 =




1 0 0
2 1 0
2 0 1




is not an elementary matrix.
14. If T = UR, then

tij =
n∑

k=1

uikrkj

Since U and R are upper triangular

ui1 = ui2 = · · · = ui,i−1 = 0
rj+1,j = rj+2,j = · · · − rnj = 0

If i > j, then

tij =
j∑

k=1

uikrkj +
n∑

k=j+1

uikrkj

=
j∑

k=1

0 rkj +
n∑

k=j+1

uik0

= 0

Therefore T is upper triangular.
If i = j, then

tjj = tij =
i−1∑

k=1

uikrkj + ujjrjj +
n∑

k=j+1

uikrkj

=
i−1∑

k=1

0 rkj + ujjrjj +
n∑

k=j+1

uik0

= ujjrjj
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Therefore
tjj = ujjrjj j = 1, . . . , n

15. If we set x = (2, 1− 4)T , then

Ax = 2a1 + 1a2 − 4a3 = 0

Thus x is a nonzero solution to the system Ax = 0. But if a homogeneous
system has a nonzero solution, then it must have infinitely many solutions.
In particular, if c is any scalar, then cx is also a solution to the system since

A(cx) = cAx = c0 = 0

Since Ax = 0 and x 6= 0 it follows that the matrix A must be singular. (See
Theorem 1.4.2)

16. If a1 = 3a2 − 2a3, then
a1 − 3a2 + 2a3 = 0

Therefore x = (1,−3, 2)T is a nontrivial solution to Ax = 0. It follows form
Theorem 1.4.2 that A must be singular.

17. If x0 6= 0 and Ax0 = Bx0, then Cx0 = 0 and it follows from Theorem 1.4.2
that C must be singular.

18. If B is singular, then it follows from Theorem 1.4.2 that there exists a nonzero
vector x such that Bx = 0. If C = AB, then

Cx = ABx = A0 = 0

Thus, by Theorem 1.4.2, C must also be singular.
19. (a) If U is upper triangular with nonzero diagonal entries, then using row

operation II, U can be transformed into an upper triangular matrix with
1’s on the diagonal. Row operation III can then be used to eliminate
all of the entries above the diagonal. Thus U is row equivalent to I and
hence is nonsingular.

(b) The same row operations that were used to reduce U to the identity
matrix will transform I into U−1. Row operation II applied to I will
just change the values of the diagonal entries. When the row operation
III steps referred to in part (a) are applied to a diagonal matrix, the
entries above the diagonal are filled in. The resulting matrix, U−1, will
be upper triangular.

20. Since A is nonsingular it is row equivalent to I. Hence there exist elementary
matrices E1, E2, . . . , Ek such that

Ek · · ·E1A = I

It follows that
A−1 = Ek · · ·E1

and
Ek · · ·E1B = A−1B = C

The same row operations that reduce A to I, will transform B to C. There-
fore the reduced row echelon form of (A | B) will be (I | C).
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21. (a) If the diagonal entries of D1 are α1, α2, . . . , αn and the diagonal entries
of D2 are β1, β2, . . . , βn, then D1D2 will be a diagonal matrix with diag-
onal entries α1β1, α2β2, . . . , αnβn and D2D1 will be a diagonal matrix
with diagonal entries β1α1, β2α2, . . . , βnαn. Since the two have the same
diagonal entries it follows that D1D2 = D2D1.

(b)

AB = A(a0I + a1A + · · ·+ akAk)
= a0A + a1A

2 + · · ·+ akAk+1

= (a0I + a1A + · · ·+ akAk)A
= BA

22. If A is symmetric and nonsingular, then

(A−1)T = (A−1)T (AA−1) = ((A−1)TAT )A−1 = A−1

23. If A is row equivalent to B then there exist elementary matrices E1, E2, . . . , Ek

such that
A = EkEk−1 · · ·E1B

Each of the Ei’s is invertible and E−1
i is also an elementary matrix (Theorem

1.4.1). Thus
B = E−1

1 E−1
2 · · ·E−1

k A

and hence B is row equivalent to A.
24. (a) If A is row equivalent to B, then there exist elementary matrices E1, E2, . . . , Ek

such that
A = EkEk−1 · · ·E1B

Since B is row equivalent to C, there exist elementary matrices H1, H2, . . . , Hj

such that
B = HjHj−1 · · ·H1C

Thus
A = EkEk−1 · · ·E1HjHj−1 · · ·H1C

and hence A is row equivalent to C.
(b) If A and B are nonsingular n × n matrices then A and B are row

equivalent to I. Since A is row equivalent to I and I is row equivalent
to B it follows from part (a) that A is row equivalent to B.

25. If U is any row echelon form of A then A can be reduced to U using row
operations, so A is row equivalent to U . If B is row equivalent to A then it
follows from the result in Exercise 24(a) that B is row equivalent to U .

26. If B is row equivalent to A, then there exist elementary matrices E1, E2, . . . , Ek

such that
B = EkEk−1 · · ·E1A

Let M = EkEk−1 · · ·E1. The matrix M is nonsingular since each of the Ei’s
is nonsingular.
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Conversely suppose there exists a nonsingular matrix M such that
B = MA. Since M is nonsingular it is row equivalent to I. Thus there exist
elementary matrices E1, E2, . . . , Ek such that

M = EkEk−1 · · ·E1I

It follows that
B = MA = EkEk−1 · · ·E1A

Therefore B is row equivalent to A.
27. (a) The system V c = y is given by




1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...
1 xn+1 x2

n+1 · · · xn
n+1







c1

c2

...
cn+1




=




y1

y2

...
yn+1




Comparing the ith row of each side, we have

c1 + c2xi + · · ·+ cn+1x
n
i = yi

Thus
p(xi) = yi i = 1, 2, . . . , n + 1

(b) If x1, x2, . . . , xn+1 are distinct and V c = 0, then we can apply part (a)
with y = 0. Thus if p(x) = c1 + c2x + · · ·+ cn+1x

n, then

p(xi) = 0 i = 1, 2, . . . , n + 1

The polynomial p(x) has n + 1 roots. Since the degree of p(x) is less
than n + 1, p(x) must be the zero polynomial. Hence

c1 = c2 = · · · = cn+1 = 0

Since the system V c = 0 has only the trivial solution, the matrix V
must be nonsingular.

SECTION 5

2. B = AT A =




aT
1

aT
2
...

aT
n




(a1, a2, . . . , an) =




aT
1 a1 aT

1 a2 · · · aT
1 an

aT
2 a1 aT

2 a2 · · · aT
2 an

...
aT

na1 aT
na2 · · · aT

nan




5. (a)

 1 1 1

2 1 2







4 −2 1
2 3 1
1 1 2


 +


 −1

−1


 (1 2 3) =


 6 0 1

11 −1 4




(c) Let

A11 =




3
5 −4

5

4
5

3
5


 A12 =


 0 0

0 0




A21 = (0 0) A22 = (1 0)
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The block multiplication is performed as follows:




A11 A12

A21 A22







AT
11 AT

21

AT
12 AT

22


 =




A11A
T
11 + A12A

T
12 A11A

T
21 + A12A

T
22

A21A
T
11 + A22A

T
12 A21A

T
21 + A22A

T
22




=




1 0 0
0 1 0
0 0 0




6. (a)

XY T = x1yT
1 + x2yT

2 + x3yT
3

=

 2

4





 1 2


 +


 1

2





 2 3


 +


 5

3





 4 1




=

 2 4

4 8


 +


 2 3

4 6


 +


 20 5

12 3




(b) Since yix
T
i = (xiyT

i )T for j = 1, 2, 3, the outer product expansion of
Y XT is just the transpose of the outer product expansion of XY T . Thus

Y XT = y1x
T
1 + y2x

T
2 + y3x

T
3

=

 2 4

4 8


 +


 2 4

3 6


 +


 20 12

5 3




7. It is possible to perform both block multiplications. To see this suppose A11

is a k×r matrix, A12 is a k×(n−r) matrix, A21 is an (m−k)×r matrix and
A22 is (m − k) × (n − r). It is possible to perform the block multiplication
of AAT since the matrix multiplication A11A

T
11, A11A

T
21, A12A

T
12, A12A

T
22,

A21A
T
11, A21A

T
21, A22A

T
12, A22A

T
22 are all possible. It is possible to perform

the block multiplication of AT A since the matrix multiplications AT
11A11,

AT
11A12, AT

21A21, AT
21A11, AT

12A12, AT
22A21, AT

22A22 are all possible.

8. AX = A(x1,x2, . . . ,xr) = (Ax1, Ax2, . . . , Axr)
B = (b1,b2, . . . ,br)
AX = B if and only if the column vectors of AX and B are equal

Axj = bj j = 1, . . . , r

9. (a) Since D is a diagonal matrix, its jth column will have djj in the jth row
and the other entries will all be 0. Thus dj = djjej for j = 1, . . . , n.

(b)

AD = A(d11e1, d22e2, . . . , dnnen)
= (d11Ae1, d22Ae2, . . . , dnnAen)
= (d11a1, d22a2, . . . , dnnan)

10. (a)

UΣ =

 U1 U2





 Σ1

O


 = U1Σ1 + U2O = U1Σ1
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(b) If we let X = UΣ, then

X = U1Σ1 = (σ1u1, σ2u2, . . . , σnun)

and it follows that

A = UΣV T = XV T = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σnunvT
n

11.



A−1
11 C

O A−1
22







A11 A12

O A22


 =




I A−1
11 A12 + CA22

O I




If
A−1

11 A12 + CA22 = O

then
C = −A−1

11 A12A
−1
22

Let

B =




A−1
11 −A−1

11 A12A
−1
22

O A−1
22




Since AB = BA = I it follows that B = A−1.
12. Let 0 denote the zero vector in Rn. If A is singular then there exists a vector

x1 6= 0 such that Ax1 = 0. If we set

x =

 x1

0




then

Mx =

 A C

O B





 x1

0


 =


 Ax1 + C0

Ox1 + B0


 =


 0

0




By Theorem 1.4.2, M must be singular. Similarly, if B is singular then there
exists a vector x2 6= 0 such that Bx2 = 0. So if we set

x =

 0

x2




then x is a nonzero vector and Mx is equal to the zero vector.
15. The block form of S−1 is given by

S−1 =

 I −A

O I




It follows that

S−1MS =

 I −A

O I





 AB O

B O





 I A

O I




=

 I −A

O I





 AB ABA

B BA



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=

 O O

B BA




16. The block multiplication of the two factors yields

 I O

B I





 A11 A12

O C


 =


 A11 A12

BA11 BA12 + C




If we equate this matrix with the block form of A and solve for B and C we
get

B = A21A
−1
11 and C = A22 − A21A

−1
11 A12

To check that this works note that

BA11 = A21A
−1
11 A11 = A21

BA12 + C = A21A
−1
11 A12 + A22 − A21A

−1
11 A12 = A22

and hence
 I O

B I





 A11 A12

O C


 =


 A11 A12

A21 A22


 = A

17. In order for the block multiplication to work we must have

XB = S and Y M = T

Since both B and M are nonsingular, we can satisfy these conditions by
choosing X = SB−1 and Y = TM−1.

18. (a)

BC =




b1

b2

...
bn




(c) =




b1c
b2c
...

bnc




= cb

(b)

Ax = (a1, a2, . . . , an)




x1

x2

...
xn




= a1(x1) + a2(x2) + · · ·+ an(xn)

(c) It follows from parts (a) and (b) that

Ax = a1(x1) + a2(x2) + · · ·+ an(xn)
= x1a1 + x2a2 + · · ·+ xnan

19. If Ax = 0 for all x ∈ Rn, then

aj = Aej = 0 for j = 1, . . . , n

and hence A must be the zero matrix.
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20. If
Bx = Cx for all x ∈ Rn

then
(B − C)x = 0 for all x ∈ Rn

It follows from Exercise 19 that

B − C = O

B = C

21. (a)

 A−1 0

−cT A−1 1





 A a

cT β





 x

xn+1


 =


 A−1 0

−cT A−1 1





 b

bn+1





 I A−1a

0T −cT A−1a + β





 x

xn+1


 =


 A−1b

−cT A−1b + bn+1




(b) If
y = A−1a and z = A−1b

then
(−cTy + β)xn+1 = −cTz + bn+1

xn+1 =
−cTz + bn+1

−cTy + β
(β − cT y 6= 0)

and
x + xn+1A

−1a = A−1b

x = A−1b− xn+1A
−1a = z − xn+1y

MATLAB EXERCISES
1. In parts (a), (b), (c) it should turn out that A1 = A4 and A2 = A3. In part

(d) A1 = A3 and A2 = A4. Exact equality will not occur in parts (c) and
(d) because of roundoff error.

2. The solution x obtained using the \ operation will be more accurate and yield
the smaller residual vector. The computation of x is also more efficient since
the solution is computed using Gaussian elimination with partial pivoting
and this involves less arithmetic than computing the inverse matrix and
multiplying it times b.

3. (a) Since Ax = 0 and x 6= 0, it follows from Theorem 1.4.2 that A is
singular.

(b) The columns of B are all multiples of x. Indeed,

B = (x, 2x, 3x, 4x, 5x, 6x)

and hence

AB = (Ax, 2Ax, 3Ax, 4Ax, 5Ax, 6Ax) = O
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(c) If D = B + C, then

AD = AB + AC = O + AC = AC

4. By construction B is upper triangular whose diagonal entries are all equal to
1. Thus B is row equivalent to I and hence B is nonsingular. If one changes
B by setting b10,1 = −1/256 and computes Bx, the result is the zero vector.
Since x 6= 0, the matrix B must be singular.

5. (a) Since A is nonsingular its reduced row echelon form is I. If E1, . . . , Ek

are elementary matrices such that Ek · · ·E1A = I, then these same
matrices can be used to transform (A b) to its reduced row echelon
form U . It follows then that

U = Ek · · ·E1(A b) = A−1(A b) = (I A−1b)

Thus, the last column of U should be equal to the solution x of the
system Ax = b.

(b) After the third column of A is changed, the new matrix A is now sin-
gular. Examining the last row of the reduced row echelon form of the
augmented matrix (A b), we see that the system is inconsistent.

(c) The system Ax = c is consistent since y is a solution. There is a free
variable x3, so the system will have infinitely many solutions.

(f) The vector v is a solution since

Av = A(w + 3z) = Aw + 3Az = c

For this solution the free variable x3 = v3 = 3. To determine the general
solution just set x = w + tz. This will give the solution corresponding
to x3 = t for any real number t.

6. (c) There will be no walks of even length from Vi to Vj whenever i + j is
odd.

(d) There will be no walks of length k from Vi to Vj whenever i + j + k is
odd.

(e) The conjecture is still valid for the graph containing the additional
edges.

(f) If the edge {V6, V8} is included, then the conjecture is no longer valid.
There is now a walk of length 1 V6 to V8 and i + j + k = 6 + 8 + 1 is
odd.

8. The change in part (b) should not have a significant effect on the survival
potential for the turtles. The change in part (c) will effect the (2, 2) and (3, 2)
of the Leslie matrix. The new values for these entries will be l22 = 0.9540 and
l32 = 0.0101. With these values the Leslie population model should predict
that the survival period will double but the turtles will still eventually die
out.

9. (b) x1 = c − V x2.
10. (b)

A2k =

 I kB

kB I



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This can be proved using mathematical induction. In the case k = 1

A2 =

 O I

I B





 O I

I B


 =


 I B

B I




If the result holds for k = m

A2m =

 I mB

mB I




then

A2m+2 = A2A2m

=

 I B

B I





 I mB

mB I




=

 I (m + 1)B

(m + 1)B I




It follows by mathematical induction that the result holds for all positive
integers k.

(b)

A2k+1 = AA2k =

 O I

I B





 I kB

kB I


 =


 kB I

I (k + 1)B




11. (a) By construction the entries of A were rounded to the nearest integer.
The matrix B = ATA must also have integer entries and it is symmetric
since

BT = (ATA)T = AT (AT )T = ATA = B

(b)

LDLT =

 I O

E I





 B11 O

O F





 I ET

O I




=

 B11 B11E

T

EB11 EB11E
T + F




where
E = B21B

−1
11 and F = B22 − B21B

−1
11 B12

It follows that

B11E
T = B11(B−1

11 )T BT
21 = B11B

−1
11 B12 = B12

EB11 = B21B
−1
11 B11 = B21

EB11E
T + F = B21E

T + B22 − B21B
−1
11 B12

= B21B
−1
11 B12 + B22 − B21B

−1
11 B12

= B22

Therefore
LDLT = B
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CHAPTER TEST A
1. The statement is false in general. If the row echelon form has free variables

and the linear system is consistent, then there will be infinitely many solu-
tions. However, it is possible to have an inconsistent system whose coefficient
matrix will reduce to an echelon form with free variables. For example, if

A =

 1 1

0 0


 b =


 1

1




then A involves one free variable, but the system Ax = b is inconsistent.
2. The statement is true since the zero vector will always be a solution.
3. The statement is true. A matrix A is nonsingular if and only if it is row

equivalent to the I (the identity matrix). A will be row equivalent to I if
and only if its reduced row echelon form is I.

4. The statement is false in general. For example, if A = I and B = −I, the
matrices A and B are both nonsingular, but A + B = O is singular.

5. The statement is false in general. If A and B are nonsingular, then AB
must also be nonsingular, however, (AB)−1 is equal to B−1A−1 rather than
A−1B−1. For example, if

A =

 1 1

0 1


 B =


 1 0

1 1




then

AB =

 2 1

1 1


 and (AB)−1 =


 1 −1

−1 2




however,

A−1B−1 =

 1 −1

0 1





 1 0

−1 1


 =


 2 −1

−1 1




Note that

B−1A−1 =

 1 0

−1 1





 1 −1

0 1


 =


 1 −1

−1 2


 = (AB)−1

6. The statement is false in general.

(A − B)2 = A2 − BA − AB + B2 6= A2 − 2AB + B2

since in general BA 6= AB. For example, if

A =

 1 1

1 1


 and B =


 0 1

0 0




then

(A − B)2 =

 1 0

1 1




2

=

 1 0

2 1




however,

A2 − 2AB + B2 =

 2 2

2 2


 −


 0 2

0 2


 +


 0 0

0 0


 =


 2 0

2 0



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7. The statement is false in general. If A is nonsingular and AB = AC, then we
can multiply both sides of the equation by A−1 and conclude that B = C.
However, if A is singular, then it is possible to have AB = AC and B 6= C.
For example, if

A =

 1 1

1 1


 , B =


 1 1

4 4


 , C =


 2 2

3 3




then

AB =

 1 1

1 1





 1 1

4 4


 =


 5 5

5 5




AC =

 1 1

1 1





 2 2

3 3


 =


 5 5

5 5




8. The statement is false. An elementary matrix is a matrix that is constructed
by performing exactly one elementary row operation on the identity matrix.
The product of two elementary matrices will be a matrix formed by per-
forming two elementary row operations on the identity matrix. For example,

E1 =




1 0 0
2 1 0
0 0 1


 and E2 =




1 0 0
0 1 0
3 0 1




are elementary matrices, however,

E1E2 =




1 0 0
2 1 0
3 0 1




is not an elementary matrix.
9. The statement is true. The row vectors of A are x1yT , x2yT , . . . , xnyT . Note,

all of the row vectors are multiples of yT . Since x and y are nonzero vectors,
at least one of these row vectors must be nonzero. However, if any nonzero
row is picked as a pivot row, then since all of the other rows are multiples
of the pivot row, they will all be eliminated in the first step of the reduction
process. The resulting row echelon form will have exactly one nonzero row.

10. The statement is true. If b = a1 + a2 + a3, then x = (1, 1, 1)T is a solution
to Ax = b, since

Ax = x1a1 + x2a2 + x3a3 = a1 + a2 + a3 = b

If a2 = a3, then we can also express b as a linear combination

b = a1 + 0a2 + 2a3

Thus y = (1, 0, 2)T is also a solution to the system. However, if there is more
than one solution, then the echelon form of A must involve a free variable. A
consistent system with a free variable must have infinitely many solutions.
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CHAPTER TEST B
1.




1 −1 3 2 1
−1 1 −2 1 −2

2 −2 7 7 1


 →




1 −1 3 2 1
0 0 1 3 −1
0 0 1 3 −1




→




1 −1 0 −7 4
0 0 1 3 −1
0 0 0 0 0




The free variables are x2 and x4. If we set x2 = a and x4 = b, then

x1 = 4 + a + 7b and x3 = −1 − 3b

and hence the solution set consists of all vectors of the form

x =




4 + a + 7b
a

−1 − 3b
b




2. (a) A linear equation in 3 unknowns corresponds to a plane in 3-space.
(b) Given 2 equations in 3 unknowns, each equation corresponds to a plane.

If one equation is a multiple of the other then the equations represent
the same plane and any point on the that plane will be a solution to
the system. If the two planes are distinct then they are either parallel
or they intersect in a line. If they are parallel they do not intersect, so
the system will have no solutions. If they intersect in a line then there
will be infinitely many solutions.

(c) A homogeneous linear system is always consistent since it has the trivial
solution x = 0. It follows from part (b) then that a homogeneous sys-
tem of 2 equations in 3 unknowns must have infinitely many solutions.
Geometrically the 2 equations represent planes that both pass through
the origin, so if the planes are distinct they must intersect in a line.

3. (a) If the system is consistent and there are two distinct solutions there must
be a free variable and hence there must be infinitely many solutions. In
fact all vectors of the form x = x1 + c(x1 − x2) will be solutions since

Ax = Ax1 + c(Ax1 − Ax2) = b + c(b− b) = b

(b) If we set z = x1 − x2 then z 6= 0 and Az = 0. Therefore it follows from
Theorem 1.4.2 that A must be singular.

4. (a) The system will be consistent if and only if the vector b = (3, 1)T can
be written as a linear combination of the column vectors of A. Linear
combinations of the column vectors of A are vectors of the form

c1


 α

2α


 + c2


 β

2β


 = (c1α + c2β)


 1

2




Since b is not a multiple of (1, 2)T the system must be inconsistent.
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(b) To obtain a consistent system choose b to be a multiple of (1, 2)T . If
this is done the second row of the augmented matrix will zero out in
the elimination process and you will end up with one equation in 2
unknowns. The reduced system will have infinitely many solutions.

5. (a) To transform A to B you need to interchange the second and third rows
of A. The elementary matrix that does this is

E =




1 0 0
0 0 1
0 1 0




(b) To transform A to C using a column operation you need to subtract
twice the second column of A from the first column. The elementary
matrix that does this is

F =




1 0 0
−2 1 0

0 0 1




6. If b = 3a1 + a2 + 4a3 then b is a linear combination of the column vectors
of A and it follows from the consistency theorem that the system Ax = b is
consistent. In fact x = (3, 1, 4)T is a solution to the system.

7. If a1 −3a2 +2a3 = 0 then x = (1,−3, 2)T is a solution to Ax = 0. It follows
from Theorem 1.4.2 that A must be singular.

8. If

A =

 1 4

1 4


 and B =


 2 3

2 3




then

Ax =

 1 4

1 4





 1

1


 =


 5

5


 =


 2 3

2 3





 1

1


 = Bx

9. In general the product of two symmetric matrices is not necessarily symmet-
ric. For example if

A =

 1 2

2 2


 , B =


 1 1

1 4




then A and B are both symmetric but their product

AB =

 1 2

2 2





 1 1

1 4


 =


 3 9

4 10




is not symmetric.
10. If E and F are elementary matrices then they are both nonsingular and their

inverses are elementary matrices of the same type. If C = EF then C is a
product of nonsingular matrices, so C is nonsingular and C−1 = F−1E−1.

11.

A−1 =




I O O
O I O
O −B I



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12. (a) The column partition of A and the row partition of B must match up,
so k must be equal to 5. There is really no restriction on r, it can be
any integer in the range 1 ≤ r ≤ 9. In fact r = 10 will work when B has
block structure 

 B11

B21




(b) The (2,2) block of the product is given by A21B12 + A22B22
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SECTION 1
1. (c) det(A) = −3
7. Given that a11 = 0 and a21 6= 0, let us interchange the first two rows of

A and also multiply the third row through by −a21. We end up with the
matrix 


a21 a22 a23

0 a12 a13

−a21a31 −a21a32 −a21a33




Now if we add a31 times the first row to the third, we obtain the matrix



a21 a22 a23

0 a12 a13

0 a31a22 − a21a32 a31a23 − a21a33




This matrix will be row equivalent to I if and only if
∣∣∣∣

a12 a13

a31a22 − a21a32 a31a23 − a21a33

∣∣∣∣ 6= 0

Thus the original matrix A will be row equivalent to I if and only if

a12a31a23 − a12a21a33 − a13a31a22 + a13a21a32 6= 0

8. Theorem 2.1.3. If A is an n × n triangular matrix then the determinant
of A equals the product of the diagonal elements of A.
Proof: The proof is by induction on n. In the case n = 1, A = (a11) and
det(A) = a11. Assume the result holds for all k × k triangular matrices and

26
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let A be a (k + 1)× (k + 1) lower triangular matrix. (It suffices to prove the
theorem for lower triangular matrices since det(AT ) = det(A).) If det(A) is
expanded by cofactors using the first row of A we get

det(A) = a11 det(M11)

where M11 is the k×k matrix obtained by deleting the first row and column
of A. Since M11 is lower triangular we have

det(M11) = a22a33 · · ·ak+1,k+1

and consequently
det(A) = a11a22 · · ·ak+1,k+1

9. If the ith row of A consists entirely of 0’s then

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin = 0

If the ith column of A consists entirely of 0’s then

det(A) = det(AT ) = 0

10. In the case n = 1, if A is a matrix of the form

 a b

a b




then det(A) = ab−ab = 0. Suppose that the result holds for (k+1)× (k+1)
matrices and that A is a (k + 2) × (k + 2) matrix whose ith and jth rows
are identical. Expand det(A) by factors along the mth row where m 6= i and
m 6= j.

det(A) = am1 det(Mm1) + am2 det(Mm2) + · · ·+ am,k+2 det(Mm,k+2).

Each Mms, 1 ≤ s ≤ k + 2, is a (k + 1)× (k + 1) matrix having two rows that
are identical. Thus by the induction hypothesis

det(Mms) = 0 (1 ≤ s ≤ k + 2)

and consequently det(A) = 0.
11. (a) In general det(A + B) 6= det(A) + det(B). For example if

A =

 1 0

0 0


 and B =


 0 0

0 1




then
det(A) + det(B) = 0 + 0 = 0

and
det(A + B) = det(I) = 1

(b)

AB =

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22



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and hence

det(AB) = (a11b11a21b12 + a11b11a22b22 + a12b21a21b12 + a12b21a22b22)
−(a21b11a11b12 + a21b11a12b22 + a22b21a11b12 + a22b21a12b22)

= a11b11a22b22 + a12b21a21b12 − a21b11a12b22 − a22b21a11b12

On the other hand

det(A) det(B) = (a11a22 − a21a12)(b11b22 − b21b12)
= a11a22b11b22 + a21a12b21b12 − a21a12b11b22 − a11a22b21b12

Therefore det(AB) = det(A) det(B)

(c) In part (b) it was shown that for any pair of 2 × 2 matrices, the de-
terminant of the product of the matrices is equal to the product of the
determinants. Thus if A and B are 2 × 2 matrices, then

det(AB) = det(A) det(B) = det(B) det(A) = det(BA)

12. (a) If d = det(A + B), then

d = (a11 + b11)(a22 + b22) − (a21 + b21)(a12 + b12)
= a11a22 + a11b22 + b11a22 + b11b22 − a21a12 − a21b12 − b21a12 − b21b12

= (a11a22 − a21a12) + (b11b22 − b21b12) + (a11b22 − b21a12) + (b11a22 − a21b12)
= det(A) + det(B) + det(C) + det(D)

(b) If

B = EA =

 αa21 αa22

βa11 βa12




then

C =

 a11 a12

βa11 βa12


 D =


 αa21 αa22

a21 a22




and hence
det(C) = det(D) = 0

It follows from part (a) that

det(A + B) = det(A) + det(B)

13. Expanding det(A) by cofactors using the first row we get

det(A) = a11 det(M11) − a12 det(M12)

If the first row and column of M12 are deleted the resulting matrix will be
the matrix B obtained by deleting the first two rows and columns of A. Thus
if det(M12) is expanded along the first column we get

det(M12) = a21 det(B)

Since a21 = a12 we have

det(A) = a11 det(M11) − a2
12 det(B)
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SECTION 2
5. To transform the matrix A into the matrix αA one must perform row oper-

ation II n times. Each time row operation II is performed the value of the
determinant is changed by a factor of α. Thus

det(αA) = αn det(A)

Alternatively, one can show this result holds by noting that det(αI) is equal
to the product of its diagonal entries. Thus, det(αI) = αn and it follows
that

det(αA) = det(αIA) = det(αI) det(A) = αn det(A)

6. Since
det(A−1) det(A) = det(A−1A) = det(I) = 1

it follows that

det(A−1) =
1

det(A)

8. If E is an elementary matrix of type I or II then E is symmetric, so ET = E.
If E is an elementary matrix of type III formed from the identity matrix by
adding c times its ith row to its jth row, then ET will be the elementary
matrix of type III formed from the identity matrix by adding c times its jth
row to its ith row

9. (b) 18; (d) −6; (f) −3
10. Row operation III has no effect on the value of the determinant. Thus if B

can be obtained from A using only row operation III, then det(B) = det(A).
Row operation I has the effect of changing the sign of the determinant. If
B is obtained from A using only row operations I and III, then det(B) =
det(A) if row operation I has been applied an even number of times and
det(B) = − det(A) if row operation I has been applied an odd number of
times.

11. Since det(A2) = det(A)2 it follows that det(A2) must be a nonnegative
real number. (We are assuming the entries of A are all real numbers.) If
A2 + I = O then A2 = −I and hence det(A2) = det(−I). This is not
possible if n is odd, since for n odd, det(−I) = −1. On the other hand it is
possible for A2 + I = O when n is even. For example when n = 2, if we take

A =

 0 1

−1 0




then it is easily verified that A2 + I = O.
12. (a) Row operation III has no effect on the value of the determinant. Thus

det(V ) =

∣∣∣∣∣∣∣∣

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 x1 x2
1

0 x2 − x1 x2
2 − x2

1

0 x3 − x1 x2
3 − x2

1

∣∣∣∣∣∣∣∣
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and hence

det(V ) = (x2 − x1)(x2
3 − x2

1) − (x3 − x1)(x2
2 − x2

1)
= (x2 − x1)(x3 − x1)[(x3 + x1) − (x2 + x1)]
= (x2 − x1)(x3 − x1)(x3 − x2)

(b) The determinant will be nonzero if and only if no two of the xi values
are equal. Thus V will be nonsingular if and only if the three points x1,
x2, x3 are distinct.

14. Since
det(AB) = det(A) det(B)

it follows that det(AB) 6= 0 if and only if det(A) and det(B) are both
nonzero. Thus AB is nonsingular if and only if A and B are both nonsingular.

15. If AB = I, then det(AB) = 1 and hence by Exercise 14 both A and B are
nonsingular. It follows then that

B = IB = (A−1A)B = A−1(AB) = A−1I = A−1

Thus to show that a square matrix A is nonsingular it suffices to show that
there exists a matrix B such that AB = I. We need not check whether or
not BA = I.

16. If A is a n × n skew symmetric matrix, then

det(A) = det(AT ) = det(−A) = (−1)n det(A)

Thus if n is odd then

det(A) = − det(A)
2 det(A) = 0

and hence A must be singular.
17. If Ann is nonzero and one subtracts c = det(A)/Ann from the (n, n) entry

of A, then the resulting matrix, call it B, will be singular. To see this look
at the cofactor expansion of the B along its last row.

det(B) = bn1Bn1 + · · ·+ bn,n−1Bn,n−1 + bnnBnn

= an1An1 + · · ·+ An,n−1An,n−1 + (ann − c)Ann

= det(A) − cAnn

= 0

18.

X =




x1 x2 x3

x1 x2 x3

y1 y2 y3


 Y =




x1 x2 x3

y1 y2 y3

y1 y2 y3




Since X and Y both have two rows the same it follows that det(X) = 0 and
det(Y ) = 0. Expanding det(X) along the first row, we get

0 = x1X11 + x2X12 + x3X13

= x1z1 + x2z2 + x3z3
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= xTz

Expanding det(Y ) along the third row, we get

0 = y1Y31 + y2Y32 + y3Y33

= y1z1 + y2z2 + y3z3

= yTz.

19. Prove: Evaluating an n × n matrix by cofactors requires (n! − 1) additions
and

n−1∑

k=1

n!
k!

multiplications.
Proof: The proof is by induction on n. In the case n = 1 no additions and
multiplications are necessary. Since 1! − 1 = 0 and

0∑

k=1

n!
k!

= 0

the result holds when n = 1. Let us assume the result holds when n = m. If
A is an (m + 1) × (m + 1) matrix then

det(A) = a11 det(M11) − a12 det(M12) ± · · · ± a1,m+1 det(M1,m+1)

Each M1j is an m × m matrix. By the induction hypothesis the calculation
of det(M1j) requires (m! − 1) additions and

m−1∑

k=1

m!
k!

multiplications. The calculation of all m+1 of these determinants requires
(m + 1)(m! − 1) additions and

m−1∑

k=1

(m + 1)!
k!

multiplications. The calculation of det(A) requires an additional m + 1 mul-
tiplications and an additional m additions. Thus the number of additions
necessary to compute det(A) is

(m + 1)(m! − 1) + m = (m + 1)! − 1

and the number of multiplications needed is
m−1∑

k=1

(m + 1)!
k!

+ (m + 1) =
m−1∑

k=1

(m + 1)!
k!

+
(m + 1)!

m!
=

m∑

k=1

(m + 1)!
k!

20. In the elimination method the matrix is reduced to triangular form and the
determinant of the triangular matrix is calculated by multiplying its diagonal
elements. At the first step of the reduction process the first row is multiplied
by mi1 = −ai1/a11 and then added to the ith row. This requires 1 division,
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n − 1 multiplications and n − 1 additions. However, this row operation is
carried out for i = 2, . . . , n. Thus the first step of the reduction requires n−1
divisions, (n−1)2 multiplications and (n−1)2 additions. At the second step
of the reduction this same process is carried out on the (n − 1) × (n − 1)
matrix obtained by deleting the first row and first column of the matrix
obtained from step 1. The second step of the elimination process requires
n− 2 divisions, (n− 2)2 multiplications, and (n− 2)2 additions. After n− 1
steps the reduction to triangular form will be complete. It will require:

(n − 1) + (n − 2) + · · ·+ 1 =
n(n − 1)

2
divisions

(n − 1)2 + (n − 2)2 + · · ·+ 12 =
n(2n − 1)(n − 1)

6
multiplications

(n − 1)2 + (n − 2)2 + · · ·+ 12 =
n(2n − 1)(n − 1)

6
additions

It takes n− 1 additional multiplications to calculate the determinant of the
triangular matrix. Thus the calculation det(A) by the elimination method
requires:

n(n − 1)
2

+
n(2n − 1)(n − 1)

6
+ (n − 1) =

(n − 1)(n2 + n + 3)
3

multiplications and divisions and n(2n − 1)(n − 1)
6 additions.

SECTION 3

1. (b) det(A) = 10, adj A =

 4 −1

−1 3


, A−1 =

1
10

adjA

(d) det(A) = 1, A−1 = adjA =




1 −1 0
0 1 −1
0 0 1




6. A adjA = O

7. The solution of Ix = b is x = b. It follows from Cramer’s rule that

bj = xj =
det(Bj)
det(I)

= det(Bj)

8. If det(A) = α then det(A−1) = 1/α. Since adjA = αA−1 we have

det(adj A) = det(αA−1) = αn det(A−1) = αn−1 = det(A)n−1

10. If A is nonsingular then det(A) 6= 0 and hence

adj A = det(A)A−1

is also nonsingular. It follows that

(adj A)−1 =
1

det(A)
(A−1)−1 = det(A−1)A
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Also
adjA−1 = det(A−1)(A−1)−1 = det(A−1)A

11. If A = O then adjA is also the zero matrix and hence is singular. If A is
singular and A 6= O then

A adj A = det(A)I = 0I = O

If aT is any nonzero row vector of A then

aT adj A = 0T or (adj A)Ta = 0

By Theorem 1.4.2, (adjA)T is singular. Since

det(adj A) = det[(adjA)T ] = 0

it follows that adj A is singular.
12. If det(A) = 1 then

adjA = det(A)A−1 = A−1

and hence
adj(adj A) = adj(A−1)

It follows from Exercise 10 that

adj(adj A) = det(A−1)A =
1

det(A)
A = A

13. The (j, i) entry of QT is qij. Since

Q−1 =
1

det(Q)
adj Q

its (j, i) entry is Qij/ det(Q). If Q−1 = QT , then

qij =
Qij

det(Q)

MATLAB EXERCISES
2. The magic squares generated by MATLAB have the property that they are

nonsingular when n is odd and singular when n is even.
3. (a) The matrix B is formed by interchanging the first two rows of A.

det(B) = − det(A).
(b) The matrix C is formed by multiplying the third row of A by 4.

det(C) = 4 det(A).
(c) The matrix D is formed from A by adding 4 times the fourth row of A

to the fifth row.
det(D) = det(A).
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5. The matrix U is very ill-conditioned. In fact it is singular with respect to the
machine precision used by MATLAB. So in general one could not expect to
get even a single digit of accuracy in the computed values of det(UT ) and
det(UUT ). On the other hand, since U is upper triangular, the computed
value of det(U ) is the product of its diagonal entries. This value should be
accurate to the machine precision.

6. (a) Since Ax = 0 and x 6= 0, the matrix must be singular. However,
there may be no indication of this if the computations are done in
floating point arithmetic. To compute the determinant MATLAB does
Gaussian elimination to reduce the matrix to upper triangular form U
and then multiplies the diagonal entries of U . In this case the product
u11u22u33u44u55 has magnitude on the order of 1014. If the computed
value of u66 has magnitude of the order 10−k and k ≤ 14, then MAT-
LAB will round the result to a nonzero integer. (MATLAB knows that
if you started with an integer matrix, you should end up with an integer
value for the determinant.) In general if the determinant is computed
in floating point arithmetic, then you cannot expect it to be a reliable
indicator of whether or not a matrix is nonsingular.

(c) Since A is singular, B = AAT should also be singular. Hence the exact
value of det(B) should be 0.

CHAPTER TEST A
1. The statement is true since

det(AB) = det(A) det(B) = det(B) det(A) = det(BA)

2. The statement is false in general. For example, if

A =

 1 0

0 0


 and B =


 0 0

0 1




then det(A + B) = det(I) = 1 while det(A) + det(B) = 0 + 0 = 0.
3. The statement is false in general. For example, if A = I, (the 2 × 2 identity

matrix), then det(2A) = 4 while 2 det(A) = 2.
4. The statement is true. For any matrix C, det(CT ) = det(C), so in particular

for C = AB we have

det((AB)T ) = det(AB) = det(A) det(B)

5. The statement is false in general. For example if

A =

 2 3

0 4


 and B =


 1 0

0 8




then det(A) = det(B) = 8, however, A 6= B.
6. The statement is true. For a product of two matrices we know that

det(AB) = det(A) det(B)



Chapter Test B 35

Using this it is easy to see that the determinant of a product of k matrices
is the product of the determinants of the matrices, i.e,

det(A1A2 · · ·Ak) = det(A1) det(A2) · · ·det(Ak)

(This can be proved formally using mathematical induction.) In the special
case that A1 = A2 = · · · = Ak we have

det(Ak) = det(A)k

7. The statement is true. A triangular matrix T is nonsingular if and only if

det(T ) = t11t22 · · · tnn 6= 0

Thus T is nonsingular if and only if all of its diagonal entries are nonzero.
8. The statement is true. If Ax = 0 and x 6= 0, then it follows from Theorem

1.4.2 that A must be singular. If A is singular then det(A) = 0.
9. The statement is false in general. For example, if

A =

 0 1

1 0




and B is the 2 × 2 identity matrix, then A and B are row equivalent, however,
their determinants are not equal.

10. The statement is true. If Ak = O, then

det(A)k = det(Ak) = det(O) = 0

So det(A) = 0, and hence A must be singular.

CHAPTER TEST B
1. (a) det(1

2
A) = (1

2
)3 det(A) = 1

8
· 4 = 1

2

(b) det(B−1AT ) = det(B−1) det(AT ) = 1
det(B) det(A) = 1

6 · 4 = 2
3

(c) det(EA2) = − det(A2) = − det(A)2 = −16

2. (a)

det(A) = x

∣∣∣∣
x −1

−1 x

∣∣∣∣ −
∣∣∣∣

1 −1
−1 x

∣∣∣∣ +
∣∣∣∣

1 x
−1 −1

∣∣∣∣
= x(x2 − 1) − (x − 1) + (−1 + x)
= x(x− 1)(x + 1)

(b) The matrix will be singular if x equals 0, 1, or -1.
3. (a)




1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20




→




1 1 1 1
0 1 2 3
0 2 5 9
0 3 9 19




(l21 = l31 = l41 = 1)
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


1 1 1 1
0 1 2 3
0 2 5 9
0 3 9 19




→




1 1 1 1
0 1 2 3
0 0 1 3
0 0 3 10




(l32 = 2, l42 = 3)




1 1 1 1
0 1 2 3
0 0 1 3
0 0 3 10




→




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1




(l43 = 3)

A = LU =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1







1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1




(b) det(A) = det(LU ) = det(L) det(U ) = 1 · 1 = 1
4. If A is nonsingular then det(A) 6= 0 and it follows that

det(AT A) = det(AT ) det(A) = det(A) det(A) = det(A)2 > 0

Therefore AT A must be nonsingular.
5. If B = S−1AS, then

det(B) = det(S−1AS) = det(S−1) det(A) det(S)

=
1

det(S)
det(A) det(S) = det(A)

6. If A is singular then det(A) = 0 and if B is singular then det(B) so if one
of the matrices is singular then

det(C) = det(AB) = det(A) det(B) = 0

Therefore the matrix C must be singular.
7. The determinant of A − λI will equal 0 if and only if A− λI is singular. By

Theorem 1.4.2, A−λI is singular if and only if there exists a nonzero vector
x such that (A− λI)x = 0. It follows then that det(A − λI) = 0 if and only
if Ax = λx for some x 6= 0.

8. If A = xyT then all of the rows of A are multiples of yT . In fact a(i, :) = xiyT

for j = 1, . . . , n. It follows that if U is any row echelon form of A then U
can have at most one nonzero row. Since A is row equivalent to U and
det(U ) = 0, it follows that det(A) = 0.

9. Let z = x− y. Since x and y are distinct it follows that z 6= 0. Since

Az = Ax − Ay = 0

it follows from Theorem 1.4.2 that A must be singular and hence det(A) = 0.
10. If A has integer entries then adj A will have integer entries. So if | det(A)| = 1

then
A−1 =

1
det(A)

adj A = ± adj A

and hence A−1 must also have integer entries.
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3. To show that C is a vector space we must show that all eight axioms are

satisfied.
A1. (a + bi) + (c + di) = (a + c) + (b + d)i

= (c + a) + (d + b)i
= (c + di) + (a + bi)

A2. (x + y) + z = [(x1 + x2i) + (y1 + y2i)] + (z1 + z2i)
= (x1 + y1 + z1) + (x2 + y2 + z2)i
= (x1 + x2i) + [(y1 + y2i) + (z1 + z2i)]
= x + (y + z)

A3. (a + bi) + (0 + 0i) = (a + bi)
A4. If z = a + bi then define −z = −a − bi. It follows that

z + (−z) = (a + bi) + (−a − bi) = 0 + 0i = 0

A5. α[(a + bi) + (c + di)] = (αa + αc) + (αb + αd)i
= α(a + bi) + α(c + di)

A6. (α + β)(a + bi) = (α + β)a + (α + β)bi
= α(a + bi) + β(a + bi)

A7. (αβ)(a + bi) = (αβ)a + (αβ)bi
= α(βa + βbi)

37
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A8. 1 · (a + bi) = 1 · a + 1 · bi = a + bi

4. Let A = (aij), B = (bij) and C = (cij) be arbitrary elements of Rm×n.
A1. Since aij +bij = bij +aij for each i and j it follows that A+B = B +A.
A2. Since

(aij + bij) + cij = aij + (bij + cij)

for each i and j it follows that

(A + B) + C = A + (B + C)

A3. Let O be the m × n matrix whose entries are all 0. If M = A + O then

mij = aij + 0 = aij

Therefore A + O = A.
A4. Define −A to be the matrix whose ijth entry is −aij . Since

aij + (−aij) = 0

for each i and j it follows that

A + (−A) = O

A5. Since
α(aij + bij) = αaij + αbij

for each i and j it follows that

α(A + B) = αA + αB

A6. Since
(α + β)aij = αaij + βaij

for each i and j it follows that

(α + β)A = αA + βA

A7. Since
(αβ)aij = α(βaij)

for each i and j it follows that

(αβ)A = α(βA)

A8. Since
1 · aij = aij

for each i and j it follows that

1A = A

5. Let f , g and h be arbitrary elements of C[a, b].
A1. For all x in [a, b]

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

Therefore
f + g = g + f
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A2. For all x in [a, b],

[(f + g) + h](x) = (f + g)(x) + h(x)
= f(x) + g(x) + h(x)
= f(x) + (g + h)(x)
= [f + (g + h)](x)

Therefore
[(f + g) + h] = [f + (g + h)]

A3. If z(x) is identically 0 on [a, b], then for all x in [a, b]

(f + z)(x) = f(x) + z(x) = f(x) + 0 = f(x)

Thus
f + z = f

A4. Define −f by

(−f)(x) = −f(x) for all x in [a, b]

Since
(f + (−f))(x) = f(x) − f(x) = 0

for all x in [a, b] it follows that

f + (−f) = z

A5. For each x in [a, b]

[α(f + g)](x) = αf(x) + αg(x)
= (αf)(x) + (αg)(x)

Thus
α(f + g) = αf + αg

A6. For each x in [a, b]

[(α + β)f ](x) = (α + β)f(x)
= αf(x) + βf(x)
= (αf)(x) + (βf)(x)

Therefore
(α + β)f = αf + βf

A7. For each x in [a, b],

[(αβ)f ](x) = αβf(x) = α[βf(x)] = [α(βf)](x)

Therefore
(αβ)f = α(βf)

A8. For each x in [a, b]
1f(x) = f(x)

Therefore
1f = f
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6. The proof is exactly the same as in Exercise 5.
9. (a) If y = β0 then

y + y = β0 + β0 = β(0 + 0) = β0 = y

and it follows that

(y + y) + (−y) = y + (−y)
y + [y + (−y)] = 0
y + 0 = 0
y = 0

(b) If αx = 0 and α 6= 0 then it follows from part (a), A7 and A8 that

0 =
1
α

0 =
1
α

(αx) =
(

1
α

α

)
x = 1x = x

10. Axiom 6 fails to hold.

(α + β)x = ((α + β)x1, (α + β)x2)
αx + βx = ((α + β)x1, 0)

12. A1. x ⊕ y = x · y = y · x = y ⊕ x
A2. (x ⊕ y) ⊕ z = x · y · z = x ⊕ (y ⊕ z)
A3. Since x ⊕ 1 = x · 1 = x for all x, it follows that 1 is the zero vector.
A4. Let

−x = −1 ◦ x = x−1 =
1
x

It follows that

x ⊕ (−x) = x · 1
x

= 1 (the zero vector).

Therefore 1
x is the additive inverse of x for the operation ⊕.

A5. α ◦ (x ⊕ y) = (x ⊕ y)α = (x · y)α = xα · yα

α ◦ x ⊕ α ◦ y = xα ⊕ yα = xα · yα

A6. (α + β) ◦ x = x(α+β) = xα · xβ

α ◦ x ⊕ β ◦ x = xα ⊕ xβ = xα · xβ

A7. (αβ) ◦ x = xαβ

α ◦ (β ◦ x) = α ◦ xβ = (xβ)α = xαβ

A8. 1 ◦ x = x1 = x
Since all eight axioms hold, R+ is a vector space under the operations

of ◦ and ⊕.
13. The system is not a vector space. Axioms A3, A4, A5, A6 all fail to hold.
14. Axioms 6 and 7 fail to hold. To see this consider the following example. If

α = 1.5, β = 1.8 and x = 1, then

(α + β) ◦ x = [[3.3]] · 1 = 3

and
α ◦ x + β ◦ x = [[1.5]] · 1 + [[1.8]] · 1 = 1 · 1 + 1 · 1 = 2
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So Axiom 6 fails. Furthermore,

(αβ) ◦ x = [[2.7]] · 1 = 2

and
α ◦ (β ◦ x) = [[1.5]]([[1.8]] · 1) = 1 · (1 · 1) = 1

so Axiom 7 also fails to hold.
15. If {an}, {bn}, {cn} are arbitrary elements of S, then for each n

an + bn = bn + an

and
an + (bn + cn) = (an + bn) + cn

Hence

{an} + {bn} = {bn} + {an}
{an} + ({bn} + {cn}) = ({an} + {bn}) + {cn}

so Axioms 1 and 2 hold.
The zero vector is just the sequence {0, 0, . . .} and the additive inverse

of {an} is the sequence {−an}. The last four axioms all hold since

α(an + bn) = αan + αbn

(α + β)an = αan + βan

αβan = α(βan)
1an = an

for each n. Thus all eight axioms hold and hence S is a vector space.
16. If

p(x) = a1 + a2x + · · ·+ anxn−1 ↔ a = (a1, a2, . . . , an)T

q(x) = b1 + b2x + · · ·+ bnxn−1 ↔ b = (b1, b2, . . . , bn)T

then

αp(x) = αa1 + αa2x + · · ·+ αanxn−1

αa = (αa1, αa2, . . . , αan)T

and

(p + q)(x) = (a1 + b1) + (a2 + b2)x + · · ·+ (an + bn)xn−1

a + b = (a1 + b1, a2 + b2, . . .an + bn)T

Thus
αp ↔ αa and p + q ↔ a + b
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SECTION 2
7. Cn[a, b] is a nonempty subset of C[a, b]. If f ∈ Cn[a, b], then f (n) is contin-

uous. Any scalar multiple of a continuous function is continuous. Thus for
any scalar α, the function

(αf)(n) = αf (n)

is also continuous and hence αf ∈ Cn[a, b]. If f and g are vectors in Cn[a, b]
then both have continuous nth derivatives and their sum will also have a
continuous nth derivative. Thus f + g ∈ Cn[a, b] and therefore Cn[a, b] is a
subspace of C[a, b].

8. (a) If B ∈ S1, then AB = BA. It follows that

A(αB) = αAB = αBA = (αB)A

and hence αB ∈ S1.
If B and C are in S1, then

AB = BA and AC = CA

thus
A(B + C) = AB + AC = BA + CA = (B + C)A

and hence B + C ∈ S1. Therefore S1 is a subspace of R2×2.
(b) If B ∈ S2, then AB 6= BA. However, for the scalar 0, we have

0B = O 6∈ S2

Therefore S2 is not a subspace. (Also, S2 is not closed under addition.)
(c) If B ∈ S3, then BA = O. It follows that

(αB)A = α(BA) = αO = O

Therefore, αB ∈ S3. If B and C are in S3, then

BA = O and CA = O

It follows that

(B + C)A = BA + CA = O + O = O

Therefore B + C ∈ S3 and hence S3 is a subspace of R2×2.
11 (a) x ∈ Span(x1,x2) if and only if there exist scalars c1 and c2 such that

c1x1 + c2x2 = x

Thus x ∈ Span(x1,x2) if and only if the system Xc = x is consistent.
To determine whether or not the system is consistent we can compute
the row echelon form of the augmented matrix (X |x).




−1 3 2
2 4 6
3 2 6


 →




1 −3 −2
0 1 1
0 0 1




The system is inconsistent and therefore x 6∈ Span(x1,x2).
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(b)



−1 3 −9
2 4 −2
3 2 5


 →




1 −3 −2
0 1 −2
0 0 0




The system is consistent and therefore y ∈ Span(x1,x2).
12. (a) Since the vectors x1,x2, . . . ,xk span V , any vector v in V can be written

as a linear combination v = c1x1 + c2x2 + · · ·+ ckxk. If we add a vector
xk+1 to our spanning set, then we can write v as a letter combination
of the vectors in this augmented set since

v = c1x1 + c2x2 + · · ·+ ckxk + 0vk+1

So the new set of k + 1 vectors will still be a spanning set.
(b) If one of the vectors, say xk, is deleted from the set then we may or

may not end up with a spanning set. It depends on whether xk is in
Span(x1,x2, . . . ,xk−1). If xk 6∈ Span(x1,x2, . . . ,xk−1), then {x1,x2, . . . ,xk−1}
cannot be a spanning set. On the other hand if xk ∈ Span(x1,x2, . . . ,xk−1),
then

Span(x1,x2, . . . ,xk) = Span(x1,x2, . . . ,xk−1)

and hence the k − 1 vectors will span the entire vector space.
13. If A = (aij) is any element of R2×2, then

A =

 a11 0

0 0


 +


 0 a12

0 0


 +


 0 0

a21 0


 +


 0 0

0 a22




= a11E11 + a12E12 + a21E21 + a22E22

15. If {an} ∈ S0, then an → 0 as n → ∞. If α is any scalar, then αan → 0 as
n → ∞ and hence {αan} ∈ S0. If {bn} is also an element of S0, then bn → 0
as n → ∞ and it follows that

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = 0 + 0 = 0

Therefore {an + bn} ∈ S0, and it follows that S0 is a subspace of S.
16. Let S 6= {0} be a subspace of R1 and let a be an arbitrary element of R1.

If s is a nonzero element of S, then we can define a scalar α to be the real
number a/s. Since S is a subspace it follows that

αs =
a

s
s = a

is an element of S. Therefore S = R1.
17. (a) implies (b).

If N (A) = {0}, then Ax = 0 has only the trivial solution x = 0. By Theorem
1.4.2, A must be nonsingular.

(b) implies (c).

If A is nonsingular then Ax = b if and only if x = A−1b. Thus A−1b is the
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unique solution to Ax = b.

(c) implies (a).

If the equation Ax = b has a unique solution for each b, then in particular
for b = 0 the solution x = 0 must be unique. Therefore N (A) = {0}.

18. Let α be a scalar and let x and y be elements of U ∩V . The vectors x and y
are elements of both U and V . Since U and V are subspaces it follows that

αx ∈ U and x + y ∈ U

αx ∈ V and x + y ∈ V

Therefore
αx ∈ U ∩ V and x + y ∈ U ∩ V

Thus U ∩ V is a subspace of W .
19. S ∪ T is not a subspace of R2.

S ∪ T = {(s, t)T | s = 0 or t = 0}

The vectors e1 and e2 are both in S ∪ T , however, e1 + e2 6∈ S ∪ T .
20. If z ∈ U + V , then z = u + v where u ∈ U and v ∈ V . Since U and V are

subspaces it follows that

αu ∈ U and αv ∈ V

for all scalars α. Thus
αz = αu + αv

is an element of U + V . If z1 and z2 are elements of U + V , then

z1 = u1 + v1 and z2 = u2 + v2

where u1,u2 ∈ U and v1,v2 ∈ V . Since U and V are subspaces it follows
that

u1 + u2 ∈ U and v1 + v2 ∈ V

Thus

z1 + z2 = (u1 + v1) + (u2 + v2) = (u1 + u2) + (v1 + v2)

is an element of U + V . Therefore U + V is a subspace of W .
21. (a) The distributive law does not work in general. For a counterexample,

consider the vector space R2. If we set y = e1 + e2 and let

S = Span(e1), T = Span(e2), U = Span(y)

then
T + U = R2, S ∩ T = {0}, S ∩ U = {0}

and hence

S ∩ (T + U ) = S ∩ R2 = S

(S ∩ T ) + (S ∩ U ) = {0} + {0} = {0}
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(b) This distributive law also does not work in general. For a counterexam-
ple we can use the same subspaces S, T , and U of R2 that were used in
part (a). Since

T ∩ U = {0} and S + U = R2

it follows that

S + (T ∩ U ) = S + {0} = S

(S + T ) ∩ (S + U ) = R2 ∩ R2 = R2

SECTION 3
5. (a) If xk+1 ∈ Span(x1,x2, . . . ,xk), then the new set of vectors will be lin-

early dependent. To see this suppose that

xk+1 = c1x1 + c2x2 + · · ·+ ckxk

If we set ck+1 = −1, then

c1x1 + c2x2 + · · ·+ ckxk + ck+1xk+1 = 0

with at least one of the coefficients, namely ck+1, being nonzero.
On the other hand if xk+1 6∈ Span(x1,x2, . . . ,xk) and

c1x1 + c2x2 + · · ·+ ckxk + ck+1xk+1 = 0

then ck+1 = 0 (otherwise we could solve for xk+1 in terms of the other
vectors). But then

c1x1 + c2x2 + · · ·+ ckxk + ckxk = 0

and it follows from the independence of x1, . . . ,xk that all of the ci co-
efficients are zero and hence that x1, . . . ,xk+1 are linearly independent.
Thus if x1, . . . ,xk are linearly independent and we add a vector xk+1 to
the collection, then the new set of vectors will be linearly independent
if and only if xk+1 6∈ Span(x1,x2, . . . ,xk)

(b) Suppose that x1,x2, . . . ,xk are linearly independent. To test whether
or not x1,x2, . . . ,xk−1 are linearly independent consider the equation

c1x1 + c2x2 + · · ·+ ck−1xk−1 = 0(1)

If c1, c2, . . . , ck−1 work in equation (1), then

c1x1 + c2x2 + · · ·+ ck−1xk−1 + 0xk = 0

and it follows from the independence of x1, . . . ,xk that

c1 = c2 = · · · = ck−1 = 0

and hence x1, . . . ,xk−1 must be linearly independent.
7. (a) W (cos πx, sinπx) = π. Since the Wronskian is not identically zero the

vectors are linearly independent.
(b) W (x, ex, e2x) = 2(x− 1)e3x 6≡ 0
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(c) W (x2, ln(1 + x2), 1 + x2) =
−8x3

(1 + x2)2
6≡ 0

(d) To see that x3 and |x|3 are linearly independent suppose

c1x
3 + c2|x|3 ≡ 0

on [−1, 1]. Setting x = 1 and x = −1 we get

c1 + c2 = 0
−c1 + c2 = 0

The only solution to this system is c1 = c2 = 0. Thus x3 and |x|3 are
linearly independent.

8. The vectors are linearly dependent since

cos x − 1 + 2 sin2 x

2
≡ 0

on [−π, π].
10. (a) If

c1(2x) + c2|x| = 0

for all x in [−1, 1], then in particular we have

−2c1 + c2 = 0 (x = −1)
2c1 + c2 = 0 (x = 1)

and hence c1 = c2 = 0. Therefore 2x and |x| are linearly independent in
C[−1, 1].

(b) For all x in [0, 1]
1 · 2x + (−2)|x| = 0

Therefore 2x and |x| are linearly dependent in C[0, 1].
11. Let v1, . . . ,vn be vectors in a vector space V . If one of the vectors, say v1,

is the zero vector then set

c1 = 1, c2 = c3 = · · · = cn = 0

Since
c1v1 + c2v2 + · · ·+ cnvn = 0

and c1 6= 0, it follows that v1, . . . ,vn are linearly dependent.
12. If v1 = αv2, then

1v1 − αv2 = 0

and hence v1,v2 are linearly dependent. Conversely, if v1, v2 are linearly
dependent, then there exists scalars c1, c2, not both zero, such that

c1v1 + c2v2 = 0

If say c1 6= 0, then

v1 = −c2

c1
v2
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13. Let v1,v2, . . . ,vn be a linearly independent set of vectors and suppose there
is a subset, say v1, . . . ,vk of linearly dependent vectors. This would imply
that there exist scalars c1, c2, . . . , ck, not all zero, such that

c1v1 + c2v2 + · · ·+ ckvk = 0

but then
c1v1 + · · ·+ ckvk + 0vk+1 + · · ·+ 0vn = 0

This contradicts the original assumption that v1,v2, . . . ,vn are linearly in-
dependent.

14. If x ∈ N (A) then Ax = 0. Partitioning A into columns and x into rows and
performing the block multiplication, we get

x1a1 + x2a2, · · ·+ xnan = 0

Since a1, a2, . . . , an are linearly independent it follows that

x1 = x2 = · · · = xn = 0

Therefore x = 0 and hence N (A) = {0}.
15. If

c1y1 + c2y2 + · · ·+ ckyk = 0

then

c1Ax1 + c2Ax2 + · · ·+ ckAxk = 0
A(c1x1 + c2x2 + · · ·+ ckxk) = 0

Since A is nonsingular it follows that

c1x1 + c2x2 + · · ·+ ckxk = 0

and since x1, . . . ,xk are linearly independent it follows that

c1 = c2 = · · · = ck = 0

Therefore y1,y2, . . . ,yk are linearly independent.
16. Since v1, . . . ,vn span V we can write

v = c1v1 + c2v2 + · · ·+ cnvn

If we set cn+1 = −1 then cn+1 6= 0 and

c1v1 + · · ·+ cnvn + cn+1v = 0

Thus v1, . . . ,vn, v are linearly dependent.
17. If {v2, . . . ,vn} were a spanning set for V then we could write

v1 = c2v2 + · · ·+ cnvn

Setting c1 = −1, we would have

c1v1 + c2v2 + · · ·+ cnvn = 0

which would contradict the linear independence of v1,v2, . . . ,vn.
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SECTION 4
3. (a) Since ∣∣∣∣

2 4
1 3

∣∣∣∣ = 2 6= 0

it follows that x1 and x2 are linearly independent and hence form a
basis for R2.

(b) It follows from Theorem 3.4.1 that any set of more than two vectors in
R2 must be linearly dependent.

5. (a) Since ∣∣∣∣∣∣

2 3 2
1 −1 6
3 4 4

∣∣∣∣∣∣
= 0

it follows that x1, x2, x3 are linearly dependent.
(b) If c1x1 + c2x2 = 0, then

2c1 + 3c2 = 0
c1 − c2 = 0

3c1 + 4c2 = 0

and the only solution to this system is c1 = c2 = 0. Therefore x1 and
x2 are linearly independent.

8 (a) Since the dimension of R3 is 3, it takes at least three vectors to span
R3. Therefore x1 and x2 cannot possibly span R3.

(b) The matrix X must be nonsingular or satisfy an equivalent condition
such as det(X) 6= 0.

(c) If x3 = (a, b, c)T and X = (x1,x2,x3) then

det(X) =

∣∣∣∣∣∣

1 3 a
1 −1 b
1 4 c

∣∣∣∣∣∣
= 5a − b − 4c

If one chooses a, b, and c so that

5a − b − 4c 6= 0

then {x1,x2,x3} will be a basis for R3.
9. (a) If a1 and a2 are linearly independent then they span a 2-dimensional

subspace of R3. A 2-dimensional subspace of R3 corresponds to a plane
through the origin in 3-space.

(b) If b = Ax then
b = x1a1 + x2a2

so b is in Span(a1, a2) and hence the dimension of Span(a1, a2,b) is 2.
10. We must find a subset of three vectors that are linearly independent. Clearly

x1 and x2 are linearly independent, but

x3 = x2 − x1
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so x1, x2, x3 are linearly dependent. Consider next the vectors x1, x2, x4.
If X = (x1,x2,x4) then

det(X) =

∣∣∣∣∣∣

1 2 2
2 5 7
2 4 4

∣∣∣∣∣∣
= 0

so these three vectors are also linearly dependent. Finally if use x5 and form
the matrix X = (x1,x2,x5) then

det(X) =

∣∣∣∣∣∣

1 2 1
2 5 1
2 4 0

∣∣∣∣∣∣
= −2

so the vectors x1, x2, x5 are linearly independent and hence form a basis for
R3.

16. dimU = 2. The set {e1, e2} is a basis for U .
dimV = 2. The set {e2, e3} is a basis for V .
dimU ∩ V = 1. The set {e2} is a basis for U ∩ V .
dimU + V = 3. The set {e1, e2, e3} is a basis for U + V .

17. Let {u1,u2} be a basis for U and {v1,v2} be a basis for V . It follows from
Theorem 3.4.1 that u1,u2, v1,v2 are linearly dependent. Thus there exist
scalars c1, c2, c3, c4 not all zero such that

c1u1 + c2u2 + c3v1 + c4v2 = 0

Let
x = c1u1 + c2u2 = −c3v1 − c4v2

The vector x is an element of U ∩ V . We claim x 6= 0, for if x = 0, then

c1u1 + c2u2 = 0 = −c3v1 − c4v2

and by the linear independence of u1 and u2 and the linear independence of
v1 and v2 we would have

c1 = c2 = c3 = c4 = 0

contradicting the definition of the ci’s.
18. Let U and V be subspaces of Rn with the property that U ∩ V = {0}.

If either U = {0} or V = {0} the result is obvious, so assume that both
subspaces are nontrivial with dimU = k > 0 and dimV = r > 0. Let
{u1, . . . ,uk} be a basis for U and let {v1, . . . ,vr} be a basis for V . The
vectors u1, . . . ,uk,v1, . . . ,vr span U + V . We claim that these vectors form
a basis for U + V and hence that dimU + dimV = k + r. To show this we
must show that the vectors are linearly independent. Thus we must show
that if

c1u1 + · · ·+ ckuk + ck+1v1 + · · ·+ ck+rvr = 0(2)

then c1 = c2 = · · · = ck+r = 0. If we set

u = c1u1 + · · ·+ ckuk and v = ck+1v1 + · · ·+ ck+rvr
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then equation (2) becomes
u + v = 0

This implies u = −v and hence that both u and v are in both in U∩V = {0}.
Thus we have

u = c1u1 + · · ·+ ckuk = 0

v = ck+1v1 + · · ·+ ck+rvr = 0

So, by the independence of u1, . . . ,uk and the independence of v1, . . . ,vr it
follows that

c1 = c2 = · · · = ck+r = 0

SECTION 5
11. The transition matrix from E to F is U−1V . To compute U−1V , note that

U−1(U | V ) = (I | U−1V )

and hence (I | U−1V ) and (U | V ) are row equivalent. Thus (I | U−1V ) is
the reduced row echelon form of (U | V ).

SECTION 6
1. (a) The reduced row echelon form of the matrix is




1 0 2
0 1 0
0 0 0




Thus (1, 0, 2) and (0, 1, 0) form a basis for the row space. The first
and second columns of the original matrix form a basis for the column
space:

a1 = (1, 2, 4)T and a2 = (3, 1, 7)T

The reduced row echelon form involves one free variable and hence the
nullspace will have dimension 1. Setting x3 = 1, we get x1 = −2 and
x2 = 0. Thus (−2, 0, 1)T is a basis for the nullspace.

(b) The reduced row echelon form of the matrix is



1 0 0 −10/7
0 1 0 −2/7
0 0 1 0




Clearly then, the set

{(1, 0, 0, −10/7), (0, 1, 0, −2/7), (0, 0, 1, 0)}
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is a basis for the row space. Since the reduced row echelon form of the
matrix involves one free variable the nullspace will have dimension 1.
Setting the free variable x4 = 1 we get

x1 = 10/7, x2 = 2/7, x3 = 0

Thus {(10/7, 2/7, 0, 1)T} is a basis for the nullspace. The dimension
of the column space equals the rank of the matrix which is 3. Thus the
column space must be R3 and we can take as our basis the standard
basis {e1, e2, e3}.

(c) The reduced row echelon form of the matrix is



1 0 0 −0.65
0 1 0 1.05
0 0 1 0.75




The set {(1, 0, 0, −0.65), (0, 1, 0, 1.05), (0, 0, 1, 0, 0.75)} is a basis
for the row space. The set {(0.65, −1.05, −0.75, 1)T} is a basis for
the nullspace. As in part (b) the column space is R3 and we can take
{e1, e2, e3} as our basis.

3 (b) The reduced row echelon form of A is given by

U =




1 2 0 5 −3 0
0 0 1 −1 2 0
0 0 0 0 0 1




The lead variables correspond to columns 1, 3, and 6. Thus a1, a3, a6 form
a basis for the column space of A. The remaining column vectors satisfy the
following dependency relationships.

a2 = 2a1

a4 = 5a1 − a3

a5 = −3a1 + 2a3

4. (c) consistent, (d) inconsistent, (f) consistent
6. There will be exactly one solution. The condition that b is in the column

space of A guarantees that the system is consistent. If the column vectors
are linearly independent, then there is at most one solution. Thus the two
conditions together imply exactly one solution.

7. (a) Since N (A) = {0}

Ax = x1a1 + · · ·+ xnan = 0

has only the trivial solution x = 0, and hence a1, . . . , an are linearly
independent. The column vectors cannot span Rm since there are only
n vectors and n < m.

(b) If b is not in the column space of A, then the system must be inconsistent
and hence there will be no solutions. If b is in the column space of A,
then the system will be consistent, so there will be at least one solution.
By part (a), the column vectors are linearly independent, so there cannot
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be more than one solution. Thus, if b is in the column space of A, then
the system will have exactly one solution.

9. (a) If A and B are row equivalent, then they have the same row space and
consequently the same rank. Since the dimension of the column space
equals the rank it follows that the two column spaces will have the same
dimension.

(b) If A and B are row equivalent, then they will have the same row space,
however, their column spaces are in general not the same. For example
if

A =

 1 0

0 0


 and B =


 0 0

1 0




then A and B are row equivalent but the column space of A is equal to
Span(e1) while the column space of B is Span(e2).

10. The column vectors of A and U satisfy the same dependency relations. By
inspection one can see that

u3 = 2u1 + u2 and u4 = u1 + 4u2

Therefore

a3 = 2a1 + a2 =




−6
10
4
2




+




4
−3

7
−1




=




−2
7

11
1




and

a4 = a1 + 4a2 =




−3
5
2
1




+




16
−12

28
−4




=




13
−7
30
−3




11. If A is 5 × 8 with rank 5, then the column space of A will be R5. So by the
Consistency Theorem, the system Ax = b will be consistent for any b in
R5. Since A has 8 columns, its reduced row echelon form will involve 3 free
variables. A consistent system with free variables must have infinitely many
solutions.

12. If U is the reduced row echelon form of A then the given conditions imply
that

u1 = e1, u2 = e2, u3 = u1 + 2u2, u4 = e3, u5 = 2u1 − u2 + 3u4

Therefore

U =




1 0 1 0 2
0 1 2 0 −1
0 0 0 1 3
0 0 0 0 0




13. (a) Since A is 5 × 3 with rank 3, its nullity is 0. Therefore N (A) = {0}.
(b) If

c1y1 + c2y2 + c3y3 = 0
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then

c1Ax1 + c2Ax2 + c3Ax3 = 0
A(c1x1 + c2x2 + c3x3) = 0

and it follows that c1x1 + c2x2 + c3x3 is in N (A). However, we know
from part (a) that N (A) = {0}. Therefore

c1x1 + c2x2 + c3x3 = 0

Since x1, x2, x3 are linearly independent it follows that c1 = c2 = c3 = 0
and hence y1, y2, y3 are linearly independent.

(c) Since dim R5 = 5 it takes 5 linearly independent vectors to span the
vector space. The vectors y1, y2, y3 do not span R5 and hence cannot
form a basis for R5.

14. Given A is m × n with rank n and y = Ax where x 6= 0. If y = 0 then

x1a1 + x2a2 + · · ·+ xnan = 0

But this would imply that the columns vectors of A are linearly dependent.
Since A has rank n we know that its column vectors must be linearly inde-
pendent. Therefore y cannot be equal to 0.

15. If the system Ax = b is consistent, then b is in the column space of A.
Therefore the column space of (A | b) will equal the column space of A.
Since the rank of a matrix is equal to the dimension of the column space it
follows that the rank of (A | b) equals the rank of A.

Conversely if (A | b) and A have the same rank, then b must be in the
column space of A. If b were not in the column space of A, then the rank of
(A | b) would equal rank(A) + 1.

16. (a) If x ∈ N (A), then
BAx = B0 = 0

and hence x ∈ N (BA). Thus N (A) is a subspace of N (BA). On the
other hand, if x ∈ N (BA), then

B(Ax) = BAx = 0

and hence Ax ∈ N (B). But N (B) = {0} since B is nonsingular. There-
fore Ax = 0 and hence x ∈ N (A). Thus BA and A have the same
nullspace. It follows from the Rank-Nullity Theorem that

rank(A) = n − dimN (A)
= n − dimN (BA)
= rank(BA)

(b) By part (a), left multiplication by a nonsingular matrix does not alter
the rank. Thus

rank(A) = rank(AT ) = rank(CT AT )
= rank((AC)T )
= rank(AC)
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17. Corollary 3.6.4. An n×n matrix A is nonsingular if and only if the column
vectors of A form a basis for Rn.
Proof: It follows from Theorem 3.6.3 that the column vectors of A form a
basis for Rn if and only if for each b ∈ Rn the system Ax = b has a unique
solution. We claim Ax = b has a unique solution for each b ∈ Rn if and
only if A is nonsingular. If A is nonsingular then x = A−1b is the unique
solution to Ax = b. Conversely, if for each b ∈ Rn, Ax = b has a unique
solution, then x = 0 is the only solution to Ax = 0. Thus it follows from
Theorem 1.4.2 that A is nonsingular.

18. If N (A−B) = Rn then the nullity of A−B is n and consequently the rank
of A − B must be 0. Therefore

A − B = O

A = B

19. (a) The column space of B will be a subspace of N (A) if and only if

Abj = 0 for j = 1, . . . , n

However, the jth column of AB is

ABej = Abj , j = 1, . . . , n

Thus the column space of B will be a subspace of N (A) if and only if
all the column vectors of AB are 0 or equivalently AB = O.

(b) Suppose that A has rank r and B has rank k and AB = O. By part (a)
the column space of B is a subspace of N (A). Since N (A) has dimension
n − r, it follows that the dimension of the column space of B must be
less than or equal to n − r. Therefore

rank(A) + rank(B) = r + k ≤ r + (n − r) = n

20. Let x0 be a particular solution to Ax = b. If y = x0 + z, where z ∈ N (A),
then

Ay = Ax0 + Az = b + 0 = b
and hence y is also a solution.

Conversely, if x0 and y are both solutions to Ax = b and z = y− x0,
then

Az = Ay − Ax0 = b− b = 0
and hence z ∈ N (A).

21. (a) Since

A = xyT =




x1

x2

...
xm




yT =




x1yT

x2yT

...
xmyT




the rows of A are all multiples of yT . Thus {yT} is a basis for the row
space of A. Since

A = xyT = x(y1, y2, . . . , yn)
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= (y1x, y2x, . . . , ynx)

it follows that the columns of A are all multiples of x and hence {x} is
a basis for the column space of A.

(b) Since A has rank 1, the nullity of A is n − 1.
22. (a) If c is a vector in the column space of C, then

c = ABx

for some x ∈ Rr . Let y = Bx. Since c = Ay, it follows that c is in the
column space of A and hence the column space of C is a subspace of
the column space of A.

(b) If cT is a row vector of C, then c is in the column space of CT . But
CT = BTAT . Thus, by part (a), c must be in the column space of BT

and hence cT must be in the row space of B.
(c) It follows from part (a) that rank(C) ≤ rank(A) and it follows from

part (b) that rank(C) ≤ rank(B). Therefore

rank(C) ≤ min{rank(A), rank(B)}

23 (a) In general a matrix E will have linearly independent column vectors if
and only if Ex = 0 has only the trivial solution x = 0. To show that
C has linearly independent column vectors we will show that Cx 6= 0
for all x 6= 0 and hence that Cx = 0 has only the trivial solution. Let
x be any nonzero vector in Rr and let y = Bx. Since B has linearly
independent column vectors it follows that y 6= 0. Similarly since A has
linearly independent column vectors, Ay 6= 0. Thus

Cx = ABx = Ay 6= 0

(b) If A and B both have linearly independent row vectors, then BT and
AT both have linearly independent column vectors. Since CT = BTAT ,
it follows from part (a) that the column vectors of CT are linearly inde-
pendent, and hence the row vectors of C must be linearly independent.

24. (a) If the column vectors of B are linearly dependent then Bx = 0 for some
nonzero vector x ∈ Rr. Thus

Cx = ABx = A0 = 0

and hence the column vectors of C must be linearly dependent.
(b) If the row vectors of A are linearly dependent then the column vectors

of AT must be linearly dependent. Since CT = BT AT , it follows from
part (a) that the column vectors of CT must be linearly dependent. If
the column vectors of CT are linearly dependent, then the row vectors
of C must be linearly dependent.

25. (a) Let C denote the right inverse of A and let b ∈ Rm. If we set x = Cb
then

Ax = ACb = Imb = b

Thus if A has a right inverse then Ax = b will be consistent for each
b ∈ Rm and consequently the column vectors of A will span Rm.
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(b) No set of less than m vectors can span Rm. Thus if n < m, then the
column vectors of A cannot span Rm and consequently A cannot have
a right inverse. If n ≥ m then a right inverse is possible.

27. Let B be an n × m matrix. Since

DB = Im

if and only if
BTDT = IT

m = Im

it follows that D is a left inverse for B if and only if DT is a right inverse
for BT .

28. If the column vectors of B are linearly independent, then the row vectors
of BT are linearly independent. Thus BT has rank m and consequently the
column space of BT is Rm. By Exercise 26, BT has a right inverse and
consequently B must have a left inverse.

29. Let B be an n × m matrix. If B has a left inverse, then BT has a right
inverse. It follows from Exercise 25 that the column vectors of BT span Rm.
Thus the rank of BT is m. The rank of B must also be m and consequently
the column vectors of B must be linearly independent.

30. Let u(1, :),u(2, :), . . .,u(k, :) be the nonzero row vectors of U . If

c1u(1, :) + c2u(2, :) + · · ·+ cku(k, :) = 0T

then we claim
c1 = c2 = · · · = ck = 0

This is true since the leading nonzero entry in u(i, :) is the only nonzero entry
in its column. Let us refer to the column containing the leading nonzero entry
of u(i, :) as j(i). Thus if

yT = c1u(1, :) + c2u(2, :) + · · ·+ cku(k, :) = 0T

then
0 = yj(i) = ci, i = 1, . . . , k

and it follows that the nonzero row vectors of U are linearly independent.

MATLAB EXERCISES
1. (a) The column vectors of U will be linearly independent if and only if the

rank of U is 4.
(d) The matrices S and T should be inverses.

2. (a) Since
r = dim of row space ≤ m

and
r = dim of column space ≤ n
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it follows that
r ≤ min(m, n)

(c) All the rows of A are multiples of yT and all of the columns of A are
multiples of x. Thus the rank of A is 1.

(d) Since X and Y T were generated randomly, both should have rank 2 and
consequently we would expect that their product should also have rank
2.

3. (a) The column space of C is a subspace of the column space of B. Thus
A and B must have the same column space and hence the same rank.
Therefore we would expect the rank of A to be 4.

(b) The first four columns of A should be linearly independent and hence
should form a basis for the column space of A. The first four columns
of the reduced row echelon form of A should be the same as the first
four columns of the 8 × 8 identity matrix. Since the rank is 4, the last
four rows should consist entirely of 0’s.

(c) If U is the reduced row echelon form of B, then U = MB where M is
a product of elementary matrices. If B is an n × n matrix of rank n,
then U = I and M = B−1. In this case it follows that the reduced row
echelon form of (B BX) will be

B−1(B BX) = (I X)

If B is m × n of rank n and n < m, then its reduced row echelon form
is given by

U = MB =

 I

O




It follows that the reduced row echelon form of (B BX) will be

MB(I X) =

 I

O


 (I X) =


 I X

O O




4. (d) The vectors Cy and b + cu are equal since

Cy = (A + uvT )y = Ay + cu = b + cu

The vectors Cz and (1 + d)u are equal since

Cz = (A + uvT )z = Az + du = u + du

It follows that

Cx = C(y− ez) = b + cu− e(1 + d)u = b

The rank one update method will fail if d = −1. In this case

Cz = (1 + d)u = 0

Since z is nonzero, the matrix C must be singular.
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CHAPTER TEST A
1. The statement is true. If S is a subspace of a vector space V , then it is

nonempty and it is closed under the operations of V . To show that S, with
the operations of addition and scalar multiplication from V , forms a vector
space we must show that the eight vector space axioms are satisfied. Since
S is closed under scalar multiplication, it follows from Theorem 3.1.1 that
if x is any vector in S, then 0 = 0x is a vector in S and −1x is the additive
inverse of x. So axioms A3 and A4 are satisfied. The remaining six axioms
hold for all vectors in V and hence hold for all vectors in S. Thus S is a
vector space.

2. The statement is false. The elements of R3 are 3× 1 matrices. Vectors that
are in R2 cannot be in vectors in R3 since they are only 2 × 1 matrices.

3. The statement is false. A two dimensional subspace of R3 corresponds to
a plane through the origin in 3-space. If S and T are two different two
dimensional subspaces of R3 then both correspond to planes through the
origin and their intersection must correspond to a line through the origin.
Thus the intersection cannot consist of just the zero vector.

4. The statement is false in general. See the solution to Exercise 19 of Section 2.
5. The statement is true. See the solution to Exercise 18 of Section 2.
6. The statement is true. See Theorem 3.4.3.
7. The statement is false in general. If x1,x2, . . . ,xn span a vector space V of

dimension k < n, then they will be linearly dependent since there are more
vectors than the dimension of the vector space. For example,

x1 =

 1

0


 , x2 =


 0

1


 , x3 =


 1

1




are vectors that span R2, but are not linearly independent. Since the di-
mension of R2 is 2, any set of more than 2 vectors in R2 must be linearly
dependent.

8. The statement is true. If

Span(x1,x2, . . . ,xk) = Span(x1,x2, . . . ,xk−1)

then xk must be in Span(x1,x2, . . . ,xk−1). So xk can be written as a linear
combination of x1,x2, . . . ,xk−1 and hence there is a dependency relation
among the vectors. Specifically if

xk = c1x1 + c2x2 + · · ·+ ck−1xk−1

then we have the dependency relation

c1x1 + c2x2 + · · ·+ ck−1xk−1 − 1xk = 0

9. The statement is true. The rank of A is the dimension of the row space of A.
The rank of AT is the dimension of the row space of AT . The independent
rows of AT correspond to the independent columns of A. So the rank of
AT equals the dimension of the column space of A. But the row space and
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column space of A have the same dimension (Theorem 3.6.5). So A and AT

must have the same rank.
10. If m 6= n then the statement is false since

dimN (A) = n − r and dim N (AT ) = m − r

where r is the rank of A.

CHAPTER TEST B
1. The vectors are linearly dependent since

0x1 + 0x2 + 1x3 = 0x1 + 0x2 + 10 = 0

2. (a) S1 consists of all vectors of the form

x =

−a

a




so if

x =

−a

a


 and y =


 −b

b




are arbitrary vectors in S1 and c is any scalar then

cx =

 −ca

ca


 ∈ S1

and

x + y =

 −a

a


 +


−b

b


 =


−a − b

a + b


 ∈ S1

Since S1 is nonempty and closed under the operations of scalar multi-
plication and vector addition, it follow that S1 is a subspace of R2.

(b) S2 is not a subspace of R2 since it is not closed under addition. The
vectors

x =

 1

0


 and y =


 0

1




are both in S2, however,

x + y =

 1

1




is not in S2.
3. (a)




1 3 1 3 4 0
0 0 1 1 1 0
0 0 2 2 2 0
0 0 3 3 3 0




→




1 3 0 2 3 0
0 0 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0




The free variables are x2, x4, and x5. If we set x2 = a, x4 = b, and
x5 = c, then

x1 = −3a − 2b − 3c and x3 = −b − c
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Thus N (A) consists of all vectors of the form

x =




−3a − 2b − 3c
a

−b − c
b
c




= a




−3
1
0
0
0




+ b




−2
0

−1
1
0




+ c




−3
0

−1
0
1




The vectors

x1 =




−3
1
0
0
0




, x2 =




−2
0

−1
1
0




, x3 =




−3
0

−1
0
1




form a basis for N (A).
(b) The lead 1’s occur in the first and third columns of the echelon form.

Therefore

a1 =




1
0
0
0




, a3 =




1
1
2
3




form a basis for the column space of A.
4. The columns of the matrix that correspond to the lead variables are linearly

independent and span the column space of the matrix. So the dimension
of the column space is equal to the number of lead variables in any row
echelon form of the matrix. If there are r lead variables then there are n− r
free variables. By the Rank-Nullity Theorem the dimension of the nullspace
is n − r. So the dimension of the nullspace is equal to the number of free
variables in any echelon form of the matrix.

5. (a) One dimensional subspaces correspond to lines through the origin in
3-space. If the first subspace U1 is the span of a vector u1 and the
second subspace U2 is the span of a vector u2 and the vectors u1 and
u2 are linearly independent, then the two lines will only intersect at the
origin and consequently we will have U1 ∩ U2 = {0}.

(b) Two dimensional subspaces correspond to planes through the origin in
3-space. Any two distinct planes through the origin will intersect in a
line. So V1 ∩ V2 must contain infinitely many vectors.

6. (a) If

A =

 a b

b c


 , B =


 d e

e f




are arbitrary symmetric matrices and α is any scalar, then

αA =

 αa αb

αb αc


 and A + B =


 a + d b + e

b + e c + f




are both symmetric. Therefore S is closed under the operations of scalar
multiplication and vector addition and hence S is a subspace of R2×2.
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(b) The vectors

E1 =

 1 0

0 0


 , E2 =


 0 1

1 0


 , E3 =


 0 0

0 1




are linearly independent and they span S. Therefore they form a basis
for S.

7. (a) If A is 6 × 4 with rank 4, then by the Rank-Nullity Theorem dimN (A) =
0 and consequently N (A) = {0}.

(b) The column vectors of A are linearly independent since the rank of A is
4, however, they do not span R6 since you need 6 linearly independent
vectors to spanR6.

(c) By the Consistency Theorem if b is in the column space of A then the
system is consistent. The condition that the column vectors of A are
linearly independent implies that there cannot be more than 1 solution.
Therefore there must be exactly 1 solution.

8. (a) The dimension of R3 is 3, so any collection of more than 3 vectors must
be linearly dependent.

(b) Since dimR3 = 3, it takes 3 linearly independent vectors to span R3.
No 2 vectors can span, so x1 and x2 do not span R3.

(c) The matrix

X = (x1,x2,x3) =




1 1 1
2 3 5
2 3 5




only has 2 linearly independent row vectors, so the dimension of the
rowspace and dimension of the column space both must be equal to
2. Therefore x1, x2, x3 are linearly dependent and only span a 2-
dimensional subspace of R3. The vectors to not form a basis for R3

since they are linearly dependent.
(d) If we set A = (x1,x2,x4), then

det(A) =

∣∣∣∣∣∣

1 1 1
2 3 2
2 3 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 1
0 1 0
0 1 1

∣∣∣∣∣∣
= 1

Therefore x1, x2, x3 are linearly independent. Since dimR3 = 3, the
three vectors will span and form a basis for R3.

9. If
c1y1 + c2y2 + c3y3 = 0

then
c1Ax1 + c2Ax2 + c3Ax3 = A0 = 0

Multiplying through by A−1 we get

c1x1 + c2x2 + c3x3 = 0

Since x1, x2, x3 are linearly independent, it follows that c1 = c2 = c3 = 0.
Therefore y1, y2, y3 are linearly independent.
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10. (a) The rank of A equals the dimension of the column space of A which is
3. By the Rank-Nullity Theorem, dimN (A) = 5 − 3 = 2.

(b) Since a1, a2, a3 are linearly independent, the first three columns of the
reduced row echelon form U will be

u1 = e1, u2 = e2, u3 = e3

The remaining columns of U satisfy the same dependency relations that
the column vectors of A satisfy. Therefore

u4 = u1 + 3u2 + u3 = e1 + 3e2 + e3

u5 = 2u1 − u3 = 2e1 − e3

and it follows that

U =




1 0 0 1 2
0 1 0 3 0
0 0 1 1 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




11. (a) If U = (u1,u2), then the transition matrix corresponding to a change
of basis from [e1, e2] to [u1,u2] is

U−1 =

 7 −2

−3 1




(b) Let V = (v1,v2). If x = V d = Uc then c = U−1V d and hence the
transition matrix corresponding to a change of basis from [v1,v2] to
[u1,u2] is

U−1V =

 7 −2

−3 1





 5 4

2 9


 =


 31 10

−13 −3



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2. x1 = r cos θ, x2 = r sin θ where r = (x2

1 + x2
2)1/2 and θ is the angle between

x and e1.

L(x) = (r cos θ cos α − r sin θ sin α, r cos θ sin α + r sin θ cos α)T

= (r cos(θ + α), r sin(θ + α))T

The linear transformation L has the effect of rotating a vector by an α in
the counterclockwise direction.

3. If α 6= 1 then
L(αx) = αx + a 6= αx + αa = αL(x)

The addition property also fails

L(x + y) = x + y + a

L(x) + L(y) = x + y + 2a

4. Let

u1 =

 1

2


 , u2 =


 1

−1


 , x =


 7

5




To determine L(x) we must first express x as a linear combination

x = c1u1 + c2u2

To do this we must solve the system Uc = x for c. The solution is c = (4, 3)T

and it follows that

L(x) = L(4u1 + 3u2) = 4L(u1) + 3L(u2) = 4

−2

3


 + 3


 5

2


 =


 7

18




63
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8. (a)

L(αA) = C(αA) + (αA)C = α(CA + AC) = αL(A)

and

L(A + B) = C(A + B) + (A + B)C = CA + CB + AC + BC

= (CA + AC) + (CB + BC) = L(A) + L(B)

Therefore L is a linear operator.
(b) L(αA + βB) = C2(αA + βB) = αC2A + βC2B = αL(A) + βL(B)

Therefore L is a linear operator.
(c) If C 6= O then L is not a linear operator. For example,

L(2I) = (2I)2C = 4C 6= 2C = 2L(I)

10. If f, g ∈ C[0, 1] then

L(αf + βg) =
∫ x

0

(αf(t) + βg(t))dt

= α

∫ x

0

f(t)dt + β

∫ x

0

g(t)dt

= αL(f) + βL(g)

Thus L is a linear transformation from C[0, 1] to C[0, 1].
12. If L is a linear operator from V into W use mathematical induction to prove

L(α1v1 + α2v2 + · · ·+ αnvn) = α1L(v1) + α2L(v2) + · · ·+ αnL(vn).

Proof: In the case n = 1

L(α1v1) = α1L(v1)

Let us assume the result is true for any linear combination of k vectors and
apply L to a linear combination of k + 1 vectors.

L(α1v1 + · · ·+ αkvk + αk+1vk+1) = L([α1v1 + · · ·+ αkvk] + [αk+1vk+1])
= L(α1v1 + · · ·+ αkvk) + L(αk+1vk+1)
= α1L(v1) + · · ·+ αkL(vk) + αk+1L(vk+1)

The result follows then by mathematical induction.
13. If v is any element of V then

v = α1v1 + α2v2 + · · ·+ αnvn

Since L1(vi) = L2(vi) for i = 1, . . . , n, it follows that

L1(v) = α1L1(v1) + α2L1(v2) + · · ·+ αnL1(vn)
= α1L2(v1) + α2L2(v2) + · · ·+ αnL2(vn)
= L2(α1v1 + · · ·+ αnvn)
= L2(v)
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14. Let L be a linear transformation from R1 to R1. If L(1) = a then

L(x) = L(x1) = xL(1) = xa = ax

15. The proof is by induction on n. In the case n = 1, L1 is a linear operator
since L1 = L. We will show that if Lm is a linear operator on V then Lm+1

is also a linear operator on V . This follows since

Lm+1(αv) = L(Lm(αv)) = L(αLm(v)) = αL(Lm(v)) = αLm+1(v)

and

Lm+1(v1 + v2) = L(Lm(v1 + v2))
= L(Lm(v1) + Lm(v2))
= L(Lm(v1)) + L(Lm(v2))
= Lm+1(v1) + Lm+1(v2)

16. If v1,v2 ∈ V , then

L(αv1 + βv2) = L2(L1(αv1 + βv2))
= L2(αL1(v) + βL1(v2))
= αL2(L1(v1)) + βL2(L1(v2))
= αL(v1) + βL(v2)

Therefore L is a linear transformation.
17. (b) ker(L) = Span(e3), L(R3) = Span(e1, e2)
18. (c) L(S) = Span((1, 1, 1)T )
19. (b) If p(x) = ax2 + bx + c is in ker(L), then

L(p) = (ax2 + bx + c) − (2ax + b) = ax2 + (b − 2a)x + (c − b)

must equal the zero polynomial z(x) = 0x2 + 0x + 0. Equating coefficients
we see that a = b = c = 0 and hence ker(L) = {0}. The range of L is all of
P3. To see this note that if p(x) = ax2 + bx + c is any vector in P3 and we
define q(x) = ax2 + (b + 2a)x + c + b + 2a then

L(q(x)) = (ax2+(b+2a)x+c+b+2a)− (2ax+b+2a) = ax2+bx+c = p(x)

20. If 0V denotes the zero vector in V and 0W is the zero vector in W then
L(0V ) = 0W . Since 0W is in T , it follows that 0V is in L−1(T ) and hence
L−1(T ) is nonempty. If v is in L−1(T ), then L(v) ∈ T . It follows that
L(αv) = αL(v) is in T and hence αv ∈ L−1(T ). If v1,v2 ∈ L−1(T ), then
L(v1), L(v2) are in T and hence

L(v1 + v2) = L(v1) + L(v2)

is also an element of L(T ). Thus v1 + v2 ∈ L−1(T ) and therefore L−1(T ) is
a subspace of V .

21. Suppose L is one-to-one and v ∈ ker(L).

L(v) = 0W and L(0V ) = 0W

Since L is one-to-one, it follows that v = 0V . Therefore ker(L) = {0V }.
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Conversely, suppose ker(L) = {0V } and L(v1) = L(v2). Then

L(v1 − v2) = L(v1) − L(v2) = 0W

Therefore v1 − v2 ∈ ker(L) and hence

v1 − v2 = 0V

v1 = v2

So L is one-to-one.
22. To show that L maps R3 onto R3 we must show that for any vector y ∈ R3

there exists a vector x ∈ R3 such that L(x) = y. This is equivalent to
showing that the linear system

x1 = y1

x1 + x2 = y2

x1 + x2 + x3 = y3

is consistent. This system is consistent since the coefficient matrix is non-
singular.

24. (a) L(R2) = {Ax | x ∈ R2}
= {x1a1 + x2a2 | x1, x2 real }
= the column space of A

(b) If A is nonsingular, then A has rank 2 and it follows that its column
space must be R2. By part (a), L(R2) = R2.

25. (a) If p = ax2 + bx + c ∈ P3, then

D(p) = 2ax + b

Thus
D(P3) = Span(1, x) = P2

The operator is not one-to-one, for if p1(x) = ax2 + bx+ c1 and p2(x) =
ax2 + bx + c2 where c2 6= c1, then D(p1) = D(p2).

(b) The subspace S consists of all polynomials of the form ax2 + bx. If
p1 = a1x

2 + b1x, p2 = a2x
2 + b2x and D(p1) = D(p2), then

2a1x + b1 = 2a2x + b2

and it follows that a1 = a2, b1 = b2. Thus p1 = p2 and hence D is
one-to-one. D does not map S onto P3 since D(S) = P2.

SECTION 2
7. (a) I(e1) = 0y1 + 0y2 + 1y3

I(e2) = 0y1 + 1y2 − 1y3

I(e3) = 1y1 − 1y2 + 0y3

10. (c)




1
3

0 0
0 1

3
0

0 0 1



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11. (a) Y P =




0 1 0
−1 0 0

0 0 1







0 0 −1
0 1 0
1 0 0


 =




0 1 0
0 0 1
1 0 0




(b) PY =




0 0 −1
0 1 0
1 0 0







0 1 0
−1 0 0

0 0 1


 =




0 0 −1
−1 0 0

0 1 0




(c) PR =




1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2







1 0 0

0 0 1

0 −1 0




=




1√
2

1√
2

0

0 0 1
1√
2

− 1√
2

0




(d) RP =




1 0 0

0 0 1

0 −1 0







1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2




=




1√
2

0 − 1√
2

1√
2

0 1√
2

0 −1 0




(e)

Y PR =




1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1







0 0 1

0 1 0

−1 0 0







1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2




=




0 0 1
0 1 0

−1 0 0




(f)

RPY =




1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2







0 0 1

0 1 0

−1 0 0







1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1




=




0 0 1

−1 0 0

0 −1 0




12. (a) If Y is the yaw matrix and we expand det(Y ) along its third row we get

det(Y ) = cos2 u + sin2 u = 1

Similarly, if we expand the determinant pitch matrix P along its second
and expand the determinant of the roll matrix R along its first row we
get

det(P ) = cos2 v + sin2 v = 1
det(R) = cos2 w + sin2 w = 1
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(b) If Y is a yaw matrix with yaw angle u then

Y T =




cos u − sin u 0
sin u cos u 0

0 0 1


 =




cos(−u) sin(−u) 0
− sin(−u) cos(−u) 0

0 0 1




so Y T is the matrix representing a yaw transformation with angle −u.
It is easily verified that Y T Y = I and hence that Y −1 = Y T .

(c) By the same reasoning used in part (b) you can show that for the pitch
matrix P and roll matrix R their inverses are their transposes. So if
Q = Y PR then Q is nonsingular and

Q−1 = (Y PR)−1 = R−1P−1Y −1 = RT P T Y T

14. (b)

 3/2

−2


; (c)


 3/2

0




16. If L(x) = 0 for some x 6= 0 and A is the standard matrix representation of
L, then Ax = 0. It follows from Theorem 1.4.2 that A is singular.

17. The proof is by induction on m. In the case that m = 1, A1 = A represents
L1 = L. If now Ak is the matrix representing Lk and if x is the coordinate
vector of v, then Akx is the coordinate vector of Lk(v). Since

Lk+1(v) = L(Lk(v))

it follows that
AAkx = Ak+1x

is the coordinate vector of Lk+1(v).

18. (b)

 −5 −2 4

3 2 −2




19. If x = [v]E, then Ax = [L1(v)]F and B(Ax) = [L2(L1(v))]G. Thus, for all
v ∈ V

(BA)[v]E = [L2 ◦ L1(v)]G
Hence BA is the matrix representing L2 ◦ L1 with respect to E and G.

20. (a) Since A is the matrix representing L with respect to E and F , it follows
that L(v) = 0W if and only if A[v]E = 0. Thus v ∈ ker(L) if and only
if [v]E ∈ N (A).

(b) Since A is the matrix representing L with respect to E and F , then it
follows that w = L(v) if and only if [w]F = A[v]E . Thus, w ∈ L(V ) if
and only if [w]F is in the column space of A.

SECTION 3
7. If A is similar to B then there exists a nonsingular matrix S1 such that

A = S−1
1 BS1. Since B is similar to C there exists a nonsingular matrix S2

such that B = S−1
2 CS2. It follows that

A = S−1
1 BS1 = S−1

1 S−1
2 CS2S1
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If we set S = S2S1, then S is nonsingular and S−1 = S−1
1 S−1

2 . Thus A =
S−1CS and hence A is similar to C.

8. (a) If A = SΛS−1, then AS = ΛS. If si is the ith column of S then Asi is
the ith column of AS and λisi is the ith column of ΛS. Thus

Asi = λisi, i = 1, . . . , n

(b) The proof is by induction on k. In the case k = 1 we have by part (a):

Ax = α1As1 + · · ·+ αnAsn = α1λ1s1 + · · ·+ αnλnsn

If the result holds in the case k = m

Amx = α1λ
m
1 s1 + · · ·+ αnλm

n sn

then

Am+1x = α1λ
m
1 As1 + · · ·+ αnλm

n Asn

= α1λ
m+1
1 s1 + · · ·+ αnλm+1

n sn

Therefore by mathematical induction the result holds for all natural
numbers k.

(c) If |λi| < 1 then λk
i → 0 as k → ∞. It follows from part (b) that Akx → 0

as k → ∞.
9. If A = ST then

S−1AS = S−1STS = TS = B

Therefore B is similar to A.
10. If A and B are similar, then there exists a nonsingular matrix S such that

A = SBS−1

If we set
T = BS−1

then
A = ST and B = TS

11. If B = S−1AS, then

det(B) = det(S−1AS)
= det(S−1)det(A)det(S)
= det(A)

since
det(S−1) =

1
det(S)

12. (a) If B = S−1AS, then

BT = (S−1AS)T

= ST AT (S−1)T

= ST AT (ST )−1

Therefore BT is similar to AT .
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(b) If B = S−1AS, then one can prove using mathematical induction that

Bk = S−1AkS

for any positive integer k. Therefore that Bk and Ak are similar for any
positive integer k.

13. If A is similar to B and A is nonsingular, then

A = SBS−1

and hence
B = S−1AS

Since B is a product of nonsingular matrices it is nonsingular and

B−1 = (S−1AS)−1 = S−1A−1S

Therefore B−1 and A−1 are similar.
14. If A and B are similar, then there exists a nonsingular matrix S such that

B = SAS−1.
(a) A − λI and B − λI are similar since

S(A − λI)S−1 = SAS−1 − λSIS−1 = B − λI

(b) Since A − λI and B − λI are similar, it follows from Exercise 11 that
their determinants are equal.

15. (a) Let C = AB and E = BA. The diagonal entries of C and E are given
by

cii =
n∑

k=1

aikbki, ekk =
n∑

i=1

bkiaik

Hence it follows that

tr(AB) =
n∑

i=1

cii =
n∑

i=1

n∑

k=1

aikbki =
n∑

k=1

n∑

i=1

bkiaik =
n∑

k=1

ekk = tr(BA)

(b) If B is similar to A, then B = S−1AS. It follows from part (a) that

tr(B) = tr(S−1(AS)) = tr((AS)S−1) = tr(A)

MATLAB EXERCISES
2. (a) To determine the matrix representation of L with respect to E set

B = U−1AU

(b) To determine the matrix representation of L with respect to F set

C = V −1AV

(c) If B and C are both similar to A then they must be similar to each other.
Indeed the transition matrix S from F to E is given by S = U−1V and

C = S−1BS
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CHAPTER TEST A
1. The statement is false in general. If L : Rn → Rm has matrix representation

A and the rank of A is less than n, then it is possible to find vectors x1 and
x2 such that L(x1) = L(x2) and x1 6= x2. For example if

A =

 1 1

2 2


 , x1 =


 1

4


 , x2 =


 2

3




and L : R2 → R2 is defined by L(x) = Ax, then

L(x1) = Ax1 =

 5

10


 = Ax2 = L(x2)

2. The statement is true. If v is any vector in V and c is any scalar, then

(L1 + L2)(cv) = L1(cv) + L2(cv)
= cL1(v) + cL2(v)
= c(L1(v) + L2(v))
= c(L1 + L2)(v)

If v1 and v2 are any vectors in V , then

(L1 + L2)(v1 + v2) = L1(v1 + v2) + L2(v1 + v2)
= L1(v1) + L1(v2) + L2(v1) + L2(v2)
= (L1(v1) + L2(v1)) + (L1(v2) + L2(v2))
= (L1 + L2)(v1) + (L1 + L2)(v2)

3. The statement is true. If x is in the kernel of L, then L(x) = 0. Thus if v is
any vector in V , then

L(v + x) = L(v) + L(x) = L(v) + 0 = L(v)

4. The statement is false in general. To see that L1 6= L2, look at the effect of
both operators on e1.

L1(e1) =




1
2

−
√

3
2


 and L2(e1) =




1
2√
3

2




5. The statement is false. The set of vectors in the homogeneous coordinate
system does not form a subspace of R3 since it is not closed under addition.
If x1 and x2 are vectors in the homogeneous system and y = x1 + x2, then
y is not a vector in the homogeneous coordinate system since y3 = 2.

6. The statement is true. If A is the standard matrix representation of L, then

L2(x) = L(L(x)) = L(Ax) = A(Ax) = A2x

for any x in R2. Clearly L2 is a linear transformation since it can be repre-
sented by the matrix A2.

7. The statement is true. If x is any vector in Rn then it can be represented in
terms of the vectors of E

x = c1x+c2x2 + · · ·+ cnxn
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If L1 and L2 are both represented by the same matrix A with respect to E,
then

L1(x) = d1x+d2x2 + · · ·+ dnxn = L2(x)

where d = Ac. Since L1(x) = L2(x) for all x ∈ Rn, it follows that L1 = L2.
8. The statement is true. See Theorem 4.3.1.
9. The statement is true. If A is similar to B and B is similar to C, then there

exist nonsingular matrices X and Y such that

A = X−1BX and B = Y −1CY

If we set Z = Y X, then Z is nonsingular and

A = X−1BX = X−1Y −1CY X = Z−1CZ

Thus A is similar to C.
10. The statement is false. Similar matrices have the same trace, but the converse

is not true. For example, the matrices

B =

 1 1

0 1


 and I =


 1 0

0 1




have trace equal to 2, but the matrices not similar. In fact the only matrix
that is similar to the identity matrix is I itself. (If S any nonsingular matrix,
then S−1IS = I.)

CHAPTER TEST B
1. (a) L is a linear operator since

L(cx) =

 cx1 + cx2

cx1


 = c


 x1 + x2

x1


 = cL(x)

and

L(x + y) =

 (x1 + y1) + (x2 + y2)

x1 + y1


 =


 x1 + x2

x1


 +


 y1 + y2

y1




= L(x) + L(y)

(b) L is not a letter operator. If, for example we take x = (1, 1)T then

L(2x) =

 4

2


 and 2L(x) =


 2

2




2. To determine the value of L(v3) we must first express v3 as a linear com-
bination of v1 and v2. Thus we must find constants c1 and c2 such that
v3 = c1v1 + c2v2. In we set V = (v1,v2) and solve the system V c = v3 we
see that c = (3, 2)T . It follows then that

L(v3) = L(3v1 + 2v2) = 3L(v1) + 2L(v2) =

 0

17




3. (a) ker(L) = Span((1, 1, 1)T)
(b) L(S) = Span((−1, 1, 0)T )
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4. Since

L(x) =




x2

x1

x1 + x2


 = x1




0
1
1


 + x2




1
0
1




it follows that the range of L is the span of the vectors

y1 =




0
1
1


 , y2 =




1
0
1




5. Let e1 and e2 be the standard basis vectors for R2. To determine the matrix
representation of L we set

a1 = L(e1) =




1
1
3


 , a2 = L(e2) =




1
−1

2




If we set

A =




1 1
1 −1
3 2




then L(x) = Ax for all x ∈ R2.
6. To determine the matrix representation we set

a1 = L(e1) =




−
√

3
2

1
2


 and a2 = L(e2) =




1
2

√
3

2




The matrix representation of the operator is

A = (a1, a2) =




−
√

3
2

1
2

1
2

√
3

2




7. A =




1 0 5
0 1 2
0 0 1




8. The standard matrix representation for a 45◦ counterclockwise rotation op-
erator is

A =

 cos π

4
− sin π

4
sin π

4 cos π
4


 =




1√
2

− 1√
2

1√
2

1√
2




The matrix representation with respect to the basis [u1,u2] is

B = U−1AU =

 2 −5

−1 3







1√
2

− 1√
2

1√
2

1√
2





 3 5

1 2


 =




− 16√
2

− 29√
2

10√
2

18√
2




9. (a) If U = (u1,u2) and V = (v1,v2) then the transition matrix S from
[v1,v2] to [u1,u2] is

S = U−1V =

 2 −5

−1 3





 1 1

−2 −1


 =


 12 7

−7 −4



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(b) By Theorem 4.3.1 the matrix representation of L with respect to [v1,v2]
is

B = S−1AS =

−4 −7

7 12





 2 1

3 2





 12 7

−7 −4


 =


−222 −131

383 226




10. (a) If A and B are similar then B = S−1AS for some nonsingular matrix
S. It follows then that

det(B) = det(S−1AS) = det(S−1) det(A) det(S)

=
1

det(S)
det(A) det(S) = det(A)

(b) If B = S−1AS then

S−1(A − λI)S = S−1AS − λS−1IS = B − λI

Therefore A − λI and B − λI ate similar and it follows from part (a)
that their determinants must be equal.
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SECTION 1

1. (c) cos θ =
14√
221

, θ ≈ 10.65◦

(d) cos θ =
4
√

6
21

, θ ≈ 62.19◦

3. (b) p = (4, 4)T , x− p = (−1, 1)T

pT (x − p) = −4 + 4 = 0

(d) p = (−2,−4, 2)T , x− p = (4,−1, 2)T

pT (x − p) = −8 + 4 + 4 = 0
4. If x and y are linearly independent and θ is the angle between the vectors,

then | cos θ| < 1 and hence

|xT y| = ‖x‖ ‖y‖ | cos θ| < 6

8. (b) −3(x − 4) + 6(y − 2) + 2(z + 5) = 0
11. (a) xTx = x2

1 + x2
2 ≥ 0

(b) xTy = x1y1 + x2y2 = y1x1 + y2x2 = yTx

75
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(c) xT (y + z) = x1(y1 + z1) + x2(y2 + z2)
= (x1y1 + x2y2) + (x1z2 + x2z2)
= xT y + xTz

12. The inequality can be proved using the Cauchy-Schwarz inequality as follows:

‖u + v‖2 = (u + v)T (u + v)
= uTu + vTu + uTv + vTv

= ‖u‖2 + 2uTv + ‖v‖2

= ‖u‖2 + 2‖u‖ ‖v‖ cos θ + ‖v‖2

≤ ‖u‖2 + 2‖u‖ ‖v‖ + ‖v‖2

= (‖u‖ + ‖v‖)2

Taking square roots, we get

‖ u + v ‖≤‖ u ‖ + ‖ v ‖

Equality will hold if and only if cos θ = 1. This will happen if one of the
vectors is a multiple of the other. Geometrically one can think of ‖u‖ and
‖v‖ as representing the lengths of two sides of a triangle. The length of the
third side of the triangle will be ‖u+v‖. Clearly the length of the third side
must be less than the sum of the lengths of the first two sides. In the case
of equality the triangle degenerates to a line segment.

13. No. For example, if x1 = e1, x2 = e2, x3 = 2e1, then x1 ⊥ x2, x2 ⊥ x3, but
x1 is not orthogonal to x3.

14. (a) By the Pythagorean Theorem

α2 + h2 = ‖a1‖2

where α is the scalar projection of a1 onto a2. It follows that

α2 =
(aT

1 a2)2

‖a2‖2

and

h2 = ‖a1‖2 − (aT
1 a2)2

‖a2‖2

Hence
h2‖a2‖2 = ‖a1‖2 ‖a2‖2 − (aT

1 a2)2

(b) If a1 = (a11, a21)T and a2 = (a12, a22)T , then by part (a)

h2‖a2‖2 = (a2
11 + a2

21)(a
2
12 + a2

22) − (a11a12 + a21a22)2

= (a2
11a

2
22 − 2a11a22a12a21 + a2

21a
2
12)

= (a11a22 − a21a12)2

Therefore

Area of P = h‖a2‖ = |a11a22 − a21a12| = |det(A)|
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15. (a) It θ is the angle between x and y, then

cos θ =
xTy

‖x‖ ‖y‖ =
20

8 · 5 =
1
2
, θ =

π

3

(b) The distance between the vectors is given by

‖x− y‖ =
√

02 + 22 + (−6)2 + 32 = 7

16. (a) Let

α =
xTy
yTy

and β =
(xTy)2

yTy
In terms of these scalars we have p = αy and pT x = β. Furthermore

pTp = α2yTy = β

and hence
pTz = pTx − pTp = β − β = 0

(b) If ‖p‖ = 6 and ‖z‖ = 8, then we can apply the Pythagorean law to
determine the length of x = p + z. It follows that

‖x‖2 = ‖p‖2 + ‖z‖2 = 36 + 64 = 100

and hence ‖x‖ = 10.
17. The matrix Q is unchanged and the nonzero entries of our new search vector

x are x6 =
√

6
3

, x7 =
√

6
6

, x10 =
√

6
6

. Rounded to three decimal places the
search vector is

x = (0, 0, 0, 0, 0, 0.816, 0.408, 0, 0, 0.408)T

The search results are given by the vector

y = QTx = (0, 0.161, 0.401 0.234, 0.612, 0.694, 0, 0.504)T

The largest entry of y is y6 = 0.694. This implies that Module 6 is the one
that best meets our search criteria.

SECTION 2
1. (b) The reduced row echelon form of A is


 1 0 −2

0 1 1




The set {(2, −1, 1)T} is a basis for N (A) and {(1, 0, −2)T , (0, 1, 1)T}
is a basis for R(AT ). The reduced row echelon form of AT is




1 0
0 1
0 0




N (AT ) = {(0, 0)T} and {(1, 0)T , (0, 1)T} is a basis for R(A) = R2.
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(c) The reduced row echelon form of A is



1 0
0 1
0 0
0 0




N (A) = {(0, 0)T} and {(1, 0)T , (0, 1)T} is a basis for R(AT ). The
reduced row echelon form of AT is

U =




1 0 5
14

5
14

0 1 4
7

11
7




We can obtain a basis for R(A) by transposing the rows of U and we
can obtain a basis for N (AT ) by solving Ux = 0. It follows that








1
0
5
14
5
14




,




0
1
4
7
11
7








and








− 5
14

−4
7

1
0




,




− 5
14

−11
7

0
1








are bases for R(A) and N (AT ), respectively.
2. (b) S corresponds to a line ` in 3-space that passes through the origin and

the point (1, −1, 1). S⊥ corresponds to a plane in 3-space that passes
through the origin and is normal to the line `.

3. (a) A vector z will be in S⊥ if and only if z is orthogonal to both x and y.
Since xT and yT are the row vectors of A, it follows that S⊥ = N (A).

6. No. (3, 1, 2)T and (2, 1, 1)T are not orthogonal.
7. No. Since N (AT ) and R(A) are orthogonal complements

N (AT ) ∩ R(A) = {0}

The vector aj cannot be in N (AT ) since it is a nonzero element of R(A).
Also, note that the jth coordinate of AT aj is

aT
j aj = ‖aj‖2 > 0

8. If y ∈ S⊥ then since each xi ∈ S it follows that y ⊥ xi for i = 1, . . . , k.
Conversely if y ⊥ xi for i = 1, . . . , k and x = α1x1 + α2x2 + · · ·+ αkxk is
any element of S, then

yTx = yT




k∑

i=1

αixi


 =

k∑

i=1

αiyTxi = 0

Thus y ∈ S⊥.
10. Corollary 5.2.5. If A is an m × n matrix and b ∈ Rn, then either there is

a vector x ∈ Rn such that Ax = b or there is a vector y ∈ Rm such that
ATy = 0 and yTb 6= 0.
Proof: If Ax = b has no solution then b 6∈ R(A). Since R(A) = N (AT )⊥ it
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follows that b 6∈ N (AT )⊥. But this means that there is a vector y in N (AT )
that is not orthogonal to b. Thus ATy = 0 and yTb 6= 0.

11. If x is not a solution to Ax = 0 then x 6∈ N (A). Since N (A) = R(AT )⊥ it
follows that x 6∈ R(AT )⊥. Thus there exists a vector y in R(AT ) that is not
orthogonal to x, i.e., xTy 6= 0.

12. Part (a) follows since Rn = N (A) ⊕ R(AT ).
Part (b) follows since Rm = N (AT ) ⊕ R(A).

13. (a) Ax ∈ R(A) for all vectors x in Rn. If x ∈ N (ATA) then

ATAx = 0

and hence Ax ∈ N (AT ).
(b) If x ∈ N (A), then

ATAx = AT0 = 0

and hence x ∈ N (ATA). Thus N (A) is a subspace of N (ATA).
Conversely, if x ∈ N (ATA), then by part (a), Ax ∈ R(A)∩N (AT ).

Since R(A) ∩N (AT ) = {0}, it follows that x ∈ N (A). Thus N (ATA) is
a subspace of N (A). It follows then that N (ATA) = N (A).

(c) A and ATA have the same nullspace and consequently must have the
same nullity. Since both matrices have n columns, it follows from the
Rank-Nullity Theorem that they must also have the same rank.

(d) If A has linearly independent columns then A has rank n. By part (c),
ATA also has rank n and consequently is nonsingular.

14. (a) If x ∈ N (B), then
Cx = ABx = A0 = 0

Thus x ∈ N (C) and it follows that N (B) is a subspace of N (C).
(b) If x ∈ N (C)⊥, then xTy = 0 for all y ∈ N (C). Since N (B) ⊂ N (C)

it follows that x is orthogonal to each element of N (B) and hence x ∈
N (B)⊥. Therefore

R(CT ) = N (C)⊥ is a subspace of N (B)⊥ = R(BT )

15. Let x ∈ U ∩ V . We can write
x = 0 + x (0 ∈ U, x ∈ V )
x = x + 0 (x ∈ U, 0 ∈ V )

By the uniqueness of the direct sum representation x = 0.
16. It was shown in the text that

R(A) = {Ay | y ∈ R(AT )}

If y ∈ R(AT ), then we can write

y = α1x1 + α2x2 + · · ·+ αrxr

Thus
Ay = α1Ax1 + α2Ax2 + · · ·+ αrAxr

and it follows that the vectors Ax1, . . . , Axr span R(A). Since R(A) has
dimension r, {Ax1, . . . , Axr} is a basis for R(A).
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17. (a) A is symmetric since

AT = (xyT + yxT )T = (xyT )T + (yxT )T

= (yT )T xT + (xT )T yT = yxT + xyT = A

(b) For any vector z in Rn

Az = xyTz + yxTz = c1x + c2y

where c1 = yTz and c2 = xTz. If z is in N (A) then

0 = Az = c1x + c2y

and since x and y are linearly independent we have yTz = c1 = 0 and
xTz = c2 = 0. So z is orthogonal to both x and y. Since x and y span
S it follows that z ∈ S⊥.

Conversely, if z is in S⊥ then z is orthogonal to both x and y. It
follows that

Az = c1x + c2y = 0

since c1 = yTz = 0 and c2 = xTz = 0. Therefore z is in N (A) and hence
N (A) = S⊥.

(c) Clearly dimS = 2 and by Theorem 5.2.2, dimS + dimS⊥ = n. Using
our result from part (a) we have

dimN (A) = dimS⊥ = n − 2

So A has nullity n − 2. It follows from the Rank-Nullity Theorem that
the rank of A must be 2.

SECTION 3

1. (b) ATA =

 6 −1

−1 6


 and AT b =


 20

−25




The solution to the normal equations AT Ax = ATb is

x =

 19/7

−26/7




2. (Exercise 1b.)

(a) p =
1
7
(−45, 12, 71)T

(b) r =
1
7
(115, 23, 69)T

(c)

AT r =

−1 2 1

1 1 −2







115
7

23
7

69
7




=




0

0

0




Therefore r is in N (AT ).
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6. A =




1 −1 1
1 0 0
1 1 1
1 2 4




, b =




0
1
3
9




ATA =




4 2 6
2 6 8
6 8 18


 , ATb =




13
21
39




The solution to ATAx = ATb is (0.6, 1.7, 1.2)T . Therefore the best
least squares fit by a quadratic polynomial is given by

p(x) = 0.6 + 1.7x + 1.2x2

7. To find the best fit by a linear function we must find the least squares
solution to the linear system




1 x1

1 x2

...
...

1 xn





 c0

c1


 =




y1

y2

...
yn




If we form the normal equations the augmented matrix for the system will
be 



n

n∑

i=1

xi

n∑

i=1

yi

n∑

i=1

xi

n∑

i=1

x2
i

n∑

i=1

xiyi




If x = 0 then
n∑

i=1

xi = nx = 0

and hence the coefficient matrix for the system is diagonal. The solution is
easily obtained.

c0 =

n∑

i=1

yi

n
= y

and

c1 =

n∑

i=1

xiyi

n∑

i=1

x2
i

=
xTy
xTx
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8. To show that the least squares line passes through the center of mass, we
introduce a new variable z = x − x. If we set zi = xi − x for i = 1, . . . , n,
then z = 0. Using the result from Exercise 7 the equation of the best least
squares fit by a linear function in the new zy-coordinate system is

y = y +
zTy
zTz

z

If we translate this back to xy-coordinates we end up with the equation

y − y = c1(x − x)

where

c1 =

n∑

i=1

(xi − x)yi

n∑

i=1

(xi − x)2

9. (a) If b ∈ R(A) then b = Ax for some x ∈ Rn. It follows that

Pb = PAx = A(ATA)−1ATAx = Ax = b

(b) If b ∈ R(A)⊥ then since R(A)⊥ = N (AT ) it follows that ATb = 0 and
hence

Pb = A(ATA)−1ATb = 0

(c) The following figures give a geometric illustration of parts (a) and (b).
In the first figure b lies in the plane corresponding to R(A). Since it is
already in the plane, projecting it onto the plane will have no effect. In
the second figure b lies on the line through the origin that is normal to
the plane. When it is projected onto the plane it projects right down to
the origin.

�
�
�
�
�
�
�
�
�
�

0 ������:

R(A)

b

�
�
�
�
�
�
�
�
�
�

If b ∈ R(A), then Pb = b.
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�
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�
�
�
�
�

6

If b ∈ R(A)⊥, then Pb = 0.

b

0

R(A)

10. (a) By the Consistency Theorem Ax = b is consistent if and only if b is in
R(A). We are given that b is in N (AT ). So if the system is consistent
then b would be in R(A)∩N (AT ) = {0}. Since b 6= 0, the system must
be inconsistent.

(b) If A has rank 3 then AT A also has rank 3 (see Exercise 13 in Section 2).
The normal equations are always consistent and in this case there will be
2 free variables. So the least squares problem will have infinitely many
solutions.

11. (a) P 2 = A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT = P
(b) Prove: P k = P for k = 1, 2, . . . .

Proof: The proof is by mathematical induction. In the case k = 1 we
have P 1 = P . If P m = P for some m then

P m+1 = PP m = PP = P 2 = P

(c) P T = [A(ATA)−1AT ]T

= (AT )T [(ATA)−1]TAT

= A[(ATA)T ]−1AT

= A(AT A)−1AT

= P

12. If 
 A I

O AT





 x̂

r


 =


 b

0




then

Ax̂ + r = b

AT r = 0

We have then that

r = b− Ax̂
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AT r = ATb− ATAx̂ = 0

Therefore
ATAx̂ = ATb

So x̂ is a solution to the normal equations and hence is the least squares
solution to Ax = b.

13. If x̂ is a solution to the least squares problem, then x̂ is a solution to the
normal equations

ATAx = ATb

It follows that a vector y ∈ Rn will be a solution if and only if

y = x̂ + z

for some z ∈ N (ATA). (See Exercise 20, Chapter 3, Section 6). Since

N (ATA) = N (A)

we conclude that y is a least squares solution if and only if

y = x̂ + z

for some z ∈ N (A).

SECTION 4

2. (b) p =
xT y
yT y

y =
12
72

y =

4

3
,
1
3
,
1
3
, 0




T

(c) x − p =

−1

3
,
2
3
,
2
3
, 1




T

(x − p)Tp = −4
9

+
2
9

+
2
9

+ 0 = 0

(d) ‖x − p‖2 =
√

2, ‖p‖2 =
√

2, ‖x‖2 = 2

‖x − p‖2 + ‖p‖2 = 4 = ‖x‖2

3. (a) 〈x,y〉 = x1y1w1 + x2y2w2 + x3y3w3 = 1 · −5 ·
1
4

+ 1 · 1 ·
1
2

+ 1 · 3 ·
1
4

= 0

5. (i)

〈A, A〉 =
m∑

i=1

n∑

j=1

a2
ij ≥ 0

and 〈A, A〉 = 0 if and only if each aij = 0.

(ii) 〈A, B〉 =
m∑

i=1

n∑

j=1

aijbij =
m∑

i=1

n∑

j=1

bijaij = 〈B, A〉
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(iii)

〈αA + βB, C〉 =
m∑

i=1

n∑

j=1

(αaij + βbij)cij

= α

m∑

i=1

n∑

j=1

aijcij + β

m∑

i=1

n∑

j=1

bijcij

= α〈A, C〉+ β〈B, C〉

6. Show that the inner product on C[a, b] determined by

〈f, g〉 =
∫ b

a

f(x)g(x) dx

satisfies the last two conditions of the definition of an inner product.
Solution:

(ii) 〈f, g〉 =
∫ b

a

f(x)g(x) dx =
∫ b

a

g(x)f(x) dx = 〈g, f〉

(iii) 〈αf + βg, h〉 =
∫ b

a

(αf(x) + βg(x))h(x) dx

= α

∫ b

a

f(x)h(x) dx + β

∫ b

a

g(x)h(x) dx

= α〈f, h〉 + β〈g, h〉
7 (c)

〈
x2, x3

〉
=

∫ 1

0

x2x3dx =
1
6

8 (c)

‖1‖2 =
∫ 1

0

1 · 1 dx = 1

‖p‖2 =
∫ 1

0

9
4
x2 dx =

3
4

‖1 − p‖2 =
∫ 1

0


1 − 3

2
x




2

dx =
1
4

Thus ‖1‖ = 1, ‖p‖ =
√

3
2 , ‖1 − p‖ = 1

2 , and

‖1 − p‖2 + ‖p‖2 = 1 = ‖1‖2

9. The vectors cos mx and sin nx are orthogonal since

〈cos mx, sinnx〉 =
1
π

∫ π

−π

cos mx sin nx dx

=
1
2π

∫ π

−π

[sin(n + m)x + sin(n − m)x] dx

= 0
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They are unit vectors since

〈cos mx, cos mx〉 =
1
π

∫ π

−π

cos2 mx dx

=
1
2π

∫ π

−π

[1 + cos 2mx] dx

= 1

〈sin nx, sinnx〉 =
1
π

∫ π

−π

sinnx sin nx dx

=
1
2π

∫ π

−π

(1 − cos 2nx) dx

= 1

Since the cos mx and sin nx are orthogonal, the distance between the vectors
can be determined using the Pythagorean law.

‖ cos mx − sin nx‖ = (‖ cos mx‖2 + ‖ sin nx‖2)
1
2 =

√
2

10. 〈x, x2〉 =
5∑

i=1

xix
2
i = −1 − 1

8
+ 0 +

1
8

+ 1 = 0

11. (c) ‖x − x2‖ =




5∑

i=1

(xi − x2
i )

2




1/2

=
√

26
4

12. (i) By the definition of an inner product we have 〈v,v〉 ≥ 0 with equality
if and only if v = 0. Thus ‖v‖ =

√
〈v,v〉 ≥ 0 and ‖v‖ = 0 if and only

if v = 0.
(ii) ‖αv‖ =

√
〈αv, αv〉 =

√
α2〈v,v〉 = |α| ‖v‖

13. (i) Clearly
n∑

i=1

|xi| ≥ 0

If
n∑

i=1

|xi| = 0

then all of the xi’s must be 0.

(ii) ‖αx‖1 =
n∑

i=1

|αxi| = |α|
n∑

i=1

|xi| = |α| ‖x‖1

(iii) ‖x + y‖1 =
n∑

i=1

|xi + yi| ≤
n∑

i=1

|xi|+
n∑

i=1

|yi| = ‖x‖1 + ‖y‖1

14. (i) ‖x‖∞ = max
1≤i≤n

|xi| ≥ 0. If max
1≤i≤n

|xi| = 0 then all of the xi’s must be zero.

(ii) ‖αx‖∞ = max
1≤i≤n

|αxi| = |α| max
1≤i≤n

|xi| = |α| ‖x‖∞
(iii) ‖x + y‖∞ = max |xi + yi| ≤ max |xi| + max |yi| = ‖x‖∞ + ‖y‖∞
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17. If 〈x,y〉 = 0, then

‖x− y‖2 = 〈x − y,x− y〉
= 〈x,x〉 − 2〈x,y〉 + 〈y,y〉
= ‖x‖2 + ‖y‖2

Therefore
‖x− y‖ = (‖x‖2 + ‖y‖2)1/2

Alternatively, one can prove this result by noting that if x is orthogonal to
y then x is also orthogonal to −y and hence by the Pythagorean Law

‖x− y‖2 = ‖x + (−y)‖2 = ‖x‖2 + ‖ − y‖2 = ‖x‖2 + ‖y‖2

18. ‖x− y‖ = (〈x− y,x− y〉)1/2 =




n∑

i=1

(xi − yi)2



1/2

19. For i = 1, . . . , n

|xi| ≤ (x2
1 + x2

2 + · · ·+ x2
n)1/2 = ‖x‖2

Thus
‖x‖∞ = max

1≤i≤n
|xi| ≤ ‖x‖2

20. ‖x‖2 = ‖x1e1 + x2e2‖2

≤ ‖x1e1‖2 + ‖x2e2‖2

= |x1| ‖e1‖2 + |x2| ‖e2‖2

= |x1| + |x2|
= ‖x‖1

21. e1 and e2 are both examples.
22. ‖ − v‖ = ‖(−1)v‖ = | − 1| ‖v‖ = ‖v‖
23. ‖u + v‖2 = 〈u + v,u + v〉

= ‖u‖2 + 2〈u,v〉 + ‖v‖2

≥ ‖u‖2 − 2‖u‖ ‖v‖ + ‖v‖2

= (‖u‖ − ‖v‖)2

24.

‖u + v‖2 = ‖u‖2 + 2〈u,v〉 + ‖v‖2

‖u− v‖2 = ‖u‖2 − 2〈u,v〉 + ‖v‖2

‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 = 2(‖u‖2 + ‖v‖2)

If the vectors u and v are used to form a parallelogram in the plane, then
the diagonals will be u + v and u− v. The equation shows that the sum of
the squares of the lengths of the diagonals is twice the sum of the squares
of the lengths of the two sides.

25. The result will not be valid for most choices of u and v. For example, if
u = e1 and v = e2, then

‖u + v‖2
1 + ‖u− v‖2

1 = 22 + 22 = 8
2‖u‖2

1 + 2‖v‖2
1 = 2 + 2 = 4
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26. (a) The equation
‖f‖ = |f(a)| + |f(b)|

does not define a norm on C[a, b]. For example, the function f(x) =
x2 − x in C[0, 1] has the property

‖f‖ = |f(0)| + |f(1)| = 0

however, f is not the zero function.
(b) The expression

‖f‖ =
∫ b

a

|f(x)| dx

defines a norm on C[a, b]. To see this we must show that the three
conditions in the definition of norm are satisfied.
(i)

∫ b

a
|f(x)| dx ≥ 0. Equality can occur if and only if f is the zero func-

tion. Indeed, if f(x0) 6= 0 for some x0 in [a, b], then the continuity
of f(x) implies that |f(x)| > 0 for all x in some interval containing
x0 and consequently

∫ b

a
|f(x)| dx > 0.

(ii)

‖αf‖ =
∫ b

a

|αf(x)| dx = |α|
∫ b

a

|f(x)| dx = |α|‖f‖

(iii)

‖f + g‖ =
∫ b

a

|f(x) + g(x)| dx

≤
∫ b

a

(|f(x)| + |g(x)|) dx

=
∫ b

a

|f(x)| dx +
∫ b

a

|g(x)| dx

= ‖f‖ + ‖g‖

(c) The expression
‖f‖ = max

a≤x≤b
|f(x)|

defines a norm on C[a, b]. To see this we must verify that three conditions
are satisfied.
(i) Clearly max

a≤x≤b
|f(x)| ≥ 0. Equality can occur only if f is the zero

function.
(ii)

‖αf‖ = max
a≤x≤b

|αf(x)| = |α| max
a≤x≤b

|f(x)| = |α| ‖f‖

(iii)

‖f + g‖ = max
a≤x≤b

|f(x) + g(x)|

≤ max
a≤x≤b

(|f(x)| + |g(x)|)
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≤ max
a≤x≤b

|f(x)| + max
a≤x≤b

|g(x)|

= ‖f‖ + ‖g‖

27. (a) If x ∈ Rn, then
|xi| ≤ max

1≤j≤n
|xj| = ‖x‖∞

and hence

‖x‖1 =
n∑

i=1

|xi| ≤ n‖x‖∞

(b) ‖x‖2 =




n∑

i=1

x2
i




1/2

≤




n∑

i=1

( max
1≤j≤n

|xj|)2



1/2

= (n( max
1≤j≤n

|xj|2))1/2 =
√

n‖x‖∞

If x is a vector whose entries are all equal to 1 then for this vector equality
will hold in parts (a) and (b) since

‖x‖∞ = 1, ‖x‖1 = n, ‖x‖2 =
√

n

28. Each norm produces a different unit “circle”.
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�

�

@
@

@
@

@�
�

�
�

�

@
@

@
@

@

1

1

−1

−1

1

−1

−1 1

(a) (b)

−1

(c) 1

−1

1

29. (a) 〈Ax,y〉 = (Ax)T y = xT ATy = 〈x, ATy〉
(b) 〈ATAx,x〉 = 〈x, ATAx〉 = xT ATAx = (Ax)T Ax = 〈Ax, Ax〉 = ‖Ax‖2

SECTION 5

2. (a) uT
1 u1 =

1
18

+
1
18

+
16
18

= 1

uT
2 u2 =

4
9

+
4
9

+
1
9

= 1
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uT
3 u3 =

1
2

+
1
2

+ 0 = 1

uT
1 u2 =

√
2

9
+

√
2

9
− 2

√
2

9
= 0

uT
1 u3 =

1
6
− 1

6
+ 0 = 0

uT
2 u3 =

√
2

3
−

√
2

3
+ 0 = 0

4. (a) xT
1 x1 = cos2 θ + sin2 θ = 1

xT
2 x2 = (− sin θ)2 + cos2 θ = 1

xT
1 x2 = − cos θ sin θ + sin θ cos θ = 0

(c) c2
1 + c2

2 = (y1 cos θ + y2 sin θ)2 + (−y1 sin θ + y2 cos θ)2

= y2
1 cos2 θ + 2y1y2 sin θ cos θ + y2

2 sin2 θ

+ y2
1 sin2 θ − 2y1y2 sin θ cos θ + y2

2 cos2 θ

= y2
1 + y2

2.
5. If c1 = uTu1 = 1

2 and c2 = uTu2, then by Theorem 5.5.2

u = c1u1 + c2u2

It follows from Parseval’s formula that

1 = ‖u‖2 = c2
1 + c2

2 =
1
4

+ c2
2

Hence

|uTu2| = |c2| =
√

3
2

. 7 By Parseval’s formula

c2
1 + c2

2 + c2
3 = ‖x‖2 = 25

It follows from Theorem 5.5.2 that

c1 = 〈u1,x〉 = 4 and c2 = 〈u2,x〉 = 0

Plugging these values into Parseval’s formula we get

16 + 0 + c2
3 = 25

and hence c3 = ±3.
8. Since {sin x, cosx} is an orthonormal set it follows that

〈f, g〉 = 3 · 1 + 2 · (−1) = 1

9. (a) sin4 x =

1 − cos 2x

2




2

=
1
4

cos2 2x − 1
2

cos 2x +
1
4
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=
1
4


1 + cos 4x

2


 − 1

2
cos 2x +

1
4

=
1
8

cos 4x− 1
2

cos 2x +
3
√

2
8

1√
2

(b) (i)
∫ π

−π

sin4 x cos x dx = π · 0 = 0

(ii)
∫ π

−π

sin4 x cos 2x dx = π(−1
2
) = −π

2

(iii)
∫ π

−π

sin4 x cos 3x dx = π · 0 = 0

(iv)
∫ π

−π

sin4 x cos 4x dx = π · 1
8

=
π

8
10. The key to seeing why F8P8 can be partitioned into block form


 F4 D4F4

F4 −D4F4




is to note that

ω2k
8 = e−

4kπi
8 = e−

2kπi
4 = ωk

4

and there are repeating patterns in the powers of ω8. Since

ω4
8 = −1 and ω8n

8 = e−2nπi = 1

it follows that

ωj+4
8 = −ωj

8 and ω8n+j
8 = ωj

8

Using these results let us examine the odd and even columns of F8. Let us
denote the jth column vector of the m × m Fourier matrix by f (m)

j . The odd
columns of the 8 × 8 Fourier matrix are of the form

f (8)
2n+1 =




ω0
8

ω2n
8

ω4n
8

ω6n
8

ω8n
8

ω10n
8

ω12n
8

ω14n
8




=




1

ω2n
8

ω4n
8

ω6n
8

1

ω2n
8

ω4n
8

ω6n
8




=




1

ωn
4

ω2n
4

ω3n
4

1

ωn
4

ω2n
4

ω3n
4




=




f (4)
n+1

f (4)
n+1



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for n = 0, 1, 2, 3. The even columns are of the form

f (8)
2n+2 =




ω0
8

ω2n+1
8

ω
2(2n+1)
8

ω
3(2n+1)
8

ω
4(2n+1)
8

ω
5(2n+1)
8

ω
6(2n+1)
8

ω
7(2n+1)
8




=




1

ω8ω
2n
8

ω2
8ω

4n
8

ω3
8ω

6n
8

−1

−ω8ω
2n
8

−ω2
8ω

4n
8

−ω3
8ω

6n
8




=




1

ω8ω
n
4

ω2
8ω

2n
4

ω3
8ω

3n
4

−1

−ω8ω
n
4

−ω2
8ω

2n
4

−ω3
8ω

3n
4




=




D4f
(4)
n+1

−D4f
(4)
n+1




for n = 0, 1, 2, 3.
11. If Q is orthogonal then

(QT )T (QT ) = QQT = QQ−1 = I

Therefore QT is orthogonal.
12. Let θ denote the angle between x and y and let θ1 denote the angle between

Qx and Qy. It follows that

cos θ1 =
(Qx)T Qy
‖Qx‖‖Qy‖

=
xT QT Qy
‖x‖‖y‖

=
xTy

‖x‖‖y‖
= cos θ

and hence the angles are the same.
13. (a) Use mathematical induction to prove

(Qm)−1 = (QT )m = (Qm)T , m = 1, 2, . . .

Proof: The case m = 1 follows from Theorem 5.5.5. If for some positive
integer k

(Qk)−1 = (QT )k = (Qk)T

then

(QT )k+1 = QT (QT )k = QT (Qk)T = (QkQ)T = (Qk+1)T

and

(QT )k+1 = QT (QT )k = Q−1(Qk)−1 = (QkQ)−1 = (Qk+1)−1

(b) Prove: ‖Qmx‖ = ‖x‖ for m = 1, 2, . . . .
Proof: In the case m = 1

‖Qx‖2 = (Qx)T Qx = xT QT Qx = xTx = ‖x‖2

and hence
‖Qx‖ = ‖x‖
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If ‖Qky‖ = ‖y‖ for any y ∈ Rn, then in particular, if x is an arbitrary
vector in Rn and we define y = Qx, then

‖Qk+1x‖ = ‖Qk(Qx)‖ = ‖Qky‖ = ‖y‖ = ‖Qx‖ = ‖x‖

14. HT = (I − 2uuT )T = IT − 2(uT )TuT = I − 2uuT = H
HT H = H2

= (I − 2uuT )2

= I − 4uuT + 4uuT uuT

= I − 4uuT + 4uuT

= I

15. Since QT Q = I, it follows that

[det(Q)]2 = det(QT ) det(Q) = det(I) = 1

Thus det(Q) = ±1.
16. (a) Let Q1 and Q2 be orthogonal n × n matrices and let Q = Q1Q2. It

follows that

QT Q = (Q1Q2)T Q1Q2 = QT
2 QT

1 Q1Q2 = I

Therefore Q is orthogonal.
(b) Yes. Let P1 and P2 be permutation matrices. The columns of P1 are the

same as the columns of I, but in a different order. Postmultiplication of
P1 by P2 reorders the columns of P1. Thus P1P2 is a matrix formed by
reordering the columns of I and hence is a permutation matrix.

17. There are n! permutations of any set with n distinct elements. Therefore
there are n! possible permutations of the row vectors of the n × n identity
matrix and hence the number of n × n permutation matrices is n!.

18. A permutation P is an orthogonal matrix so P T = P−1 and if P is a
symmetric permutation matrix then P = P T = P−1 and hence

P 2 = P T P = P−1P = I

So for a symmetric permutation matrix we have

P 2k = (P 2)k = Ik = I and P 2k+1 = PP 2k = PI = P

19.

I = UUT = (u1,u2, . . . ,un)




uT
1

uT
2
...

uT
n




= u1uT
1 + u2uT

2 + · · ·+ unuT
n

20. The proof is by induction on n. If n = 1, then Q must be either (1) or (−1).
Assume the result holds for all k × k upper triangular orthogonal matrices
and let Q be a (k+1)×(k+1) matrix that is upper triangular and orthogonal.
Since Q is upper triangular its first column must be a multiple of e1. But Q
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is also orthogonal, so q1 is a unit vector. Thus q1 = ±e1. Furthermore, for
j = 2, . . . , n

q1j = eT
1 qj = ±qT

1 qj = 0

Thus Q must be of the form

Q =

±1 0 0 · · · 0

0 p2 p3 · · · pk+1




The matrix P = (p2,p3, . . . ,pk+1) is a k × k matrix that is both upper
triangular and orthogonal. By the induction hypothesis P must be a diagonal
matrix with diagonal entries equal to ±1. Thus Q must also be a diagonal
matrix with ±1’s on the diagonal.

21. (a) The columns of A form an orthonormal set since

aT
1 a2 = −1

4
− 1

4
+

1
4

+
1
4

= 0

aT
1 a1 =

1
4

+
1
4

+
1
4

+
1
4

= 1

aT
2 a2 =

1
4

+
1
4

+
1
4

+
1
4

= 1

22. (b)
(i) Ax = Pb = (2, 2, 0, 0)T

(ii) Ax = Pb =

3

2
,
3
2
,
7
2
,
7
2




T

(iii) Ax = Pb = (1, 1, 2, 2)T

23. (a) One can find a basis for N (AT ) in the usual way by computing the
reduced row echelon form of AT .




1
2

1
2

1
2

1
2

−1
2

−1
2

1
2

1
2




→

 1 1 0 0

0 0 1 1




Setting the free variables equal to one and solving for the lead variables,
we end up with basis vectors x1 = (−1, 1, 0, 0)T , x = (0, 0,−1, 1)T . Since
these vectors are already orthogonal we need only normalize to obtain an
orthonormal basis for N (AT ).

u1 =
1√
2
(−1, 1, 0, 0)T u2 =

1√
2
(0, 0,−1, 1)T

24. (a) Let U1 be a matrix whose columns form an orthonormal basis for R(A)
and let U2 be a matrix whose columns form an orthonormal basis for
N (AT ). If we set U = (U1, U2), then since R(A) and N (AT ) are or-
thogonal complements in Rn, it follows that U is an orthogonal matrix.
The unique projection matrix P onto R(A) is given P = U1U

T
1 and the

projection matrix onto N (AT ) is given by U2U
T
2 . Since U is orthogonal
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it follows that

I = UUT = U1U
T
1 + U2U

T
2 = P + U2U

T
2

Thus the projection matrix onto N (AT ) is given by

U2U
T
2 = I − P

(b) The proof here is essentially the same as in part (a). Let V1 be a matrix
whose columns form an orthonormal basis for R(AT ) and let V2 be a
matrix whose columns form an orthonormal basis for N (A). If we set
V = (V1, V2), then since R(AT ) and N (A) are orthogonal complements
in Rm, it follows that V is an orthogonal matrix. The unique projection
matrix Q onto R(AT ) is given Q = V1V

T
1 and the projection matrix

onto N (A) is given by V2V
T
2 . Since V is orthogonal it follows that

I = V V T = V1V
T
1 + V2V

T
2 = Q + V2V

T
2

Thus the projection matrix onto N (A) is given by

V2V
T
2 = I − Q

25. (a) If U is a matrix whose columns form an orthonormal basis for S, then
the projection matrix P corresponding to S is given by P = UUT . It
follow that

P 2 = (UUT )(UUT ) = U (UT U )UT = UIUT = P

(b) P T = (UUT )T = (UT )T UT = UUT = P

26. The (i, j) entry of ATA will be aT
i aj . This will be 0 if i 6= j. Thus ATA

is a diagonal matrix with diagonal elements aT
1 a1, aT

2 a2, . . . , aT
nan. The ith

entry of AT b is aT
i b. Thus if x̂ is the solution to the normal equations, its

ith entry will be

x̂i =
aT

i b
aT

i ai
=

bTai

aT
i ai

27. (a) 〈1, x〉 =
∫ 1

−1

1x dx =
x2

2

∣∣∣∣
1

−1

= 0

28. (a) 〈1, 2x− 1〉 =
∫ 1

0

1 · (2x − 1)dx = x2 − x

∣∣∣∣
1

0

= 0

(b) ‖1‖2 = 〈1, 1〉 =
∫ 1

0

1 · 1 dx = x

∣∣∣∣
1

0

= 1

‖2x − 1‖2 =
∫ 1

0

(2x − 1)2dx =
1
3

Therefore
‖1‖ = 1 and ‖2x − 1‖ =

1√
3

(c) The best least squares approximation to
√

x from S is given by

`(x) = c11 + c2

√
3(2x − 1)
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where

c1 = 〈1, x1/2〉 =
∫ 1

0

1 x1/2dx =
2
3

c2 = 〈
√

3(2x − 1), x1/2〉 =
∫ 1

0

√
3(2x− 1)x1/2dx =

2
√

3
15

Thus

`(x) =
2
3
· 1 +

2
√

3
15

(
√

3(2x − 1))

=
4
5
(x +

1
3
)

29. We saw in Example 3 that {1/
√

2, cos x, cos 2x, . . . , cos nx} is an orthonormal
set. In Section 4, Exercise 9 we saw that the functions cos kx and sin jx were
orthogonal unit vectors in C[−π, π]. Furthermore

〈
1√
2
, sin jx

〉
=

1
π

∫ π

−π

1√
2

sin jx dx = 0

Therefore {1/
√

2, cos x, cos 2x, . . . , cos nx, sinx, sin 2x, . . . , sinnx} is an or-
thonormal set of vectors.

30. The coefficients of the best approximation are given by

a0 = 〈1, |x|〉 =
1
π

∫ π

−π

1 · |x| dx =
2
π

∫ π

0

x dx = π

a1 = 〈cos x, |x|〉 =
2
π

∫ π

0

x cos x dx = − 4
π

a2 =
2
π

∫ π

0

x cos 2x dx = 0

To compute the coefficients of the sin terms we must integrate x sin x and
x sin 2x from −π to π. Since both of these are odd functions the integrals
will be 0. Therefore b1 = b2 = 0. The best trigonometric approximation of
degree 2 or less is given by

p(x) =
π

2
− 4

π
cos x

31. If u = c1x1 + c2x2 + · · · + ckxk is an element of S1 and v = ck+1xk+1 +
ck+2xk+2 + · · ·+ cnxn is an element of S2, then

〈u,v〉 =

〈
k∑

i=1

cixi,

n∑

j=k+1

cjxj

〉

=
k∑

k=1

n∑

j=k+1

cicj〈xi,xj〉

= 0
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32. (a) By Theorem 5.5.2,

x =
n∑

i=1

〈x,xi〉xi

=
k∑

i=1

〈x,xi〉xi +
n∑

i=k+1

〈x,xi〉xi

= p1 + p2

(b) It follows from Exercise 31 that S2 ⊂ S⊥
1 . On the other hand if x ∈ S⊥

1

then by part (a) x = p1 +p2. Since x ∈ S⊥
1 , 〈x,xi〉 = 0 for i = 1, . . . , k.

Thus p1 = 0 and x = p2 ∈ S2. Therefore S2 = S⊥.
33. Let

ui =
1

‖xi‖
xi for i = 1, . . . , n

By Theorem 5.5.8 the best least squares approximation to x from S is given
by

p =
n∑

i=1

〈x,ui〉ui =
n∑

i=1

1
‖xi‖2

〈x,xi〉xi

=
n∑

i=1

〈x,xi〉
〈xi,xi〉

xi.

SECTION 6
9. r11 = ‖x1‖ = 5

q1 =
1

r11
x1 =


4

5
,
2
5
,
2
5
,
1
5




T

r12 = qT
1 x2 = 2 and r13 = qT

1 x3 = 1

x(1)
2 = x2 − r12q1 =


2

5
,−4

5
,−4

5
,
8
5




T

, x(1)
3 = x3 − r13q1 =


1

5
,
3
5
,−7

5
,
4
5




T

r22 = ‖x(1)
2 ‖ = 2

q2 =
1

r22
x(1)

2 =

1

5
,−2

5
,−2

5
,
4
5




T

r23 = xT
3 q2 = 1

x(2)
3 = x(1)

3 − r23q2 = (0, 1, −1, 0)T

r33 = ‖x(2)
3 ‖ =

√
2

q3 =
1

r33
x(2)

3 =

0,

1√
2
,− 1√

2
, 0




T

10. Given a basis {x1, . . . , xn}, one can construct an orthonormal basis using
either the classical Gram–Schmidt process or the modified process. When
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carried out in exact arithmetic both methods will produce the same or-
thonormal set {q1, . . . ,qn}.
Proof: The proof is by induction on n. In the case n = 1, the vector q1 is
computed in the same way for both methods.

q1 =
1

r11
x1 where r11 = ‖x‖1

Assume q1, . . . ,qk are the same for both methods. In the classical Gram–
Schmidt process one computes qk+1 as follows: Set

ri,k+1 = 〈xk+1,qi〉, i = 1, . . . , k

pk = r1,k+1q1 + r2,k+1q2 + · · ·+ rk,k+1qk

rk+1,k+1 = ‖xk+1 − pk‖

qk+1 =
1

rk+1,k+1
(xk+1 − pk)

Thus

qk+1 =
1

rk+1,k+1
(xk+1 − r1,k+1q1 − r2,k+1q2 − · · · − rk,k+1qk)

In the modified version, at step 1 the vector r1,k+1q1 is subtracted from
xk+1.

x(1)
k+1 = xk+1 − r1,k+1q1

At the next step r2,k+1q2 is subtracted from x(1)
k+1.

x(2)
k+1 = x(1)

k+1 − r2,k+1q2

= xk+1 − r1,k+1q1 − r2,k+1q2

In general after k steps we have

x(k)
k+1 = xk+1 − r1,k+1q1 − r2,k+1q2 − · · · − rk,k+1qk

= xk+1 − pk

In the last step we set

rk+1,k+1 = ‖x(k)
k+1‖ = ‖xk+1 − pk‖

and set

qk+1 =
1

rk+1,k+1
x(k)

k+1 =
1

rk+1,k+1
(xk+1 − pk)

Thus qk+1 is the same as in the classical Gram–Schmidt process.
11. If the Gram-Schmidt process is applied to a set {v1,v2,v3} and v3 is in

Span(v1,v2), then the process will break down at the third step. If u1, u2

have been constructed so that they form an orthonormal basis for S2 =
Span(v1,v2), then the projection p2 of v3 onto S2 is v3 (since v3 is already
in S2). Thus v3 −p2 will be the zero vector and hence we cannot normalize
to obtain a unit vector u3.
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12. (a) Since
p = c1q1 + c2q2 + · · ·+ cnqn

is the projection of b onto R(A) and q1,q2, . . . ,qn form an orthonormal
basis for R(A), it follows that

cj = qT
j b j = 1, . . . , n

and hence
c = QTb

(b) p = c1q1 + c2q2 + · · ·+ cnqn = Qc = QQTb
(c) Both A(ATA)−1AT and QQT are projection matrices that project vec-

tors onto R(A). Since the projection matrix is unique for a given sub-
space it follows that

QQT = A(ATA)−1AT

13. (a) If {v1, . . . ,vk} is an orthonormal basis for V then by Theorem 3.4.4 it
can be extended to form a basis {v1, . . . ,vk,uk+1,uk+2, . . . ,um} for U .
If we apply the Gram-Schmidt process to this basis, then since v1, . . . ,vk

are already orthonormal vectors, they will remain unchanged and we
with end up with an orthonormal basis {v1, . . . ,vk,vk+1, . . . ,vm}.

(b) If u is any vector in U , we can write

u = c1v1 + · · ·+ ckvk + ck+1vk+1 + · · ·+ cmvm = v + w(3)

where

v = c1v1+· · ·+ckvk ∈ V and w = ck+1vk+1+· · ·+cmvm) ∈ W

Therefore, U = V + W . The representation (3) is unique. Indeed if

u = v + w = x + y

where v,x are in V and w,y are in W , then

v − x = y− w

and hence v− x ∈ V ∩W . Since V and W are orthogonal subspaces we
have V ∩ W = {0} and hence v = x. By the same reasoning w = y. It
follows then that U = V ⊕ W .

14. Let m = dimU , k = dimV , and W = U ∩ V . If dimW = r > 0 and
{v1, . . . ,vr} is a basis for W , then by Exercise 13(a) we can extend this
basis to an orthonormal basis {v1, . . . ,vr,vr+1, . . . ,vk} for V . Let

V1 = Span(vr+1, . . . ,vk)

By Exercise 13(b) we have V = W ⊕ V1. We claim that U + V = U ⊕ V1.
Since V1 is a subspace of V it follows that U + V1 is a subspace of U + V .
On the other hand, if x is in U + V then

x = u + v = u + (w + v1) = (u + w) + v1

where u ∈ U , v ∈ V , w ∈ W , and v1 ∈ V1. Since u + w is in U it follows
that x is in U + V1 and hence U + V = U + V1. To show that we have a
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direct sum we must show that U ∩ V1 = {0}. If z ∈ U ∩ V1 then z is also
in the larger subspace W = U ∩ V . So z is in both V1 and W . However, by
construction V1 is orthogonal to W , so the intersection of the two subspaces
must be {0}. Therefore U ∩ V1 = {0}. It follows then that

U + V = U ⊕ V

and hence

dim(U + V ) = dim(U ⊕ V ) = dimU + dimV1

= m + (k − r) = m + k − r

= dimU + dimV − dim(U ∩ V )

SECTION 7
3. Let x = cos θ.

(a) 2Tm(x)Tn(x) = 2 cos mθ cos nθ

= cos(m + n)θ + cos(m − n)θ
= Tm+n(x) + Tm−n(x)

(b) Tm(Tn(x)) = Tm(cos nθ) = cos(mnθ) = Tmn(x)

5. pn(x) = anxn + q(x) where degree q(x) < n. By Theorem 5.7.1, 〈q, pn〉 = 0.
It follows then that

‖pn‖2 = 〈anxn + q(x), p(x)〉
= an〈xn, pn〉 + 〈q, pn〉
= an〈xn, pn〉

6. (b) Un−1(x) =
1
n

T ′
n(x)

=
1
n

dTn

dθ
/dx

dθ

=
sin nθ

sin θ

7. (a) Un(x) − xUn−1(x) =
sin(n + 1)θ

sin θ
− cos θ sinnθ

sin θ

=
sin nθ cos θ + cos nθ sin θ − cos θ sin nθ

sin θ
= cos nθ

= Tn(x)

(b) Un(x) + Un−2(x) =
sin(n + 1)θ + sin(n − 1)θ

sin θ

=
2 sin nθ cos θ

sin θ
= 2xUn−1(x)

Un(x) = 2xUn−1(x) − Un−2(x)
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8. 〈Un, Um〉 =
∫ 1

−1

Un(x)Um(x)(1 − x2)1/2dx

=
∫ π

0

sin[(n + 1)θ] sin[(m + 1)θ]dθ (x = cos θ)

= 0 if m 6= n

9. (i) n = 0, y = 1, y′ = 0, y′′ = 0
(1 − x2)y′′ − 2xy′ + 0 · 1 · 1 = 0

(ii) n = 1, y = P1(x) = x, y′ = 1, y′′ = 0
(1 − x2) · 0 − 2x · 1 + 1 · 2x = 0

(iii) n = 2, y = P2(x) =
3
2


x2 − 1

3


, y′ = 3x, y′′ = 3

(1 − x2) · 3 − 2x · 3x + 6 · 3
2


x2 − 1

3


 = 0

10. (a) Prove: H ′
n(x) = 2nHn−1(x), n = 0, 1, 2, . . ..

Proof: The proof is by mathematical induction. In the case n = 0

H ′
0(x) = 0 = 2nH−1(x)

Assume
H ′

k(x) = 2kHk−1(x)

for all k ≤ n.
Hn+1(x) = 2xHn(x) − 2nHn−1(x)

Differentiating both sides we get

H ′
n+1(x) = 2Hn + 2xH ′

n − 2nH ′
n−1

= 2Hn + 2x[2nHn−1] − 2n[2(n − 1)Hn−2]
= 2Hn + 2n[2xHn−1 − 2(n − 1)Hn−2]
= 2Hn + 2nHn

= 2(n + 1)Hn

(b) Prove: H ′′
n(x) − 2xH ′

n(x) + 2nHn(x) = 0, n = 0, 1, . . ..
Proof: It follows from part (a) that

H ′
n(x) = 2nHn−1(x)

H ′′
n(x) = 2nH ′

n−1(x) = 4n(n − 1)Hn−2(x)

Therefore

H ′′
n(x) − 2xH ′

n(x) + 2nHn(x)
= 4n(n − 1)Hn−2(x) − 4xnHn−1(x) + 2nHn(x)
= 2n[Hn(x) − 2xHn−1(x) + 2(n − 1)Hn−2(x)]
= 0
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12. If f(x) is a polynomial of degree less than n and P (x) is the Lagrange
interpolating polynomial that agrees with f(x) at x1, . . . , xn, then degree
P (x) ≤ n − 1. If we set

h(x) = P (x) − f(x)

then the degree of h is also ≤ n − 1 and

h(xi) = P (xi) − f(xi) = 0 i = 1, . . . , n

Therefore h must be the zero polynomial and hence

P (x) = f(x)

15. (a) The quadrature formula approximates the integral of f(x) by a sum
which is equal to the exact value of the integral of Lagrange polynomial
that interpolates f at the given points. In the case where f is a polyno-
mial of degree less than n, the Lagrange polynomial will be equal to f ,
so the quadrature formula will yield the exact answer.

(b) If we take the constant function f(x) = 1 and apply the quadrature
formula we get

∫ 1

−1

f(x)dx = A1f(x1) + A2f(x2) + · · ·+ Anf(xn)

∫ 1

−1

1dx = A1 · 1 + A2 · 1 + · · ·+ An · 1

2 = A1 + A2 + · + An

16. (a) If j ≥ 1 then the Legendre polynomial Pj is orthogonal to P0 = 1. Thus
we have

∫ 1

−1

Pj(x)dx =
∫ 1

−1

Pj(x)P0(x)dx = 〈Pj, P0〉 = 0 (j ≥ 1)(4)

The n-point Gauss-Legendre quadrature formula will yield the exact
value of the integral of f(x) whenever f(x) is a polynomial of degree
less than 2n. So in particular for f(x) = Pj(x) we have

∫ 1

−1

Pj(x)dx = Pj(x1)A1+Pj(x2)A2+· · ·+Pj(xn)An (0 ≤ j < 2n)(5)

It follows from (4) and (5) that

Pj(x1)A1 + Pj(x2)A2 + · · ·+ Pj(xn)An = 0 for 1 ≤ j < 2n

(b)

A1 + A2 + · · ·+ An = 2
P1(x1)A1 + P1(x2)A2 + · · ·+ P1(xn)An = 0

...
Pn−1(x1)A1 + Pn−1(x2)A2 + · · ·+ Pn−1(xn)An = 0
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17. (a) If ‖Qj‖ = 1 for each j, then in the recursion relation we will have

γk =
〈Qk, Qk〉

〈Qk−1, Qk−1〉
= 1 (k ≥ 1)

and hence the recursion relation for the orthonormal sequence simplifies
to

αk+1Qk+1(x) = (x − βk+1Qk(x) − αkQk−1(x) (k ≥ 0)

where Q−1 is taken to be the zero polynomial.
(b) For k = 0, . . . , n− 1 we can rewrite the recursion relation in part (a) in

the form

αkQk−1(x) + βk+1Qk(x) + αk+1Qk+1(x) = xQk(x)

Let λ be any root of Qn and let us plug it into each of the n-equations.
Note that the first equation (k = 0) will be

β1Q0(λ) + α1Q1(λ) = λQ0(λ)

since Q−1 is the zero polynomial. For (2 ≤ k ≤ n − 2) intermediate
equations are all of the form

αkQk−1(λ) + βk+1Qk(λ) + αk+1Qk+1(λ) = λQk(λ)

The last equation (k = n − 1) will be

αn−1Qn−2(λ) + βnQn−1(λ) = λQn−1(λ)

since Qn(λ) = 0. We now have a system of n equations in the variable
λ. If we rewrite it in matrix form we get



β1 α1

α1 β2 α2

. . . . . . . . .
αn−2 βn−1 αn−1

αn−1 βn







Q0(λ)
Q1(λ)

...
Qn−2(λ)

Qn−1(λ)




= λ




Q0(λ)
Q1(λ)

...
Qn−2(λ)

Qn−1(λ)




MATLAB EXERCISES
1. (b) By the Cauchy-Schwarz Inequality

|xTy| ≤ ‖x‖‖y‖

Therefore

|t| = |xT y|
‖x‖ ‖y‖

≤ 1

3. (c) From the graph it should be clear that you get a better fit at the bottom
of the atmosphere.
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5. (a) A is the product of two random matrices. One would expect that both
of the random matrices will have full rank, that is, rank 2. Since the row
vectors of A are linear combinations of the row vectors of the second
random matrix, one would also expect that A would have rank 2. If the
rank of A is 2, then the nullity of A should be 5 − 2 = 3.

(b) Since the column vectors of Q form an orthonormal basis for R(A)
and the column vectors of W form an orthonormal basis for N (AT ) =
R(A)⊥, the column vectors of S = (Q W ) form an orthonormal basis
for R5 and hence S is an orthogonal matrix. Each column vector of W
is in N (AT ). thus it follows that

AT W = O

and
W T A = (AT W )T = OT

(c) Since S is an orthogonal matrix, we have

I = SST = (Q W )

 QT

W T


 = QQT + WW T

Thus
QQT = I − WW T

and it follows that

QQT A = A − WW TA = A − WO = A

(d) If b ∈ R(A), then b = Ax for some x ∈ R5. It follows from part (c)
that

QQTb = QQT (Ax) = (QQTA)x = Ax = b

Alternatively, one could also argue that since b ∈ N (AT )⊥ and the
columns of W form an orthonormal basis for N (AT )

W Tb = 0

and hence it follows that

QQTb = (I − WW T )b = b

(e) If q is the projection of c onto R(A) and r = c− q, then

c = q + r

and r is the projection of c onto N (AT ).
(f) Since the projection of a vector onto a subspace is unique, w must

equal r.
(g) To compute the projection matrix U , set

U = Y ∗ Y ′

Since y is already in R(AT ), the projection matrix U should have no
effect on y. Thus Uy = y. The vector s = b− y is the projection of b
onto R(A)⊥ = N (A). Thus s ∈ N (A) and As = 0.
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(h) The vectors s and V b should be equal since they are both projections
of b onto N (A).

CHAPTER TEST A
1. The statement is false. The statement is true for nonorthogonal vectors,

however, if x ⊥ y, then the projection of x onto y and the projection of x
onto x are both equal to 0.

2. The statement is false. If x and y are unit vectors and θ is the angle between
the two vectors, then the condition |xTy| = 1 implies that cos θ = ±1. Thus
y = x or y = −x. So the vectors x and y are linearly dependent.

3. The statement is false. For example, consider the one-dimensional subspaces

U = Span(e1), V = Span(e3), W = Span(e1 + e2)

Since e1 ⊥ e3 and e3 ⊥ (e1 + e2), it follows that U ⊥ V and V ⊥ W .
However e1 is not orthogonal to e1 + e2, so U and W are not orthogonal
subspaces.

4. The statement is false. If y is in the column space of and ATy = 0, then y
is also in N (AT ). But R(A)

⋂
N (AT ) = {0}. So y must be the zero vector.

5. The statement is true. The matrices A and ATA have the same rank. (See
Exercise 13 of Section 2.) Similarly, AT and AAT have the same rank. By
Theorem 3.6.6 the matrices A and AT have the same rank. It follows then
that

rank(ATA) = rank(A) = rank(AT ) = rank(AAT )

6. The statement is false. Although the least squares problem will not have
a unique solution the projection of a vector onto any subspace is always
unique. See Theorem 5.3.1 or Theorem 5.5.8.

7. The statement is true. If A is m × n and N (A) = {0}, then A has rank n
and it follows from Theorem 5.3.2 that the least squares problem will have
a unique solution.

8. The statement is true. In general an n × n matrix Q is orthogonal if and
only if QTQ = I. If Q1 and Q2 are both n × n orthogonal matrices, then

(Q1Q2)T (Q1Q2) = QT
2 QT

1 Q1Q2 = QT
2 IQ2 = QT

2 Q2 = I

Therefore Q1Q2 is an orthogonal matrix.
9. The statement is true. The matrix UT U is a k × k and its (i, j) entry is

uT
i uj. Since u1,u2, . . . ,uk are orthonormal vectors, uT

i uj = 1 if i = j and
it is equal to 0 otherwise.

10. The statement is false. The statement is only true in the case k = n. In the
case k < n if we extend the given set of vectors to an orthonormal basis
{u1,u2, . . . ,un} for Rn and set

V = (uk+1, . . . ,un), W = (U V )
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then W is an orthogonal matrix and

I = WW T = UUT + V V T

So UUT is actually equal to I − V V T . As an example let

U =




1
3

2
3

2
3

1
3

2
3 −2

3




The column vectors u1 and u2 form an orthonormal set and

UUT =




1
3

2
3

2
3

1
3

2
3

−2
3







1
3

2
3

2
3

2
3

1
3 −2

3


 =




5
9

4
9 −2

9
3
9

5
9

2
9

−2
9

2
9

8
9




Thus UUT 6= I. Note that if we set

u3 =




−2
3
2
3

−1
3




then {u1,u2,u3} is an orthonormal basis for R3 and

UUT + u3uT
3 =




5
9

4
9 −2

9
4
9

5
9

2
9

−2
9

2
9

8
9




+




4
9 −4

9
2
9

−4
9

4
9 −2

9
2
9 −2

9
1
9




= I

CHAPTER TEST B

1. (a) p =
xT y
yT y

y =
3
9
y =

(
−

2
3
,
1
3
,
2
3
, 0

)T

(b) x − p =
(

5
3
,
2
3
,
4
3
, 2

)T

(x − p)Tp = −10
9

+
2
9

+
8
9

+ 0 = 0

(c) ‖x‖2 = 1 + 1 + 4 + 4 = 10

‖p‖2+‖x−p‖2 =
(

4
9

+
1
9

+
4
9

+ 0
)

+
(

25
9

+
4
9

+
16
9

+ 4
)

= 1+9 = 10

2. (a) By the Cauchy-Schwarz inequality

| 〈v1,v2〉 | ≤ ‖v1‖‖v2‖

(b) If
| 〈v1,v2〉 | = ‖v1‖‖v2‖

then equality holds in the Cauchy-Schwarz inequality and this can only
happen if the two vectors are linearly dependent.
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3.

‖v1 + v2‖2 = 〈v1 + v2,v1 + v2〉
= 〈v1,v1〉 + 2 〈v1,v2〉 + 〈v2,v2〉
≤ ‖v1‖2 + 2‖v1‖‖v2‖ + ‖v2‖2 (Cauchy − Schwarz)
= (‖v1‖ + ‖v2‖)2

4. (a) IfA has rank 4 then AT must also have rank 4. The matrix AT has 7
columns, so by the Rank-Nullity theorem its rank and nullity must
add up to 7. Since the rank is 4, the nullity must be 3 and hence
dimN (AT ) = 3. The orthogonal complement of N (AT ) is R(A).

(b) If x is in R(A) and ATx = 0 then x is also in N (AT ). Since R(A) and
N (AT ) are orthogonal subspaces their intersection is {0}. Therefore
x = 0 and ‖x‖ = 0.

(c) dimN (AT A) = dimN (A) = 1 by the Rank-Nullity Theorem. Therefore
the normal equations will involve 1 free variables and hence the least
squares problem will have infinitely many solutions.

5. If θ1 is the angle between x and y and θ2 is the angle between Qx and Qy
then

cos θ2 =
(Qx)T Qy
‖Qx‖ ‖Qy‖ =

xT QT Qy
‖x‖ ‖y‖ =

xTy
‖x‖ ‖y‖ = cos θ1

The angles θ1 and θ2 must both be in the interval [0, π]. Since their cosines
are equal, the angles must be equal.

6. (a) If we let X = (x1,x2) then S = R(X) and hence

S⊥ = R(X)⊥ = N (XT )

To find a basis for S⊥ we solve XT x = 0. The matrix

XT =

 1 0 2

0 1 −2




is already in reduced row echelon form with one free variable x3. If we
set x3 = a, then x1 = −2a and x2 = 2a. Thus S⊥ consists of all vectors
of the form (−2a, 2a, a)T and {(−2, 2, 1)T} is a basis for S⊥.

(b) S is the span of two linearly independent vectors and hence S can be
represented geometrically by a plane through the origin in 3-space. S⊥

corresponds to the line through the original that is normal to the plane
representing S.

(c) To find the projection matrix we must find an orthonormal basis for
S⊥. Since dimS⊥ = 1 we need only normalize our single basis vector
to obtain an orthonormal basis. If we set u = 1

3(−2, 2, 1)T then the
projection matrix is

P = uuT =
1
9




−2
2
1





 −2 2 1


 =




4
9

−4
9

−2
9

−4
9

4
9

2
9

−2
9

2
9

1
9



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7. To find the best least squares fit we must find a least squares solution to the
system

c1 − c2 = 1
c1 + c2 = 3

c1 + 2c2 = 3

If A is the coefficient matrix for this system and b is the right hand side,
then the solution c to the least squares problem is the solution to the normal
equations AT Ac = ATb.

AT A =

 1 1 1

−1 1 2







1 −1
1 1
1 2


 =


 3 2

2 6




ATb =

 1 1 1

−1 1 2







1
3
3


 =


 7

8




The augmented matrix for the normal equations is

 3 2 7

2 6 8




The solution to this system is c = (13
7 , 5

7 )T and hence the best linear fit is
f(x) = 13

7 + 5
7x.

8. (a) It follows from Theorem 5.5.3 that

〈x,y〉 = 2 · 3 + (−2) · 1 + 1 · (−4) = 0

(so x and y are orthogonal).
(b) By Parseval’s formula

‖x‖2 = 22 + (−2)2 + 12 = 9

and therefore ‖x‖ = 3.
9. (a) If x is any vector in N (AT ) then x is in R(A)⊥ and hence the projection

of x onto R(A) will be 0, i.e., Px = 0. The column vectors of Q are
all in N (AT ) since Q projects vectors onto N (AT ) and qj = Qej for
1 ≤ j ≤ 7. It follows then that

PQ = (Pq1, Pq2, Pq3, Pq4, Pq5, Pq6, Pq7) = (0,0,0,0,0,0,0) = O

(b) Let {u1,u2,u3,u4} is an orthonormal basis for R(A) and let {u5,u6,u7}
be an orthonormal basis for N (AT ). If we set U1 = (u1,u2,u3,u4)
and U2 = (u5,u6,u7) then P = U1U

T
1 and Q = U2U

T
2 . The matrix

U = (U1, U2) is orthogonal and hence U−1 = UT . It follows then that

I = UUT =

 U1 U2







UT
1

UT
2


 = U1U

T
1 + U2U

T
2 = P + Q
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10. (a) r13 = qT
1 a3 = −1, r23 = qT

2 a3 = 3, p2 = −q1 + 3q2 = (−2, 1,−2, 1)T

a3 − p2 = (−3,−3, 3, 3)T , r33 = ‖a3 − p2‖ = 6

q3 = 1
6
(−3,−3, 3, 3)T = (−1

2
,−1

2
, 1

2
, 1

2
)T

(b)

c = QTb =




1
2

1
2

1
2

1
2

−1
2

1
2 −1

2
1
2

−1
2 −1

2
1
2

1
2







−6
1
1
6




=




1
6
6




To solve the least squares problem we must solve the upper triangular
system Rx = c. The augmented matrix for this system is




2 −2 −1 1
0 4 3 6
0 0 6 6




and the solution x = (7
4
, 3

4
, 1)T is easily obtained using back substitu-

tion.
11. (a) 〈cos x, sinx〉 = 1

π

∫ π

−π
cos x sin x dx = 0

(b) Since cos x and sin x are orthogonal we have by the Pythagorean Law
that

‖ cos x + sin x‖2 = ‖ cos x‖2 + ‖ sinx‖2

=
1
π

∫ π

−π

cos2x dx +
1
π

∫ π

−π

sin2x dx

=
1
π

∫ π

−π

1 dx = 2

Therefore ‖ cos x + sin x‖ =
√

2.

12. (a) 〈u1(x), u2(x)〉 =
∫ 1

−1
1√
2

√
6

2 x dx = 0

〈u1(x), u1(x)〉 =
∫ 1

−1
1
2 dx = 1

〈u2(x), u2(x)〉 =
∫ 1

−1
3
2x2 dx = 1

(b) Let

c1 = 〈h(x), u1(x)〉 =
1√
2

∫ 1

−1

(x1/3 + x2/3) dx =
6

5
√

2

c2 = 〈h(x), u2(x)〉 =
√

6
2

∫ 1

−1

(x1/3 + x2/3)x dx =
3
√

6
7

The best linear approximation to h(x) is

f(x) = c1u1(x) + c2u2(x) =
3
5

+
9
7
x



Chapter
6

SECTION 1
2. If A is triangular then A− aiiI will be a triangular matrix with a zero entry

in the (i, i) position. Since the determinant of a triangular matrix is the
product of its diagonal elements it follows that

det(A − aiiI) = 0

Thus the eigenvalues of A are a11, a22, . . . , ann.
3. A is singular if and only if det(A) = 0. The scalar 0 is an eigenvalue if and

only if
det(A − 0I) = det(A) = 0

Thus A is singular if and only if one of its eigenvalues is 0.
4. If A is a nonsingular matrix and λ is an eigenvalue of A, then there exists a

nonzero vector x such that

Ax = λx

A−1Ax = λA−1x

It follows from Exercise 3 that λ 6= 0. Therefore

A−1x =
1
λ
x (x 6= 0)

and hence 1/λ is an eigenvalue of A−1.

110
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5. The proof is by induction. In the case where m = 1, λ1 = λ is an eigenvalue
of A with eigenvector x. Suppose λk is an eigenvalue of Ak and x is an
eigenvector belonging to λk.

Ak+1x = A(Akx) = A(λkx) = λkAx = λk+1x

Thus λk+1 is an eigenvalue of Ak+1 and x is an eigenvector belonging to
λk+1. It follows by induction that if λ an eigenvalue of A then λm is an
eigenvalue of Am, for m = 1, 2, . . ..

6. If A is idempotent and λ is an eigenvalue of A with eigenvector x, then

Ax = λx

A2x = λAx = λ2x

and
A2x = Ax = λx

Therefore
(λ2 − λ)x = 0

Since x 6= 0 it follows that

λ2 − λ = 0
λ = 0 or λ = 1

7. If λ is an eigenvalue of A, then λk is an eigenvalue of Ak (Exercise 5). If
Ak = O, then all of its eigenvalues are 0. Thus λk = 0 and hence λ = 0.

9. det(A−λI) = det((A−λI)T ) = det(AT −λI). Thus A and AT have the same
characteristic polynomials and consequently must have the same eigenvalues.
The eigenspaces however will not be the same. For example

A =

 1 1

0 1


 and AT =


 1 0

1 1




both have eigenvalues
λ1 = λ2 = 1

The eigenspace of A corresponding to λ = 1 is spanned by (1, 0)T while
the eigenspace of AT is spanned by (0, 1)T . Exercise 27 shows how the
eigenvectors of A and AT are related.

10. det(A − λI) = λ2 − (2 cos θ)λ + 1. The discriminant will be negative unless
θ is a multiple of π. The matrix A has the effect of rotating a real vector x
about the origin by an angle of θ. Thus Ax will be a scalar multiple of x if
and only if θ is a multiple of π.

12. Since tr(A) equals the sum of the eigenvalues the result follows by solving
n∑

i=1

λi =
n∑

i=1

aii

for λj .
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13.
∣∣∣∣
a11 − λ a12

a21 a22 − λ

∣∣∣∣ = λ2 − (a11 + a22)λ + (a11a22 − a21a12)

= λ2 − (tr A)λ + det(A)
14. If x is an eigenvector of A belonging to λ, then any nonzero multiple of

x is also an eigenvector of A belonging to λ. By Exercise 5 we know that
Amx = λmx, so Amx must be an eigenvector of A belonging to λ.
Alternatively we could have proved the result by noting that

Amx = λmx 6= 0

and
A(Amx) = Am+1x = Am(Ax) = Am(λx) = λ(Amx)

15. If A − λ0I has rank k then N (A − λ0I) will have dimension n − k.
16. The subspace spanned by x and Ax will have dimension 1 if and only if x

and Ax are linearly dependent and x 6= 0. If x 6= 0 then the vectors x and
Ax will be linearly dependent if and only if Ax = λx for some scalar λ.

17. (a) If α = a + bi and β = c + di, then

α + β = (a + c) + (b + d)i = (a + c) − (b + d)i

and
α + β = (a − bi) + (c − di) = (a + c) − (b + d)i

Therefore α + β = α + β.

Next we show that the conjugate of the product of two numbers is the
product of the conjugates.

αβ = (ac − bd) + (ad + bc)i = (ac − bd) − (ad + bc)i

αβ = (a − bi)(c − di) = (ac − bd) − (ad + bc)i
Therefore αβ = αβ.

(b) If A ∈ Rm×n and B ∈ Rn×r, then the (i, j) entry of AB is given by

ai1b1j + ai2b2j + · · ·+ ainbnj = ai1b1j + ai2b2j + · · ·+ ainbnj

The expression on the right is the (i, j) entry of A B. Therefore

AB = A B

18. (a) If λ is an eigenvalue of an orthogonal matrix Q and x is a unit eigen-
vector belonging to λ then

|λ| = |λ| ‖x‖ = ‖λx‖ = ‖Qx‖ = ‖x‖ = 1

(b) Since the eigenvalues of Q all have absolute value equal to 1, it follows
that

| det(Q)| = |λ1λ2 · · ·λn| = 1
19. If Q is an orthogonal matrix with eigenvalue λ = 1 and x is an eigenvector

belonging to λ = 1, then Qx = x and since QT = Q−1 we have

QTx = QT Qx = Ix = x

Therefore x is an eigenvector of QT belonging to the eigenvector λ = 1.
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20. (a) Each eigenvalue has absolute value 1 and the product of the eigenvalues
is equal to 1. So if the eigenvalues are real and are ordered so that
λ1 ≥ λ2 ≥ λ3, then the only possible triples of eigenvalues are: (1, 1, 1)
and (1,−1,−1).

(b) The complex eigenvalues must be of the form λ2 = cos θ + i sin θ and
λ3 = cos θ − i sin θ. It follows then that

λ1λ2λ3 = λ1(cos θ + i sin θ)(cos θ − i sin θ) = λ1(cos2 θ + sin2 θ) = λ1

Therefore
λ1 = λ1λ2λ3 = det(A) = 1

(c) If the eigenvalues of Q are all real then by part (a) at least one of the
eigenvalues must equal 1. If the eigenvalues are not all real then Q must
have one pair of complex conjugate eigenvalues and one real eigenvalue.
By part (b) the real eigenvalue must be equal to 1. Therefore if Q is
a 3 × 3 orthogonal matrix with det(Q) = 1, then λ = 1 must be an
eigenvalue.

21. If x = c1x1 + c2x2 + · · ·+ crxr is an element of S, then

Ax = (c1λ1)x1 + (c2λ2)x2 + · · ·+ (crλr)xr

Thus Ax is also an element of S.
22. Since x 6= 0 and S is nonsingular it follows that Sx 6= 0. If B = S−1AS,

then AS = SB and it follows that

A(Sx) = (AS)x = SBx = S(λx) = λ(Sx)

Therefore Sx is an eigenvector of A belonging to λ.
23. If x is an eigenvector of A belonging to the eigenvalue λ and x is also an

eigenvector of B corresponding to the eigenvalue µ, then

(αA + βB)x = αAx + βBx = αλx + βµx = (αλ + βµ)x

Therefore x is an eigenvector of αA + βB belonging to αλ + βµ.
24. If λ 6= 0 and x is an eigenvector belonging to λ, then

Ax = λx

x =
1
λ

Ax

Since Ax is in R(A) it follows that 1
λ

Ax is in R(A).
25. If

A = λ1u1uT
1 + λ2u2uT

2 + · · ·+ λnunuT
n

then for i = 1, . . . , n

Aui = λ1u1uT
1 ui + λ2u2uT

2 ui + · · ·+ λnunuT
nui

Since uT
j ui = 0 unless j = i, it follows that

Aui = λiuiuT
i ui = λiui
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and hence λi is an eigenvalue of A with eigenvector ui. The matrix A is sym-
metric since each ciuiuT

i is symmetric and any sum of symmetric matrices
is symmetric.

26. If the columns of A each add up to a fixed constant δ then the row vectors of
A− δI all add up to (0, 0, . . . , 0). Thus the row vectors of A− δI are linearly
dependent and hence A − δI is singular. Therefore δ is an eigenvalue of A.

27. Since y is an eigenvector of AT belonging to λ2 it follows that

xTATy = λ2xTy

The expression xTATy can also be written in the form (Ax)Ty. Since x is
an eigenvector of A belonging to λ1, it follows that

xTAT y = (Ax)Ty = λ1xTy

Therefore
(λ1 − λ2)xTy = 0

and since λ1 6= λ2, the vectors x and y must be orthogonal.
28. (a) If λ is a nonzero eigenvalue of AB with eigenvector x, then let y = Bx.

Since
Ay = ABx = λx 6= 0

it follows that y 6= 0 and

BAy = BA(Bx) = B(ABx) = Bλx = λy

Thus λ is also an eigenvalue of BA with eigenvector y.
(b) If λ = 0 is an eigenvalue of AB, then AB must be singular. Since

det(BA) = det(B) det(A) = det(A) det(B) = det(AB) = 0

it follows that BA is also singular. Therefore λ = 0 is an eigenvalue of
BA.

29. If AB − BA = I, then BA = AB − I. If the eigenvalues of AB are
λ1, λ2, . . . , λn, then it follows from Exercise 8 that the eigenvalues of BA
are λ1 − 1, λ2 − 1, . . . , λn − 1. This contradicts the result proved in Exer-
cise 28 that AB and BA have the same eigenvalues.

30. (a) If λi is a root of p(λ), then

λn
i = an−1λ

n−1
i + · · ·+ a1λi + a0

Thus if x = (λn−1
i , λn−2

i , . . . , λi, 1)T , then

Cx = (λn
i , λn−1

i , . . . , λ2
i , λi)T = λix

and hence λi is an eigenvalue of C with eigenvector x.
(b) If λ1, . . . , λn are the roots of p(λ), then

p(λ) = (−1)n(λ − λ1) · · · (λ − λn)

If λ1, . . . , λn are all distinct then by part (a) they are the eigenvalues of
C. Since the characteristic polynomial of C has lead coefficient (−1)n

and roots λ1, . . . , λn, it must equal p(λ).
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31. Let

Dm(λ) =




am am−1 · · · a1 a0

1 −λ · · · 0 0
...
0 0 · · · 1 −λ




It can be proved by induction on m that

det(Dm(λ)) = (−1)m(amλm + am−1λ
m−1 + · · ·+ a1λ + a0)

If det(C − λI) is expanded by cofactors along the first column one obtains

det(C − λI) = (an−1 − λ)(−λ)n−1 − det(Dn−2)
= (−1)n(λn − an−1λ

n−1) − (−1)n−2(an−2λ
n−2 + · · ·+ a1λ + a0)

= (−1)n[(λn − an−1λ
n−1) − (an−2λ

n−2 + · · ·+ a1λ + a0)]
= (−1)n[λn − an−1λ

n−1 − an−2λ
n−2 − · · · − a1λ − a0]

= p(λ)

SECTION 2
3. (a) If

Y(t) = c1e
λ1tx1 + c2e

λ2tx2 + · · ·+ cneλntxn

then
Y0 = Y(0) = c1x2 + c2x2 + · · ·+ cnxn

(b) It follows from part (a) that

Y0 = Xc

If x1, . . . ,xn are linearly independent then X is nonsingular and we can
solve for c

c = X−1Y0

7. It follows from the initial condition that

x′
1(0) = a1σ = 2

x′
2(0) = a2σ = 2

and hence
a1 = a2 = 2/σ

Substituting for x1 and x2 in the system

x′′
1 = −2x1 + x2

x′′
2 = x1 − 2x2

yields

−a1σ
2 sin σt = −2a1 sin σt + a2 sin σt

−a2σ
2 sin σt = a1 sin σt − 2a2 sin σt
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Replacing a1 and a2 by 2/σ we get

σ2 = 1

Using either σ = −1, a1 = a2 = −2 or σ = 1, a1 = a2 = 2 we obtain the
solution

x1(t) = 2 sin t

x2(t) = 2 sin t

9. m1y
′′
1 = k1y1 − k2(y2 − y1) − m1g

m2y
′′
2 = k2(y2 − y1) − m2g

11. If
y(n) = a0y + a1y

′ + · · ·+ an−1y
(n−1)

and we set

y1 = y, y2 = y′1 = y′′, y3 = y′2 = y′′′, . . . , yn = y′n−1 = yn

then the nth order equation can be written as a system of first order equa-
tions of the form Y′ = AY where

A =




0 y2 0 · · · 0
0 0 y3 · · · 0
...
0 0 0 · · · yn

a0 a1 a2 · · · an−1




SECTION 3
1. The factorization XDX−1 is not unique. However the diagonal elements of

D must be eigenvalues of A and if λi is the ith diagonal element of D, then
xi must be an eigenvector belonging to λi

(a) det(A−λI) = λ2−1 and hence the eigenvalues are λ1 = 1 and λ2 = −1.
x1 = (1, 1)T and x2 = (−1, 1)T are eigenvectors belonging to λ1 and
λ2, respectively. Setting

X =

 1 −1

1 1


 and D =


 1 0

0 −1




we have

A = XDX−1 =

 1 −1

1 1





 1 0

0 −1





 1/2 1/2

−1/2 1/2




(b) The eigenvalues are λ1 = 2, λ2 = 1. If we take x1 = (−2, 1)T and
x2 = (−3, 2)T , then

A = XDX−1 =

 −2 −3

1 2





 2 0

0 1





 −2 −3

1 2



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(c) λ1 = 0, λ2 = −2. If we take x1 = (4, 1)T and x2 = (2, 1)T , then

A = XDX−1 =

 4 2

1 1





 0 0

0 −2





 1/2 −1

−1/2 2




(d) The eigenvalues are the diagonal entries of A. The eigenvectors corre-
sponding to λ1 = 2 are all multiples of (1, 0, 0)T . The eigenvectors
belonging to λ2 = 1 are all multiples of (2, −1, 0) and the eigenvectors
corresponding to λ3 = −1 are multiples (1, −3, 3)T .

A = XDX−1 =




1 2 1
0 −1 −3
0 0 3







2 0 0
0 1 0
0 0 −1







1 2 5
3

0 −1 −1
0 0 1

3




(e) λ1 = 1, λ2 = 2, λ3 = −2
x1 = (3, 1, 2)T , x2 = (0, 3, 1)T , x3 = (0, −1, 1)T

A = XDX−1 =




3 0 0
1 3 −1
2 1 1







1 0 0
0 2 0
0 0 −2







1
3 0 0

−1
4

1
4

1
4

− 5
12

−1
4

3
4




(f) λ1 = 2, λ2 = λ3 = 0, x1 = (1, 2, 3)T , x2 = (1, 0, 1)T , x3 = (−2, 1, 0)T

A = XDX−1 =




1 1 −2
2 0 1
3 1 0







2 0 0
0 0 0
0 0 0







1
2

1 −1
2

−3
2

−3 5
2

−1 −1 1




2. If A = XDX−1, then A6 = XD6X−1.

(a) D6 =

 1 0

0 −1




6

= I

A6 = XD6X−1 = XX−1 = I

(b) A6 =

 −2 −3

1 2





 2 0

0 1




6 
 −2 −3

1 2


 =


 253 378

−126 −190




(c) A6 =

 4 2

1 1





 0 0

0 −2




6 
 1/2 −1

−1/2 2


 =


 −64 256

−32 128




(d) A6 =




1 2 1
0 −1 −3
0 0 3







2 0 0
0 1 0
0 0 −1




6 


1 2 5/3
0 −1 −1
0 0 1/3




=




64 126 105
0 1 0
0 0 1




(e) A6 =




3 0 0
1 3 −1
2 1 1







1 0 0
0 2 0
0 0 −2




6 


1
3 0 0

−1
4

1
4

1
4

− 5
12 −1

4
3
4



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=




1 0 0
−21 64 0
−42 0 64




(f) A6 =




1 1 −2
2 0 1
3 1 0







2 0 0
0 0 0
0 0 0




6 


1
2 1 −1

2

−3
2 −3 5

2

−1 −1 1




=




32 64 −32
64 128 −64
96 192 −96




3. If A = XDX−1 is nonsingular, then A−1 = XD−1X−1

(a) A−1 = XD−1X−1 = XDX−1 = A

(b) A−1 =




−2 −3
1 2







1
2

0
0 1







−2 −3
1 2


 =




−1 −3
1 5

2




(d) A−1 =




1 2 1

0 −1 −3

0 0 3







2 0 0

0 1 0

0 0 −1




−1 


1 2 5
3

0 −1 −1

0 0 1
3




=




1
2

−1 −3
2

0 1 2

0 0 −1




(e) A−1 =




3 0 0

1 3 −1

2 1 1







1 0 0

0 2 0

0 0 −2




−1 


1
3 0 0

−1
4

1
4

1
4

− 5
12

−1
4

3
4




=




1 0 0

−1
4

1
4

3
4

3
4

1
4

−3
4




4. (a) The eigenvalues of A are λ1 = 1 and λ2 = 0

A = XDX−1

Since D2 = D it follows that

A2 = XD2X−1 = XDX−1 = A

(b) A =




1 1 −1
0 1 −1
0 0 1







9 0 0
0 4 0
0 0 1







1 −1 0
0 1 1
0 0 1






Section 3 119

B = XD1/2X−1 =




1 1 −1
0 1 −1
0 0 1







3 0 0
0 2 0
0 0 1







1 −1 0
0 1 1
0 0 1




=




3 −1 1
0 2 1
0 0 1




5. If X diagonalizes A, then
X−1AX = D

where D is a diagonal matrix. It follows that

D = DT = XTAT (X−1)T = Y −1AT Y

Therefore Y diagonalizes AT .
6. If A = XDX−1 where D is a diagonal matrix whose diagonal elements are

all either 1 or −1, then D−1 = D and

A−1 = XD−1X−1 = XDX−1 = A

7. If x is an eigenvector belonging to the eigenvalue a, then



0 1 0
0 0 1
0 0 b − a







x1

x2

x3


 =




0
0
0




and it follows that
x2 = x3 = 0

Thus the eigenspace corresponding to λ1 = λ2 = a has dimension 1 and is
spanned by (1, 0, 0)T . The matrix is defective since a is a double eigenvalue
and its eigenspace only has dimension 1.

8. (a) The characteristic polynomial of the matrix factors as follows.

p(λ) = λ(2 − λ)(α − λ)

Thus the only way that the matrix can have a multiple eigenvalue is
if α = 0 or α = 2. In the case α = 0, we have that λ = 0 is an
eigenvalue of multiplicity 2 and the corresponding eigenspace is spanned
by the vectors x1 = (−1, 1, 0)T and x2 = e3. Since λ = 0 has two
linearly independent eigenvectors, the matrix is not defective. Similarly
in the case α = 2 the matrix will not be defective since the eigenvalue
λ = 2 possesses two linearly independent eigenvectors x1 = (1, 1, 0)T

and x2 = e3.
9. If A − λI has rank 1, then

dimN (A − λI) = 4 − 1 = 3

Since λ has multiplicity 3 the matrix is not defective.
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10. (a) The proof is by induction. In the case m = 1,

Ax =
n∑

i=1

αiAxi =
n∑

i=1

αiλixi

If

Akx =
n∑

i=1

αiλ
k
i xi

then

Ak+1x = A(Akx) = A
( n∑

i=1

αiλ
k
i xi

)
=

n∑

i=1

αiλ
k
i Axi =

n∑

i=1

αiλ
k+1
i xi

(b) If λ1 = 1, then

Amx = α1x1 +
n∑

i=2

αiλ
m
i xi

Since 0 < λi < 1 for i = 2, . . . , n, it follows that λm
i → 0 as m → ∞.

Hence
lim

m→∞
Amx = α1x1

11. If A is an n × n matrix and λ is an eigenvalue of multiplicity n then A is
diagonalizable if and only if

dimN (A − λI) = n

or equivalently
rank(A − λI) = 0

The only way the rank can be 0 is if

A − λI = O

A = λI

12. If A is nilpotent, then 0 is an eigenvalue of multiplicity n. It follows from
Exercise 11 that A is diagonalizable if and only if A = O.

13. Let A be a diagonalizable n × n matrix. Let λ1, λ2, . . . , λk be the nonzero
eigenvalues of A. The remaining eigenvalues are all 0.

λk+1 = λk+2 = · · · = λn = 0

If xi is an eigenvector belonging to λi, then

Axi = λixi i = 1, . . . , k
Axi = 0 i = k + 1, . . . , n

Since A is diagonalizable we can choose eigenvectors x1, . . . ,xn which form
a basis for Rn. Given any vector x ∈ Rn we can write

x = c1x1 + c2x2 + · · ·+ cnxn

It follows that

Ax = c1λ1x1 + c2λ2x2 + · · ·+ ckλkxk
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Thus x1, . . . ,xk span the column space of A and since they are linearly
independent they form a basis for the column space.

14. The matrix

 0 1

0 0


 has rank 1 even though all of its eigenvalues are 0.

15. (a) For i = 1, . . . , k

bi = Bei = X−1AXei = X−1Axi = λX−1xi = λei

Thus the first k columns of B will have λ’s on the diagonal and 0’s in
the off diagonal positions.

(b) Clearly λ is an eigenvalue of B whose multiplicity is at least k. Since A
and B are similar they have the same characteristic polynomial. Thus
λ is an eigenvalue of A with multiplicity at least k.

16. (a) If x and y are nonzero vectors in Rn and A = xyT , then A has rank 1.
Thus

dimN (A) = n − 1

It follows from Exercise 15 that λ = 0 is an eigenvalue with multiplicity
greater than or equal to n − 1.

(b) By part (a)
λ1 = λ2 = · · · = λn−1 = 0

The sum of the eigenvalues is the trace of A which equals xTy. Thus

λn =
n∑

i=1

λi = tr A = xTy = yTx

Furthermore
Ax = xyT x = λnx

so x is an eigenvector belonging to λn.
(c) Since dim N (A) = n−1, it follows that λ = 0 has n−1 linearly indepen-

dent eigenvectors x1,x2, . . . ,xn−1. If λn 6= 0 and xn is an eigenvector
belonging to λn, then xn will be independent of x1, . . . ,xn−1 and hence
A will have n linearly independent eigenvectors.

17. If A is diagonalizable, then

A = XDX−1

where D is a diagonal matrix. If B is similar to A, then there exists a
nonsingular matrix S such that B = S−1AS. It follows that

B = S−1(XDX−1)S
= (S−1X)D(S−1X)−1

Therefore B is diagonalizable with diagonalizing matrix S−1X.
18. If A = XD1X

−1 and B = XD2X
−1, where D1 and D2 are diagonal matri-

ces, then

AB = (XD1X
−1)(XD2X

−1)
= XD1D2X

−1
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= XD2D1X
−1

= (XD2X
−1)(XD1X

−1)
= BA

19. If rj is an eigenvector belonging λj = tjj then we claim that

rj+1,j = rj+2,j = · · ·+ = rnj = 0

The eigenvector rj is a nontrivial solution to (T − tjjI)x = 0. The aug-
mented matrix for this system is (T − tjjI |0). The equations corresponding
to the last n− j rows of the augmented matrix do not involve the variables
x1, x2, . . . , xj. These last n − j rows form a homogeneous system that is in
strict triangular form with respect to the unknowns xj+1, xj+2, . . . , xn. The
solution to this strictly triangular system is

xj+1 = xj+2 = · · · = xn = 0

Thus the last n − j entries of the eigenvector rj are all equal to 0. If we set
R = (r1, r2, . . . , rn) then R is upper triangular and R diagonalizes T .

23. If A is stochastic then the entries of each of its column vectors will all add
up to 1, so the entries of each of the row vectors of AT will all add up to 1
and consequently AT e = e. Therefore λ = 1 is an eigenvalue of AT . Since A
and AT have the same eigenvalues, it follows that λ = 1 is an eigenvalue of
A.

24. Since the rows of a doubly stochastic matrix A all add up to 1 it follows that
e is an eigenvector of A belonging to the eigenvalue λ = 1. If λ = 1 is the
dominant eigenvalue then for any starting probability vector x0, the Markov
chain will converge to a steady-state vector x = ce. Since the steady-state
vector must be a probability vector we have

1 = x1 + x2 + · · ·+ xn = c + c + · · ·+ c = nc

and hence c = 1
n .

25. Let

wk = Mxk and αk =
eT xk

n

It follows from equation (5) in the textbook that

xk+1 = Axk = pMxk +
1 − p

n
eeT xk = pwk + (1 − p)αke

26. (a) Since A2 = O, it follows that

eA = I + A =

 2 1

−1 0




(c) Since

Ak =




1 0 −k
0 1 0
0 0 1


 k = 1, 2, . . .
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it follows that

eA =




e 0 1 − e
0 e 0
0 0 e




27. (b)




2e − 1
e 2e − 2

e

−e + 1
e −e + 2

e




28. (d) The matrix A is defective, so eAt must be computed using the definition
of the matrix exponential. Since

A2 =




1 0 1
0 0 0

−1 0 −1


 and A3 = O

it follows that

eAt = I + tA +
t2

2
A2

=




1 + t + 1
2
t2 t t + 1

2
t2

t 1 t
−t − 1

2
t2 −t 1 − t − 1

2
t2




The solution to the initial value problem is

Y = eAtY0 =




1 + t
1

−1 − t




29. If λ is an eigenvalue of A and x is an eigenvector belonging to λ then

eAx =

I + A +

1
2!

A2 +
1
3!

A3 + · · ·

x

= x + Ax +
1
2!

A2x +
1
3!

A3x + · · ·

= x + λx +
1
2!

λ2x +
1
3!

λ3x + · · ·

=

1 + λ +

1
2!

λ2 +
1
3!

λ3 + · · ·

x

= eλx

30. If A is diagonalizable with linearly independent eigenvectors x1, . . . ,xn then,
by Exercise 29, x1, . . . ,xn are eigenvectors of eA. Furthermore, if x1, . . . ,xk

are eigenvectors corresponding to the eigenvalue λ of A and the eigenvalue
eλ of eA, then these eigenvalues must have multiplicity at least k (see Ex-
ercise 15). Thus if λ1, . . . , λn are the eigenvalues of A, then eλ1 , . . . , eλn are
the eigenvalues of eA. Since the eigenvalues of eA are all nonzero, eA is
nonsingular.

31. (a) Let A be a diagonalizable matrix with characteristic polynomial

p(λ) = a1λ
n + a2λ

n−1 + · · ·+ anλ + an+1
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and let D be a diagonal matrix whose diagonal entries λ1, . . . , λn are
the eigenvalues of A. The matrix

p(D) = a1D
n + a2D

n−1 + · · ·+ anD + an+1I

is diagonal since it is a sum of diagonal matrices. Furthermore the jth
diagonal entry of p(D) is

a1λ
n
j + a2λ

n−1
j + · · ·+ anλj + an+1 = p(λj) = 0

Therefore p(D) = O.
(b) If A = XDX−1 , then

p(A) = a1A
n + a2A

n−1 + · · ·+ anA + an+1I

= a1XDnX−1 + a2XDn−1X−1 + · · ·+ anXDX−1 + an+1XIX−1

= X(a1D
n + a2D

n−1 + · · ·+ anD + an+1)X−1

= Xp(D)X−1

= O

(c) In part (b) we showed that

p(A) = a1A
n + a2A

n−1 + · · ·+ anA + an+1I = O

If an+1 6= 0, then we can solve for I.

I = c1A
n + c2A

n−1 + · · ·+ cnA

where cj = − aj

an+1
for j = 1, . . . , n. Thus if we set

q(A) = c1A
n−1 + c2A

n−2 + · · ·+ cn−1A + cnI

then
I = Aq(A)

and it follows that A is nonsingular and

A−1 = q(A)

SECTION 4

2. (a) zH
2 z1 =


 −i√

2
− 1√

2







1 + i
2

1 − i
2




= 0

zH
1 z1 =


1 − i

2
1 + i

2







1 + i
2

1 − i
2




= 1
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zH
2 z2 =


 −i√

2
− 1√

2







i√
2

− 1√
2


 = 1

5. There will not be a unique unitary diagonalizing matrix for a given Hermitian
matrix A, however, the column vectors of any unitary diagonalizing matrix
must be unit eigenvectors of A.

(a) λ1 = 3 has a unit eigenvector

 1√

2
,

1√
2




T

λ2 = 1 has a unit eigenvector

 1√

2
, − 1√

2




T

.

Q =
1√
2


 1 1

1 −1




(b) λ1 = 6 has a unit eigenvector

 2√

14
,

3 − i√
14




T

λ2 = 1 has a unit eigenvector

 −5√

35
,

3 − i√
25




T

Q =




2√
14

− 5√
35

3 − i√
14

3 − i√
35




(c) λ1 = 3 has a unit eigenvector

− 1√

2
,

i√
2
, 0




T

λ2 = 2 has a unit eigenvector (0, 0, 1)T

λ3 = 1 has a unit eigenvector

 1√

2
,

i√
2
, 0




T

Q =
1√
2




−1 0 1
i 0 i

0
√

2 0




(d) λ1 = 5 has a unit eigenvector

0,

1√
2
, −

1√
2




T

λ2 = 3 has a unit eigenvector

 2√

6
,

1√
6
,

1√
6




T

λ3 = 0 has a unit eigenvector

− 1√

3
,

1√
3
,

1√
3




T

Q =
1√
6




0 2 −
√

2
√

3 1
√

2

−
√

3 1
√

2



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(e) The eigenvalue λ1 = −1 has unit eigenvector 1√
2
(−1, 0, 1)T .

The eigenvalues λ2 = λ3 = 1 have unit eigenvectors 1√
2
(1, 0, 1)T and

(0, 1, 0)T . The three vectors form an orthonormal set. Thus

Q =




− 1√
2

1√
2

0

0 0 1

1√
2

1√
2

0




is an orthogonal diagonalizing matrix.

(f) λ1 = 3 has a unit eigenvector q1 =

 1√

3
,

1√
3
,

1√
3




T

.

λ2 = λ3 = 0. The eigenspace corresponding to λ = 0 has dimension 2.
It consists of all vectors x such that

x1 + x2 + x3 = 0

In this case we must choose a basis for the eigenspace consisting of
orthogonal unit vectors. If we take q2 = 1√

2
(−1, 0, 1)T and q3 =

1√
6
(−1, 2, −1)T then

Q =
1√
6




√
2 −

√
3 −1

√
2 0 2

√
2

√
3 −1




(g) λ1 = 6 has unit eigenvector 1√
6
(−2, −1, 1)T , λ2 = λ3 = 0. The vectors

x1 = (1, 0, 2)T and x2 = (−1, 2, 0)T form a basis for the eigenspace
corresponding to λ = 0. The Gram–Schmidt process can be used to
construct an orthonormal basis.

r11 = ‖x1‖ =
√

5

q1 =
1√
5
x1 =

1√
5
(1, 0, 2)T

p1 = (xT
2 q1)q1 = − 1√

5
q1 = −1

5
(1, 0, 2)T

x2 − p1 =

−4

5
, 2,

2
5




T

r22 = ‖x2 − p1‖ =
2
√

30
5

q2 =
1√
30

(−2, 5, 1)T
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Thus

Q =




1√
5

− 2√
30

− 2√
6

0 5√
30

− 1√
6

2√
5

1√
30

1√
6




6. If A is Hermitian, then AH = A. Comparing the diagonal entries of AH and
A we see that

aii = aii for i = 1, . . . , n

Thus if A is Hermitian, then its diagonal entries must be real.
7. (a)

(AH )H =

A

T



T

=

A

T



T

= A

(b)

(αA+βC)H = αA + βC
T

= (αA+β C)T = α A
T

+β C
T

= αAH +βCH

(c) In general
AB = A B

(See Exercise 17 of Section 1.) Using this we have

(AB)H = (AB)T = (A B)T = B
T
A

T
= BHAH

8. (i) 〈z, z〉 = zHz = Σ|zi|2 ≥ 0 with equality if and only if z = 0

(ii) 〈w, z〉 = zHw = zTw = wTz = wHz = 〈z,w〉

(iii) 〈αz + βw,u〉 = uH (αz + βw)
= αuHz + βuHw
= α〈z,u〉 + β〈w,u〉

9.

〈z, αx + βy〉 = 〈αx + βy, z〉
= α 〈x, z〉 + β 〈y, z〉
= α 〈x, z〉 + β 〈y, z〉
= α 〈z,x〉 + β 〈z,y〉

10. For j = 1, . . . , n

〈z,uj〉 = 〈a1u1 + · · ·+ anun,uj〉 = a1 〈u1,uj〉 + · · ·+ an 〈un,uj〉 = aj

Using the result from Exercise 9 we have

〈z,w〉 = 〈z, b1u1 + · · ·+ bnun〉
= b1 〈z,u1〉 + · · ·+ bn 〈z,un〉
= b1 a1 + · · ·+ bn an
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11. The matrix A can be factored into a product A = QDQH where

Q =
1√
2




√
2 0 0
0 i −i
0 1 1


 and D =




4 0 0
0 2 0
0 0 0




Let

E =




2 0 0
0

√
2 0

0 0 0




Note that EHE = D. If we set

B = EQH =




2 0 0
0 −i 1
0 0 0




then
BHB = (EQH)H (EQH) = QEHEQH = QDQH = A

12. (a) UHU = I = UUH

(c) If x is an eigenvector belonging to λ then

‖x‖ = ‖Ux‖ = ‖λx‖ = |λ| ‖x‖

Therefore |λ| must equal 1.
14. Let U be a matrix that is both unitary and Hermitian. If λ is an eigenvalue

of U and z is an eigenvector belonging to λ, then

U2z = UHUz = Iz = z

and
U2z = U (Uz) = U (λz) = λ(Uz) = λ2z

Therefore

z = λ2z
(1 − λ2)z = 0

Since z 6= 0 it follows that λ2 = 1.
15. (a) A and T are similar and hence have the same eigenvalues. Since T is

triangular, its eigenvalues are t11 and t22.
(b) It follows from the Schur decomposition of A that

AU = UT

where U is unitary. Comparing the first columns of each side of this
equation we see that

Au1 = Ut1 = t11u1

Hence u1 is an eigenvector belonging to t11.
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(c) Comparing the second column of AU = UT , we see that

Au2 = Ut2

= t12u1 + t22u2

6= t22u2

since t12u1 6= 0.

16. If A has Schur decomposition UTUH and the diagonal entries of T are all
distinct then by Exercise 19 in Section 3 there is an upper triangular matrix
R that diagonalizes T . Thus we can factor T into a product RDR−1 where
D is a diagonal matrix. It follows that

A = UTUH = U (RDR−1)UH = (UR)D(R−1UH)

and hence the matrix X = UR diagonalizes A.
17. MH = (A − iB)T = AT − iBT

−M = −A − iB
Therefore MH = −M if and only if AT = −A and BT = B.

18. If A is skew Hermitian, then AH = −A. Let λ be any eigenvalue of A and
let z be a unit eigenvector belonging to λ. It follows that

zHAz = λzHz = λ‖z‖2 = λ

and hence
λ = λH = (zHAz)H = zHAHz = −zHAz = −λ

This implies that λ is purely imaginary.

19. If A is normal then there exists a unitary matrix U that diagonalizes A. If D
is the diagonal matrix whose diagonal entries are the eigenvalues of A then
A = UDUH . The column vectors of U are orthonormal eigenvectors of A.
(a) Since AH = (UDUH )H = UDHUH and the matrix DH is diagonal, we

have that U diagonalizes AH . Therefore AH has a complete orthonormal
set of eigenvectors and hence it is a normal matrix.

(b) I + A = I + UDUH = UIUH + +UDUH = +U (I + D)UH .
The matrix I + D is diagonal, so U diagonalizes I + A. Therefore I + A
has a complete orthonormal set of eigenvectors and hence it is a normal
matrix.

(c) A2 = UD2UH .
The matrix D2 is diagonal, so U diagonalizes A2. Therefore A2 has
a complete orthonormal set of eigenvectors and hence it is a normal
matrix.

20. B = SAS−1 =

 a11

√
a12a21√

a12a21 a22




Since B is symmetric it has real eigenvalues and an orthonormal set of
eigenvectors. The matrix A is similar to B, so it has the same eigenvalues.
Indeed, A is similar to the diagonal matrix D whose diagonal entries are the
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eigenvalues of B. Therefore A is diagonalizable and hence it has two linearly
independent eigenvectors.

21. (a) A−1 =




1 1 − c −1 − c
1 2 1
0 1 1




A−1CA =




0 1 0
1 c + 1 1
0 1 −1




(b) Let B = A−1CA. Since B and C are similar they have the same eigen-
values. The eigenvalues of C are the roots of p(x). Thus the roots of
p(x) are the eigenvalues of B. We saw in part (a) that B is symmetric.
Thus all of the eigenvalues of B are real.

22. If A is Hermitian, then there is a unitary U that diagonalizes A. Thus

A = UDUH

= (u1,u2, . . . ,un)




λ1

λ2

. . .
λn







uH
1

uH
2

...

uH
n




= (λ1u1, λ2u2, . . . , λnun)




uH
1

uH
2

...

uH
n




= λ1u1uH
1 + λ2u2uH

2 + · · ·+ λnunuH
n

24. (a) Since the eigenvectors u1, . . . ,un form an orthonormal basis for Cn, the
coordinates of x with respect to this basis are ci = uH

i xi for i = 1, . . . , n.
It follows then that

x = c1u1 + c2u2 + · · ·+ cnun

Ax = c1Au1 + c2Au2 + · · ·+ cnAun

= λ1c1u1 + λ2c2u2 + · · ·+ λncnun

xHAx = λ1c1xHu1 + λ2c2xHu2 + · · ·+ λncnxHun

= λ1c1c̄1 + λ2c2c̄2 + · · ·+ λncnc̄n

= λ1|c1|2 + λ2|c2|2 + · · ·+ λn|cn|2
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By Parseval’s formula

xHx = ‖x‖2 = ‖c‖2

Thus

ρ(x) =
xHAx
xHx

=
λ1|c1|2 + λ2|c2|2 + · · ·+ λn|cn|2

‖c‖2

(b) It follows from part (a) that

λmin

n∑

i=1

|ci|2

‖c‖2
≤ ρ(x) ≤

λmax

n∑

i=1

|ci|2

‖c‖2

λmin ≤ ρ(x) ≤ λmax

SECTION 5
1. If A has singular value decomposition UΣV T , then AT has singular value

decomposition V ΣT UT . The matrices Σ and ΣT will have the same nonzero
diagonal elements. Thus A and AT have the same nonzero singular values.

3. If A is a matrix with singular value decomposition UΣV T , then the rank of
A is the number of nonzero singular values it possesses, the 2-norm is equal
to its largest singular value, and the closest matrix of rank 1 is σ1u1vT

1 .
(a) The rank of A is 1 and ‖A‖2 =

√
10. The closest matrix of rank 1 is A

itself.
(c) The rank of A is 2 and ‖A‖2 = 4. The closest matrix of rank 1 is given

by

4u1v1 =




2 2
2 2
0 0
0 0




(d) The rank of A is 3 and ‖A‖2 = 3. The closest matrix of rank 1 is given
by

3u1v1 =




0 0 0

0 3
2

3
2

0 3
2

3
2

0 0 0




5. (b) Basis for R(A): u1 =

1

2 , 1
2 , 1

2 , 1
2


T

, u2 =

1

2 ,−1
2 ,−1

2 , 1
2


T

Basis for N (AT ): u3 =

1

2 ,−1
2 , 1

2 ,−1
2


, u4 =


1

2 , 1
2 ,−1

2 ,−1
2


T
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6. If A is symmetric then ATA = A2. Thus the eigenvalues of ATA are λ2
1, λ

2
2, . . . , λ

2
n.

The singular values of A are the positive square roots of the eigenvalues of
ATA.

7. The vectors vr+1, . . . ,vn are all eigenvectors belonging to λ = 0. Hence these
vectors are all in N (A) and since dim N (A) = n − r, they form a basis for
N (A). The vectors v1, . . . ,vr are all vectors in N (A)⊥ = R(AT ). Since dim
R(AT ) = r, it follows that v1, . . . ,vr form an orthonormal basis for R(AT ).

8. If A is an n × n matrix with singular value decomposition A = UΣV T , then

AT A = V Σ2V T and AAT = UΣ2UT

If we set X = V UT then X is nonsingular and

X−1(AT A)X = UV T V Σ2V T V UT = UΣ2UT = AAT

Therefore AT A and AAT are similar.
9. If σ is a singular value of A, then σ2 is an eigenvalue of ATA. Let x be an

eigenvector of ATA belonging to σ2. It follows that

ATAx = σ2x

xT ATAx = σ2xTx

‖Ax‖2
2 = σ2‖x‖2

2

σ =
‖Ax‖2

‖x‖2

10. ATAx̂ = ATAA+b
= V ΣT UT UΣV T V Σ+UTb
= V ΣT ΣΣ+UTb

For any vector y ∈ Rm

ΣT ΣΣ+y = (σ1y1, σ2y2, . . . , σnyn)T = ΣTy

Thus
ATAx̂ = V ΣT ΣΣ+(UTb) = V ΣT UTb = ATb

11. P = AA+ = UΣV T V Σ+UT = UΣΣ+UT

The matrix ΣΣ+ is an m×m diagonal matrix whose diagonal entries are all
0’s and 1’s. Thus we have

(ΣΣ+)T = ΣΣ+ and (ΣΣ+)2 = ΣΣ+

and it follows that

P 2 = U (ΣΣ+)2UT = UΣ+ΣUT = P

P T = U (ΣΣ+)T UT = UΣ+ΣUT = P
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SECTION 6

1. (c)




1 1/2 −1
1/2 2 3/2
−1 3/2 1




2. λ1 = 4, λ2 − 2

Q =




1√
2

− 1√
2

1√
2

1√
2




If we set 
 x

y


 = Q


 x′

y′




then

(x y)A

 x

y


 = (x′ y′)QT AQ


 x′

y′




It follows that

QT AQ =

 4 0

0 2




and the equation of the conic can be written in the form

4(x′)2 + 2(y′)2 = 8

(x′)2

2
+

(y′)2

4
= 1

The positive x′ axis will be in the first quadrant in the direction of

q1 =

 1√

2
,

1√
2




T

The positive y′ axis will be in the second quadrant in the direction of

q2 =

− 1√

2
,

1√
2




T

The graph will be exactly the same as Figure 6.6.3 except for the labeling
of the axes.

3. (b) A =

 3 4

4 3


. The eigenvalues are λ1 = 7, λ2 = −1 with orthonormal

eigenvectors

 1√

2
,

1√
2




T

and

− 1√

2
,

1√
2




T

respectively.

Let

Q =
1√
2


 1 −1

1 1


 and


 x′

y′


 = QT


 x

y




The equation simplifies to

7(x′)2 − (y′)2 = −28
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(y′)2

28
− (x′)2

4
= 1

which is in standard form with respect to the x′y′ axis system.

(c) A =

 −3 3

3 5


.

The eigenvalues are λ1 = 6, λ2 = −4 with orthonormal eigenvectors

 1√

10
,

3√
10




T

and

− 3√

10
,

1√
10




T

, respectively.

Let

Q =
1√
10


 1 −3

3 1


 and


 x′

y′


 = QT


 x

y




The equation simplifies to

6(x′)2 − 4(y′)2 = 24

(x′)2

4
− (y′)2

6
= 1

4. Using a suitable rotation of axes, the equation translates to

λ1(x′)2 + λ2(y′)2 = 1

Since λ1 and λ2 differ in sign, the graph will be an hyperbola.
5. The equation can be transformed into the form

λ1(x′)2 + λ2(y′)2 = α

If either λ1 and λ2 is 0, then the graph is a pair of lines. Thus the conic
section will be nondegenerate if and only if the eigenvalues of A are nonzero.
The eigenvalues of A will be nonzero if and only if A is nonsingular.

6. (c) The eigenvalues are λ1 = 5, λ2 = 2. Therefore the matrix is positive
definite.

(f) The eigenvalues are λ1 = 8, λ2 = 2, λ3 = 2. Since all of the eigenvalues
are positive, the matrix is positive definite.

7. (d) The Hessian of f is at (1, 1) is

 6 −3

−3 6




Its eigenvalues are λ1 = 9, λ2 = 3. Since both are positive, the matrix
is positive definite and hence (1, 1) is a local minimum.

(e) The Hessian of f at (1, 0, 0) is



6 0 0
0 2 1
0 1 0




Its eigenvalues are λ1 = 6, λ2 = 1 +
√

2, λ3 = 1 −
√

2. Since they differ
in sign, (1, 0, 0) is a saddle point.
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8. If A is symmetric positive definite, then all of its eigenvalues are positive. It
follows that

det(A) = λ1λ2 · · ·λn > 0
The converse is not true. For example if I is the 2 × 2 identity matrix and
we set A = −I then det(A) = (−1) · (−1) = 1, however, A is not positive
definite.

9. If A is symmetric positive definite, then all of the eigenvalues λ1, λ2, . . . , λn of
A are positive. Since 0 is not an eigenvalue, A is nonsingular. The eigenvalues
of A−1 are 1/λ1, 1/λ2, . . . , 1/λn. Thus A−1 has positive eigenvalues and
hence is positive definite.

10. ATA is positive semidefinite since

xTATAx = ‖Ax‖2 ≥ 0

If A is singular then there exists a nonzero vector x such that

Ax = 0

It follows that
xTATAx = xTAT 0 = 0

and hence ATA is not positive definite.
11. Let X be an orthogonal diagonalizing matrix for A. If x1, . . . ,xn are the

column vectors of X then by the remarks following Corollary 6.4.5 we can
write

Ax = λ1(xTx1)x1 + λ2(xTx2)x2 + · · ·+ λn(xTxn)xn

Thus
xTAx = λ1(xTx1)2 + λ2(xTx2)2 + · · ·+ λn(xT xn)2

12. If A is positive definite, then

eT
i Aei > 0 for i = 1, . . . , n

but
eT

i Aei = eT
i ai = aii

13. Let x be any nonzero vector in Rn and let y = Sx. Since S is nonsingular,
y is nonzero and

xT STASx = yTAy > 0
Therefore STAS is positive definite.

14. If A is symmetric, then by Corollary 6.4.5 there is an orthogonal matrix U
that diagonalizes A.

A = UDUT

Since A is positive definite, the diagonal elements of D are all positive. If we
set

Q = UD1/2

then the columns of Q are mutually orthogonal and

A = (UD1/2)((D1/2)T UT )
= QQT
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SECTION 7
3. (a)

A =




1 0 0 0

−1
2 1 0 0

0 −2
3 1 0

0 0 −3
4

1







2 −1 0 0

0 3
2 −1 0

0 0 4
3 −1

0 0 0 5
4




(b) Since the diagonal entries of U are all positive it follows that A can be
reduced to upper triangular form using only row operation III and the
pivot elements are all positive. Therefore A must be positive definite.

6. A is symmetric positive definite

〈x,y〉 = xTAy

(i) 〈x,x〉 = xTAx > 0 (x 6= 0)
since A is positive definite.

(ii) 〈x,y〉 = xTAy = xTATy = (Ax)T y = yTAx = 〈y,x〉
(iii) 〈αx + βy, z〉 = (αx + βy)TAz

= αxTAz + βyTAz
= α〈x, z〉 + β〈y, z〉

7. If L1D1U1 = L2D2U2, then

D−1
2 L−1

2 L1D1 = U2U
−1
1

The left hand side represents a lower triangular matrix and the right hand
side represents an upper triangular matrix. Therefore both matrices must be
diagonal. Since the matrix U1 can be transformed into the identity matrix
using only row operation III it follows that the diagonal entries of U−1

1 must
all be 1. Thus

U2U
−1
1 = I

and hence
L−1

2 L1 = D2D
−1
1

Therefore L−1
2 L1 is a diagonal matrix and since its diagonal entries must

also be 1’s we have

U2U
−1
1 = I = L−1

2 L1 = D2D
−1
1

or equivalently
U1 = U2, L1 = L2, D1 = D2

8. If A is a positive definite symmetric matrix then A can be factored into
a product A = QDQT where Q is orthogonal and D is a diagonal matrix
whose diagonal elements are all positive. Let E be a diagonal matrix with
eii =

√
dii for i = 1, . . . , n. Since ET E = E2 = D it follows that

A = QETEQT = (EQT )T (EQT ) = BTB

where B = EQT .
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9. If B is an m × n matrix of rank n and x 6= 0, then Bx 6= 0. It follows that

xT BTBx = ‖Bx‖2 > 0

Therefore BTB is positive definite.
10. If A is symmetric, then its eigenvalues λ1, λ2, . . . , λn are all real and there

is an orthogonal matrix Q that diagonalizes A. It follows that

A = QDQT and eA = QeDQT

The matrix eA is symmetric since

(eA)T = Q(eD)T QT = QeDQT = eA

The eigenvalues of eA are the diagonal entries of eD

µ1 = eλ1 , µ2 = eλ2 , . . . , µn = eλn

Since eA is symmetric and its eigenvalues are all positive, it follows that eA

is positive definite.
11. Since B is symmetric

B2 = BTB

Since B is also nonsingular, it follows from Theorem 6.7.1 that B2 is positive
definite.

12. (a) A is positive definite since A is symmetric and its eigenvalues λ1 = 1
2
,

λ2 = 3
2 are both positive. If x ∈ R2, then

xTAx = x2
1 − x1x2 + x2

2 = xTBx

(b) If x 6= 0, then
xTBx = xTAx > 0

since A is positive definite. Therefore B is also positive definite. How-
ever,

B2 =

 1 −2

0 1




is not positive definite. Indeed if x = (1, 1)T , then

xTB2x = 0

13. (a) If A is an symmetric negative definite matrix, then its eigenvalues are all
negative. Since the determinant of A is the product of the eigenvalues,
it follows that det(A) will be positive if n is even and negative if n is
odd.

(b) Let Ak denote the leading principal submatrix of A of order k and let
x1 be a nonzero vector in Rk. If we set

x =

 x1

0


 x ∈ Rn

then
xT

1 Akx1 = xTAx < 0

Therefore the leading principal submatrices are all negative definite.
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(c) The result in part (c) follows as an immediate consequence of the results
from parts (a) and (b).

14. (a) Since Lk+1L
T
k+1 = Ak+1, we have




Lk 0

xT
k αk







LT
k xk

0T αk


 =




Ak yk

yT
k βk







LkLT
k Lkxk

xT
k LT

k xT
k xk + α2

k


 =




Ak yk

yT
k βk




Thus

Lkxk = yk

and hence

xk = L−1
k yk

Once xk has been computed one can solve for αk.

xT
k xk + α2

k = βk

αk = (βk − xT
k xk)1/2

(b) Cholesky Factorization Algorithm
Set L1 = (

√
a11)

For k = 1, . . . , n− 1
(1) Let yk be the vector consisting of the first k entries of ak+1

and let βk be the (k + 1)st entry of ak+1.
(2) Solve the lower triangular system Lkxk = yk for xk.
(3) Set αk = (βk − xT

k xk)1/2

(4) Set

Lk+1 =

 Lk 0

xT
k αk




End (For Loop)
L = Ln

The Cholesky decomposition of A is LLT .

SECTION 8
7. (b)

P =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



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(c)

P =




1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




8. It follows from Theorem 6.8.2 that the other two eigenvalues must be

λ2 = 2 exp

2πi

3


 = −1 + i

√
3

and
λ3 = 2 exp


4πi

3


 = −1 − i

√
3

9. (a) Ax̂ =

 B O

O C





 x

0


 =


 Bx

0


 =


 λx

0


 = λx̂

(b) Since B is a positive matrix it has a positive eigenvalue r1 satisfy-
ing the three conditions in Perron’s Theorem. Similarly C has a pos-
itive eigenvalue r2 satisfying the conditions of Perron’s Theorem. Let
r = max(r1, r2). By part (a), r is an eigenvalue of A and condition
(iii) of Perron’s Theorem implies its multiplicity can be at most 2. (It
would have multiplicity 2 in the case that r1 = r2.) If r1 has a positive
eigenvector x and r2 has a positive eigenvector y then r will have an
eigenvector that is either of the form


 x

0


 or of the form


 0

y




(c) The eigenvalues of A are the eigenvalues of B and C. If B = C, then

r = r1 = r2 (from part (b))

is an eigenvalue of multiplicity 2. If x is a positive eigenvector of B
belonging to r then let

z =

 x

x




It follows that

Az =

 B O

O B





 x

x


 =


 Bx

Bx


 =


 rx

rx


 = rz

Thus z is a positive eigenvector belonging to r.
10. There are only two possible partitions of the index set {1, 2}. If I1 = {1}

and I2 = {2} then A will be reducible provided a12 = 0. If I1 = {2} and
I2 = {1} then A will be reducible provided a21 = 0. Thus A is reducible if
and only if a12a21 = 0.

11. If A is an irreducible nonnegative 2× 2 matrix then it follows from Exercise
10 that a12a21 > 0. The characteristic polynomial of A

p(λ) = λ2 − (a11 + a12)λ + (a11a22 − a12a21)
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has roots

(a11 + a22) ±
√

(a11 + a22)2 − 4(a11a22 − a12a21)
2

The discriminant can be simplified to

(a11 − a22)2 + 4a12a21.

Thus both roots are real. The larger root r1 is obtained using the + sign.

r1 =
(a11 + a22) +

√
(a11 − a22)2 + 4a12a21

2

>
a11 + a22 + |a11 − a22|

2
= max(a11, a22)
≥ 0

Finally r1 has a positive eigenvector

x =

 a12

r1 − a11




The case where A has two eigenvalues of equal modulus can only occur when

a11 = a22 = 0

In this case λ1 =
√

a21a12 and λ2 = −√
a21a12.

12. The eigenvalues of Ak are λk
1 = 1, λk

2, . . . , λ
k
n. Clearly |λk

j | ≤ 1 for j =
2, . . . , n. However, Ak is a positive matrix and therefore by Perron’s theorem
λ = 1 is the dominant eigenvalue and it is a simple root of the characteristic
equation for Ak. Therefore |λk

j | < 1 for j = 2, . . . , n and hence |λj| < 1 for
j = 2, . . . , n.

13. (a) It follows from Exercise 12 that λ1 = 1 is the dominant eigenvector of
A. By Perron’s theorem it has a positive eigenvector x1.

(b) Each yj in the chain is a probability vector and hence the coordinates
of each vector are nonnegative numbers adding up to 1. Therefore

‖yj‖1 = 1 j = 1, 2, . . .

(c) If
y0 = c1x1 + c2x2 + · · ·+ cnxn

then
yk = c1x1 + c2λ

k
2x2 + · · ·+ cnλk

nxn

and since ‖yk‖ = 1 for each k and

c2λ
k
2x2 + · · ·+ cnλk

nxn → 0 k → ∞

it follow that c1 6= 0.
(d) Since

yk = c1x1 + c2λ
k
2x2 + · · ·+ cnλk

nxn
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and |λj| < 1 for j = 2, . . . , n it follows that

lim
k→∞

yk = c1x1

c1x1 is the steady-state vector.
(e) Each yk is a probability vector and hence the limit vector c1x1 must

also be a probability vector. Since x1 is positive it follows that c1 > 0.
Thus we have

‖c1x1‖∞ = 1

and hence

c1 =
1

‖x1‖∞
14. In general if the matrix is nonnegative then there is no guarantee that it

has a dominant eigenvalue with a positive eigenvector. So the results from
parts (c) and (d) of Exercise 13 would not hold in this case. On the other
hand if Ak is a positive matrix for some k, then by Exercise 12, λ1 = 1 is
the dominant eigenvalue of A and it has a positive eigenvector x1. Therefore
the results from Exercise 13 will be valid in this case.

MATLAB EXERCISES
1. Initially x = e1, the standard basis vector, and

Ax =
5
4
e1 =

5
4
x

is in the same direction as x. So x1 = e1 is an eigenvector of A belonging to
the eigenvalue λ1 = 5

4 . When the initial vector is rotated so that x = e2 the
image will be

Ax =
3
4
e2 =

3
4
x

so x2 = e2 is an eigenvector of A belonging to the eigenvalue λ2 = 3
4 . The

second diagonal matrix has the same first eigenvalue-eigenvector pair and
the second eigenvector is again x2 = e2, however, this time the eigenvalue is
negative since x2 and Ax2 are in opposite directions. In general for any 2 × 2
diagonal matrix D, the eigenvalues will be d11 and d22 and the corresponding
eigenvectors will be e1 and e2.

2. For the identity matrix the eigenvalues are the diagonal entries so λ1 =
λ2 = 1. In this case not only are e1 and e2 eigenvectors, but any vector
x = x1e1 + x2e2 is an eigenvector.

3. In this case x and Ax are equal when x makes an angle of 45◦ with the
x axis. So λ1 = 1 is an eigenvalue with eigenvector

x1 =

cos

π

4
, sin

π

4


T

=

 1√

2
,

1√
2




T
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The vectors x and Ax are unit vectors in opposite directions when x makes
an angle of 135◦ with the x axis. So λ2 = −1 is an eigenvalue and the
corresponding eigenvector is

x2 =

cos

3π

4
, sin

3π

4




T

=

− 1√

2
,

1√
2




T

4. In this case x and Ax are never parallel so A cannot have any real eigenval-
ues. Therefore the two eigenvalues of A must be complex numbers.

6. For the ninth matrix the vectors x and Ax are never parallel so A must have
complex eigenvalues.

7. The tenth matrix is singular, so one of its eigenvalues is 0. To find the
eigenvector using the eigshow utility you most rotate x until Ax coincides
with the zero vector. The other eigenvalue of this matrix is λ2 = 1.5. Since
the eigenvalues are distinct their corresponding eigenvectors must be linearly
independent. The next two matrices both have multiple eigenvalues and
both are defective. Thus for either matrix any pair of eigenvectors would be
linearly dependent.

8. The characteristic polynomial of a 2 × 2 matrix is a quadratic polynomial
and its graph will be a parabola. The eigenvalues will be equal when the
graph of the parabola corresponding to the characteristic polynomial has its
vertex on the x axis. For a random 2 × 2 matrix the probability that this
will happen should be 0.

11. (a) A − I is a rank one matrix. Therefore the dimension of the eigenspace
corresponding to λ = 1 is 9, the nullity of A − I. Thus λ = 1 has
multiplicity at least 9. Since the trace is 20, the remaining eigenvalue
λ10 = 11. For symmetric matrices, eigenvalue computations should be
quite accurate. Thus one would expect to get nearly full machine accu-
racy in the computed eigenvalues of A.

(b) The roots of a tenth degree polynomial are quite sensitive, i.e., any small
roundoff errors in either the data or in the computations are liable to
lead to significant errors in the computed roots. In particular if p(λ) has
multiple roots, the computed eigenvalues are liable to be complex.

12. (a) When t = 4, the eigenvalues change from real to complex. The matrix
C corresponding to t = 4 has eigenvalues λ1 = λ2 = 2. The matrix X of
eigenvectors is singular. Thus C does not have two linearly independent
eigenvectors and hence must be defective.

(b) The eigenvalues of A correspond to the two points where the graph
crosses the x-axis. For each t the graph of the characteristic polynomial
will be a parabola. The vertices of these parabolas rise as t increases.
When t = 4 the vertex will be tangent to the x-axis at x = 2. This
corresponds to a double eigenvalue. When t > 4 the vertex will be
above the x-axis. In this case there are no real roots and hence the
eigenvalues must be complex.

13. If the rank of B is 2, then its nullity is 4− 2 = 2. Thus 0 is an eigenvalue of
B and its eigenspace has dimension 2.



MATLAB Exercises 143

14. The reduced row echelon form of C has three lead 1’s. Therefore the rank
of C is 3 and its nullity is 1. Since C4 = O, all of the eigenvalues of C must
be 0. Thus λ = 0 is an eigenvalue of multiplicity 4 and its eigenspace only
has dimension 1. Hence C is defective.

15. In theory A and B should have the same eigenvalues. However for a defec-
tive matrix it is difficult to compute the eigenvalues accurately. Thus even
though B would be defective if computed in exact arithmetic, the matrix
computed using floating point arithmetic may have distinct eigenvalues and
the computed matrix X of eigenvectors may turn out to be nonsingular. If,
however, rcond is very small, this would indicate that the column vectors of
X are nearly dependent and hence that B may be defective.

16. (a) Both A− I and A + I have rank 3, so the eigenspaces corresponding to
λ1 = 1 and λ2 = −1 should both have dimension 1.

(b) Since λ1+λ2 = 0 and the sum of all four eigenvalues is 0, it follows that

λ3 + λ4 = 0

Since λ1λ2 = −1 and the product of all four eigenvalues is 1, it follows
that

λ3λ4 = −1

Solving these two equations, we get λ3 = 1 and λ4 = −1. Thus 1 and −1
are both double eigenvalues. Since their eigenspaces each have dimension
1, the matrix A must be defective.

(d) The computed eigenvectors are linearly independent, but the computed
matrix of eigenvectors does not diagonalize A.

17. Since

x(2)2 =
9

10, 000
it follows that x(2) = 0.03. This proportion should remain constant in fu-
ture generations. The proportion of genes for color-blindness in the male
population should approach 0.03 as the number of generations increases.
Thus in the long run 3% of the male population should be color-blind. Since
x(2)2 = 0.0009, one would expect that 0.09% of the female population will
be color-blind in future generations.

18. (a) By construction S has integer entries and det(S) = 1. It follows that
S−1 = adj S will also have integer entries.

19. (a) By construction the matrix A is Hermitian. Therefore its eigenvalues
should be real and the matrix X of eigenvectors should be unitary.

(b) The matrix B should be normal. Thus in exact arithmetic BHB and
BBH should be equal.

20. (a) If A = USV T then

AV = USV T V = US

(b)
AV = (Av1, Av2) and US = (s1u1, s2u2)
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Since AV = US their corresponding column vectors must be equal. Thus we
have

Av1 = s1u1 and Av2 = s2u2

(c) V and U are orthogonal matrices so v1, v2 are orthonormal vectors in
Rn and u1, u2 are orthonormal vectors in Rm. The images Av1 and Av2

are orthogonal since

(Av1)T Av2 = s1s2uT
1 u2 = 0

(d) ‖Av1‖ = ‖s1u1‖ = s1 and ‖Av2‖ = ‖s2u2‖ = s2

21. If s1, s2 are the singular values of A, v1, v2 are the right singular vectors
and u1, u2, are the corresponding left singular vectors, then the vectors Ax
and Ay will be orthogonal when x = v1 and y = v2. When this happens

Ax = Av1 = s1u1 and Ay = Av2 = s2u2

Thus the image Ax is a vector in the direction of u1 with length s1 and the
image Ay is a vector in the direction of u2 with length s2.
If you rotate the axes a full 360◦ the image vectors will trace out an ellipse.
The major axis of the ellipse will be the line corresponding to the span of u1

and the diameter of the ellipse along its major axis will be 2s1 The minor
axis of the ellipse will be the line corresponding to the span of u2 and the
diameter of the ellipse along its minor axis will be 2s2.

22. The stationary points of the Hessian are (−1
4 , 0) and (−71

4 , 4). If the station-
ary values are substituted into the Hessian, then in each case we can compute
the eigenvalues using the MATLAB’s eig command. If we use the double com-
mand to view the eigenvalues in numeric format, the displayed values should
be 7.6041 and −2.1041 for the first stationary point and −7.6041, 2.1041 for
the second stationary point. Thus both stationary points are saddle points.

23. (a) The matrix C is symmetric and hence cannot be defective. The matrix
X of eigenvectors should be an orthogonal matrix. The rank of C − 7 I
is 1 and hence its nullity is 5. Therefore the dimension of the eigenspace
corresponding to λ = 7 is 5.

(b) The matrix C is clearly symmetric and all of its eigenvalues are positive.
Therefore C must be positive definite.

(c) In theory R and W should be equal. To see how close the computed
matrices actually are, use MATLAB to compute the difference R− W .

24. In the k× k case, U and L will both be bidiagonal. All of the superdiagonal
entries of U will be −1 and the diagonal entries will be

u11 = 2, u22 =
3
2
, u33 =

4
3
, . . . , ukk =

k + 1
k

L will have 1’s on the main diagonal and the subdiagonal entries will be

l21 = −1
2
, l32 = −2

3
, l43 = −3

4
, . . . , lk,k−1 = −k − 1

k
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Since A can be reduced to upper triangular form U using only row operation
III and the diagonal entries of U are all positive, it follows that A must be
positive definite.

25. (a) If you subtract 1 from the (6,6) entry of P , the resulting matrix will be
singular.

(c) The matrix P is symmetric. The leading principal submatrices of P
are all Pascal matrices. If all have determinant equal to 1, then all
have positive determinants. Therefore P should be positive definite.
The Cholesky factor R is a unit upper triangular matrix. Therefore

det(P ) = det(RT ) det(R) = 1

(d) If one sets r88 = 0, then R becomes singular. It follows that Q must
also be singular since

det(Q) = det(RT ) det(R) = 0

Since R is upper triangular, when one sets r88 = 0 it will only affect
the (8, 8) entry of the product RT R. Since R has 1’s on the diagonal,
changing r88 from 1 to 0 will have the effect of decreasing the (8, 8)
entry of RT R by 1.

CHAPTER TEST A
1. The statement is true. If A were singular then we would have

det(A − 0I) = det(A) = 0

so λ = 0 would have to be an eigenvalue. Therefore if all of the eigenvalues
are nonzero, then A cannot be singular.

One could also show that the statement is true by noting that if the eigen-
values of A are all nonzero then

det(A) = λ1λ2 · · ·λn 6= 0

and therefore A must be nonsingular.
2. The statement is false in general. A and AT have the same eigenvalues but

generally do not have the same eigenvectors. For example if

A =

 1 1

0 1


 and e1 =


 1

0




then Ae1 = e1 so e1 is an eigenvector of A. However e1 is not an eigenvector
of AT since ATe1 is not a multiple of e1.

3. The statement is false in general. The 2 × 2 identity matrix has eigenvalues
λ1 = λ2 = 1, but it is not defective.

4. The statement is false. If A is a 4 × 4 matrix of rank 3, then the nullity of
A is 1. Since λ = 0 is an eigenvalue of multiplicity 3 and the eigenspace has
dimension 1, the matrix must be defective.
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5. The statement is false. If A is a 4 × 4 matrix of rank 1, then the nullity of
A is 3. Since λ = 0 is an eigenvalue of multiplicity 3 and the dimension of
the eigenspace is also 3, the matrix is diagonalizable.

6. The statement is false in general. The matrix

A =

 0 1

0 0




has rank 1 even though all of its eigenvalues are 0.
7. The statement is true. If A has singular value decomposition UΣV T , then

since U and V are orthogonal matrices, it follows that A and Σ have the
same rank. The rank of the diagonal matrix Σ is equal to the number of
nonzero singular values.

8. The statement is true. A and T are similar so they have the same eigenvalues.
Since T is upper triangular its eigenvalues are its diagonal entries.

9. The statement is true. If A is symmetric positive definite then its eigenvalues
are all positive and its determinant is positive. So A must be nonsingular.
The inverse of a symmetric matrix is symmetric and the eigenvalues of A−1

are the reciprocals of the eigenvalues of A. It follows from Theorem 6.6.2
that A−1 must be positive definite.

10. The statement is false in general. For example let

A =

−1 0

0 −1


 and x =


 1

1




Although det(A) > 0, the matrix is not positive definite since xT Ax = −2.

CHAPTER TEST B
1. (a) The eigenvalues of A are λ1 = 1, λ2 = −1, and λ3 = 0,

(b) Each eigenspace has dimension 1. The vectors that form bases for the
eigenspaces are x1 = (1, 1, 1)T ,x2 = (0, 1, 2)T ,x3 = (0, 1, 1)T

(c)

A = XDX−1 =




1 0 0
1 1 1
1 2 1







1 0 0
0 −1 0
0 0 0







1 0 0
0 −1 1

−1 2 −1




A7 = XD7X−1 = XDX−1 = A

2. Since A has real entries λ2 = 3 − 2i must be an eigenvalue and since A
is singular the third eigenvalue is λ3 = 0. We can find the last eigenvalue
if we make use of the result that the trace of A is equal to the sum of its
eigenvalues. Thus we have

tr(A) = 4 = (3 + 2i) + (3 − 2i) + 0 + λ4 = 6 + λ4

and hence λ4 = −2.
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3. (a) det(A) = λ1λ2 · · ·λn. If A is nonsingular then det(A) 6= 0 and hence all
of the eigenvalues of A must be nonzero.

(b) If λ is an eigenvalue of A then there exists a nonzero vector x such that
Ax = λx. Multiplying both sides of this equation by A−1 we get

A−1Ax = A−1(λx)
x = λA−1x

1
λ
x = A−1x

and hence 1
λ is an eigenvalue of A−1.

4. The scalar a is a triple eigenvalue of A. The vector space N (A−aI) consists
of all vectors whose third entry is 0. The vectors e1 and e2 form a basis for
this eigenspace and hence the dimension of the eigenspace is 2. Since the
dimension of the eigenspace is less than the multiplicity of the eigenvalue,
the matrix must be defective.

5. (a)



4 2 2
2 10 10
2 10 14


 →




4 2 2
0 9 9
0 9 13


 →




4 2 2
0 9 9
0 0 4




Since we were able to reduce A to upper triangular form U using only
row operation III and the diagonal entries of U are all positive, it follows
that A is positive definite.

(b)

U = DLT =




4 0 0

0 9 0

0 0 4







1 1
2

1
2

0 1 1

0 0 1




A = LDLT =




1 0 0
1
2

1 0
1
2 1 1







4 0 0

0 9 0

0 0 4







1 1
2

1
2

0 1 1

0 0 1




(c)

L1 = LD
1
2 =




1 0 0
1
2 1 0
1
2

1 1







2 0 0

0 3 0

0 0 2




=




2 0 0

1 3 0

1 3 2




A = L1L
T
1 =




2 0 0

1 3 0

1 3 2







2 1 1

0 3 3

0 0 2




6. The first partials of F are

fx = 3x2y + 2x− 2 and fy = x3 + 2y − 1
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At (1, 0) we have fx(1, 0) = 0 and fy(1, 0) = 0. So (1, 0) is a stationary point.
The second partials of f are

fxx = 6xy + 2, fxy = fyx = 3x2, fyy = 2

At the point (1, 0) the Hessian is

H =

 2 3

3 2




The eigenvalues of H are λ1 = 5 and λ2 = −1. Since the eigenvalues differ
in sign it follows that H is indefinite and hence the stationary point (1, 0) is
a saddle point.

7. The eigenvalues of A are λ1 = −1 and λ2 = −2 and the corresponding
eigenvectors are x1 = (1, 1)T and x2 = (2, 3)T . The matrix X = (x1,x2) di-
agonalizes A and etA = XetDX−1. The solution to the initial value problem
is

Y(t) = etAY0 = XetDX−1Y0

=

 1 2

1 3





 e−t 0

0 e−2t





 3 −2

−1 1





 1

2




=

 e−t + 2e−2t

e−t + 3e−2t




8. (a) Since A is symmetric there is an orthogonal matrix that diagonalizes
A. So A cannot be defective and hence the eigenspace corresponding
to the triple eigenvalue λ = 0 (that is, the nullspace of A) must have
dimension 3.

(b) Since λ1 is distinct from the other eigenvalues, the eigenvector x1 will
be orthogonal to x2, x3, and x4.

(c) To construct an orthogonal matrix that diagonalizes A, set u1 = 1
‖x1‖x1.

The vectors x2, x3, x4 form a basis for N (A). Use the Gram-Schmidt
process to transform this basis into an orthonormal basis {u2,u3,u4}.
Since the vector u1 is in N (A)⊥, it follows that U = (u1,u2,u3,u4) is
an orthogonal matrix and U diagonalizes A.

(d) Since A is symmetric it can be factored into a product A = QDQT

where Q is orthogonal and D is diagonal. It follows that eA = QeDQT .
The matrix eA is symmetric since

(eA)T = Q(eD)T QT = QeDQT = eA

The eigenvalues of eA are λ1 = e and λ2 = λ3 = λ4 = 1. Since eA

is symmetric and its eigenvalues are all positive, it follows that eA is
positive definite.

9. (a) uH
1 z = 5 − 7i and zHu1 = 5 + 7i.

c2 = uH
2 z == 1 − 5i.

(b)

‖z‖2 = |c1|2 + |c2|2 = (5 − 7i)(5 + 7i) + (1 − 5i)(1 + 5i)
= 25 + 49 + 1 + 25
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= 100

Therefore ‖z‖ = 10.
10. (a) The matrix B is symmetric so it eigenvalues are all real. Furthermore,

if x 6= 0, then
xT Bx = xT AT Ax = ‖Ax‖2 ≥ 0

So B is positive semidefinite and hence its eigenvalues are all nonneg-
ative. Furthermore N (A) has dimension 2, so λ = 0 is an eigenvalue
of multiplicity 2. In summary B is a symmetric positive semidefinite
matrix with a double eigenvalue λ = 0.

(b) The matrix B can be factored into a product QDQT where Q is an
orthogonal matrix and D is diagonal. It follows that C = QeDQT . So
C is symmetric and its eigenvalues are the diagonal entries of eD which
are all positive. Therefore C is a symmetric positive definite matrix.

11. (a) If A has Schur decomposition UTUH , then U is unitary and T is upper
triangular. The matrices A and T are similar so they have the same
eigenvalues. Since T is upper triangular it follows that t11, t22, . . . , tnn

are the eigenvalues of both T and A.
(b) If B is Hermitian with Schur decomposition WSW H , then W is unitary

and S is diagonal. The eigenvalues of B are the diagonal entries of S
and the column vectors of W are the corresponding eigenvectors.

12. (a) Since A has 3 nonzero singular values, its rank is 3.
(b) If U is the matrix on the left in the given factorization then its first 3

columns, u1, u2, u3 form an orthonormal basis for R(A).
(c) The matrix on the right in the factorization is V T . The nullity of A is

1 and the vector v4 = (−1
2
, 1

2
,−1

2
, 1

2
)T forms a basis for N (A).

(d)

B = σ1u1vT
1 = 100




2
5

2
5

2
5

2
5

3
5





 1

2
1
2

1
2

1
2


 =




20 20 20 20
20 20 20 20
20 20 20 20
20 20 20 20
30 30 30 30




(e) ‖B − A‖F =
√

102 + 102 = 10
√

2.



CHAPTER
7

SECTION 1

The answers to all of the exercises in this section are included in the text.

SECTION 2
4. (a) (i) n(mr + mn + n) multiplications and (n − 1)m(n + r) additions.

(ii) (mn + nr + mr) multiplications and (n − 1)(m + r) additions.
(iii) mn(r + 2) multiplications and m(n − 1)(r + 1) additions.

5. (a) The matrix ekeT
i will have a 1 in the (k, i) position and 0’s in all other

positions. Thus if B = I − αekeT
i , then

bki = −α and bsj = δsj (s, j) 6= (k, i)

Therefore B = Eki

(b) EjiEki = (I − βejeT
i )(I − αekeT

i )
= I − αekeT

i − βejeT
i + αβejeT

i ekeT
i

= I − (αek + βej)eT
i

(c) (I + αekeT
i )Eki = (I + αekeT

i )(I − αekeT
i )

= I − α2ekeT
i ekeT

i

= I − α2(eT
i ek)ekeT

i

= I (since eT
i ek = 0)

Therefore
E−1

ki = I + αekeT
i

6. det(A) = det(L) det(U ) = 1 · det(U ) = u11u22 · · ·unn

150
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7. Algorithm for solving LDLT x = b
For k = 1, . . . , n

Set yk = bk −
k−1∑

i=1

`kiyi

Set zk = yk/dii

End (For Loop)
For k = n − 1, . . . , 1

Set xk = zk −
n∑

j=k+1

`jkxj

End (For Loop)
8. (a) Algorithm for solving tridiagonal systems using diagonal pivots

For k = 1, . . . , n − 1
Set mk := ck/ak

ak+1 := ak+1 − mkbk

dk+1 := dk+1 − mkdk

End (For Loop)
Set xn := dn/an

For k = n − 1, n − 2, . . . , 1
Set xk := (dk − bkxk+1)/ak

End (For Loop)
. 9 (b) To solve Ax = ej , one must first solve Ly = ej using forward substitu-

tion. From part (a) it follows that this requires [(n−j)(n−j+1)]/2 mul-
tiplications and [(n− j−1)(n− j)]/2 additions. One must then perform
back substitution to solve Ux = y. This requires n divisions, n(n−1)/2
multiplications and n(n−1)/2 additions. Thus altogether, given the LU
factorization of A, the number of operations to solve Ax = ej is

(n − j)(n − j + 1) + n2 + n

2
multiplications/divisions

and
(n − j − 1)(n − j) + n2 − n

2
additions/subtractions

10. Given A−1 and b, the multiplication A−1b requires n2 scalar multiplications
and n(n − 1) scalar additions. The same number of operations is required
in order to solve LUx = b using Algorithm 7.2.2. Thus it is not really
worthwhile to calculate A−1, since this calculation requires three times the
amount of work it would take to determine L and U .

11. If

A(E1E2E3) = L

then

A = L(E1E2E3)−1 = LU
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The elementary matrices E−1
1 , E−1

2 , E−1
3 will each be upper triangular with

ones on the diagonal. Indeed,

E−1
1 =




1 a12
a11

0

0 1 0

0 0 1




E−1
2 =




1 0 a13
a11

0 1 0

0 0 1




E−1
3 =




1 0 0

0 1 a23

a
(1)
22

0 0 1




where a
(1)
22 = a22 − a12

a11
. If we let

u12 =
a12

a11
, u13 =

a13

a11
, u23 =

a23

a
(1)
22

then

U = E−1
3 E−1

2 E−1
1 =




1 u12 u13

0 1 u23

0 0 1




SECTION 3

6. (a)




5 4 7 2
2 −4 3 −5
2 8 6 4


 →




4 0 4 0
3 0 6 −3
2 8 6 4




→




2 0 0 2
3 0 6 −3
2 8 6 4




2x1 = 2 x1 = 1
3 + 6x3 = −3 x3 = −1
2 + 8x2 − 6 = 4 x2 = 1

x = (1, 1, −1)T

(b) The pivot rows were 3, 2, 1 and the pivot columns were 2, 3, 1.
Therefore

P =




0 0 1
0 1 0
1 0 0


 and Q =




0 0 1
1 0 0
0 1 0




Rearranging the rows and columns of the reduced matrix from part
(a), we get

U =




8 6 2
0 6 3
0 0 2



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The matrix L is formed using the multipliers −1
2 , 1

2 , 2
3

L =




1 0 0

−1
2 1 0

1
2

2
3 1




(c) The system can be solved in 3 steps.
(1) Solve Ly = Pc




1 0 0 2

−1
2 1 0 −4

1
2

2
3 1 5




y1 = 2

y2 = −3

y3 = 6

(2) Solve Uz = y



8 6 2 2
0 6 3 −3
0 0 2 6




z1 = 1
z2 = −2
z3 = 3

(3) Set x = Qz

x =




0 0 1
1 0 0
0 1 0







1
−2

3


 =




3
1

−2




SECTION 4
3. Let x be a nonzero vector in R2

‖Ax‖2

‖x‖2
=

|x1|√
x2

1 + x2
2

≤ 1

Therefore

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2
≤ 1

On the other hand

‖A‖2 ≥
‖Ae1‖2

‖e1‖2
= 1

Therefore ‖A‖2 = 1.
4. (a) D has singular value decomposition UΣV T where the diagonal en-

tries of Σ are σ1 = 5, σ2 = 4, σ3 = 3, σ4 = 2 and

U =




0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0




, V =




0 0 1 0
−1 0 0 0

0 0 0 −1
0 1 0 0



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(b) ‖D‖2 = σ1 = 5
5. If D is diagonal then its singular values are the square roots of the

eigenvalues of DT D = D2. The eigenvalues of D2 are d2
11, d

2
22, . . . , d

2
nn

and hence it follows that

‖D‖2 = σ1 = max
1≤i≤n

|dii|

6. It follows from Theorem 7.4.2 that

‖D‖1 = ‖D‖∞ = max
1≤i≤n

|dii|

and it follows from Exercise 5 that this is also the value of ‖D‖2. Thus
for a diagonal matrix all 3 norms are equal.

8. (a) If ‖ · ‖M and ‖ · ‖V are compatible, then for any nonzero vector x,

‖x‖V = ‖Ix‖V ≤ ‖V ‖M‖x‖V

Dividing by ‖x‖V we get

1 ≤ ‖I‖M

(b) If ‖ · ‖M is subordinate to ‖ · ‖V , then

‖Ix‖V

‖x‖V
= 1

for all nonzero vectors x and it follows that

‖I‖M = max
x 6=0

‖Ix‖V

‖x‖V
= 1

9. (a) ‖X‖∞ = ‖x‖∞ since the ith row sum is just |xi| for each i.
(b) The 1-norm of a matrix is equal to the maximum of the 1-norm of

its column vectors. Since X only has one column its 1-norm is equal
to the 1-norm of that column vector.

11. Let x be a nonzero vector in Rn

‖Ax‖∞
‖x‖∞

=

max
1≤i≤m

|
n∑

j=1

aijxj|

max
1≤j≤n

|xj|

≤

max
1≤j≤n

|xj| max
1≤i≤m

|
n∑

j=1

aij|

max
1≤j≤n

|xj|

= max
1≤i≤m

∣∣∣∣∣∣

n∑

j=1

aij

∣∣∣∣∣∣

≤ max
1≤i≤m

n∑

j=1

|aij|
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Therefore

‖A‖∞ = max
x6=0

‖Ax‖
‖x‖ ≤ max

1≤i≤m

n∑

j=1

|aij|

Let k be the index of the row of A for which
n∑

j=1

|aij| is a maximum.

Define xj = sgn akj for j = 1, . . . , n and let x = (x1, . . . , xn)T . Note
that ‖x‖∞ = 1 and akjxj = |akj| for j = 1, . . . , n. Thus

‖A‖∞ ≥ ‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣∣

n∑

j=1

aijxj

∣∣∣∣∣∣
≥

n∑

j=1

|akj|

Therefore

‖A‖∞ = max
1≤i≤m




n∑

j=1

|aij|




12. ‖A‖F =




∑

j

∑

i

a2
ij




1/2

=




∑

i

∑

j

a2
ij




1/2

= ‖AT ‖F

13. ‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij| = max
1≤i≤n

n∑

j=1

|aji| = ‖A‖1

14. ‖A‖2 = σ1 = 5 and

‖A‖F = (σ2
1 + σ2

2 + σ2
3 + σ2

4 + σ2
5)

1
2 = 6

15. (a) Let k = min(m, n).

‖A‖2 = σ1 ≤ (σ2
1 + σ2

2 + · · ·+ σ2
k)

1
2 = ‖A‖F(6)

(b) Equality will hold in (6) if σ2
2 = · · · = σ2

k = 0. It follows then that
‖A‖2 = ‖A‖F if and only if the matrix A has rank 1.

16. Since

{x | ‖x‖ = 1} = {x | x =
1

‖y‖y, y ∈ Rn and y 6= 0}

‖A‖M = max
y6=0

‖Ay‖
‖y‖

= max
y6=0

∥∥∥∥A


 1

‖y‖
y



∥∥∥∥
= max

‖x‖=1
‖Ax‖

17. If x is a unit eigenvector belonging to the eigenvalue λ, then

|λ| = ‖λx‖ = ‖Ax‖ ≤ ‖A‖M‖x‖ = ‖A‖M
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18. If A is a stochastic matrix then ‖A‖1 = 1. It follows from Exercise 17
that if λ is an eigenvalue of A then

|λ| ≤ ‖A‖1 = 1

19. (b) ‖Ax‖2 ≤ n1/2‖Ax‖∞ ≤ n1/2‖A‖∞‖x‖∞ ≤ n1/2‖A‖∞‖x‖2

(c) Let x be any nonzero vector in Rn. It follows from part (a) that

‖Ax‖∞
‖x‖∞

≤ n1/2‖A‖2

and it follows from part (b) that

‖Ax‖2

‖x‖2
≤ n1/2‖A‖∞

Consequently

‖A‖∞ = max
x 6=0

‖Ax‖∞
‖x‖∞

≤ n1/2‖A‖2

and

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2
≤ n1/2‖A‖∞

Thus
n−1/2‖A‖2 ≤ ‖A‖∞ ≤ n1/2‖A‖2

20. Let A be a symmetric matrix with orthonormal eigenvectors u1, . . . ,un.
If x ∈ Rn then by Theorem 5.5.2

x = c1u1 + c2u2 + · · ·+ cnun

where ci = uT
i x, i = 1, . . . , n.

(a) Ax = c1Au1 + c2Au2 + · · ·+ cnAun

= c1λ1u1 + c2λ2u2 + · · ·+ cnλnun.
It follows from Parseval’s formula that

‖Ax‖2
2 =

n∑

i=1

(λici)2

(b) It follows from part (a) that

min
1≤i≤n

|λi|




n∑

i=1

c2
i




1/2

≤ ‖Ax‖2 ≤ max
1≤i≤n

|λi|




n∑

i=1

c2
i




1/2

Using Parseval’s formula we see that



n∑

j=1

c2
i




1/2

= ‖x‖2

and hence for any nonzero vector x we have

min
1≤i≤n

|λi| ≤
‖Ax‖2

‖x‖2
≤ max

1≤i≤n
|λi|
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(c) If
|λk| = max

1≤i≤n
|λi|

and xk is an eigenvector belonging to λk, then

‖Axk‖2

‖xk‖2
= |λk| = max

1≤i≤n
|λi|

and hence it follows from part (b) that

‖A‖2 = max
1≤i≤n

|λi|

21.

A−1 =

 100 99

100 100




22. Let A be the coefficient matrix of the first system and A′ be the coeffi-
cient matrix of the second system. If x is the solution to the first system
and x′ is the solution to the second system then

‖x − x′‖∞
‖x‖∞

≈ 3.03

while
‖A − A′‖∞

‖A‖∞
≈ 0.014

The systems are ill-conditioned in the sense that a relative change of
0.014 in the coefficient matrix results in a relative change of 3.03 in the
solution.

24. cond(A) = ‖A‖M‖A−1‖M ≥ ‖AA−1‖M = ‖I‖M = 1.

26. The given conditions allow us to determine the singular values of the
matrix. Indeed, σ1 = ‖A‖2 = 8 and since

σ1

σ3
= cond2(A) = 2

it follows that σ3 = 4. Finally

σ2
1 + σ2

2 + σ2
3 = ‖A‖2

F

64 + σ2
2 + 16 = 144

and hence σ2 = 8.

27. (c)
1

cond∞(A)
‖r‖∞
‖b‖∞

≤ ‖x − x′‖∞
‖x‖∞

≤ cond∞(A)
‖r‖∞
‖b‖∞

0.0006 = 1
20(0.012) ≤ ‖x−x′‖∞

‖x‖∞
≤ 20(0.012) = 0.24

31. cond(AB) = ‖AB‖ ‖(AB)−1‖ ≤ ‖A‖ ‖B‖ ‖B−1‖ ‖A−1‖ = cond (A) cond(B)

32. It follows from Exercises 5 and 6 that

‖D‖1 = ‖D‖2 = ‖D‖∞ = dmax
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and
‖D−1‖1 = ‖D−1‖2 = ‖D−1‖∞ =

1
dmin

Therefore the condition number of D will be
dmax

dmin
no matter which of

the 3 norms is used.
33. (a) For any vector x

‖Qx‖2 = ‖x‖2

Thus if x is nonzero, then

‖Qx‖2

‖x‖2
= 1

and hence

‖Q‖2 = max
x 6=0

‖Qx‖2

‖x‖2
= 1

(b) The matrix Q−1 = QT is also orthogonal and hence by part (a) we
have

‖Q−1‖2 = 1

Therefore
cond2(Q) = 1

(c)
1

cond2(Q)
‖r‖2

‖b‖2
≤

‖e‖2

‖x‖2
≤ cond2(Q)

‖r‖2

‖b‖2

Since cond2(Q) = 1, it follows that

‖e‖2

‖x‖2
=

‖r‖2

‖b‖2

34. (a) If x is any vector in Rr, then Ax is a vector in Rn and

‖QAx‖2 = ‖Ax‖2

Thus for any nonzero vector x

‖QAx‖2

‖x‖2
=

‖Ax‖2

‖x‖2

and hence

‖QA‖2 = max
x 6=0

‖QAx‖2

‖x‖2

= max
x 6=0

‖Ax‖2

‖x‖2

= ‖A‖2

(b) For each nonzero vector x in Rn set y = V x. Since V is nonsingular
it follows that y is nonzero. Furthermore

{y |y = V x and x 6= 0} = {x |x 6= 0}



Section 4 159

since any nonzero y can be written as

y = V x where x = V Ty

It follows that if x 6= 0 and y = V x, then

‖AV x‖2

‖x‖2
=

‖AV x‖2

‖V x‖2
=

‖Ay‖2

‖y‖2

and hence

‖AV ‖2 = max
x 6=0

‖AV x‖2

‖x‖2
= max

y 6=0
‖Ay‖2

‖y‖2
= ‖A‖2

(c) It follows from parts (a) and (b) that

‖QAV ‖2 = ‖Q(AV )‖2 = ‖AV ‖2 = ‖A‖2

35. (a) If A has singular value decomposition UΣV T , then it follows from
the Cauchy-Schwarz inequality that

|xT Ay| ≤ ‖x‖2‖Ay‖2 ≤ ‖x‖2‖y‖2‖A‖2 = σ1‖x‖2‖y‖2

Thus if x and y are nonzero vectors, then

|xT Ay|
‖x‖2‖y‖2

≤ σ1

(b) If we set x1 = u1 and y1 = v1, then

‖x1‖2 = ‖u1‖2 = 1 and ‖y1‖2 = ‖v1‖2 = 1

and
Ay1 = Av1 = σ1u1

Thus
xT

1 Ay1 = uT
1 (σ1u1) = σ1

and hence
|xT

1 Ay1|
‖x1‖2‖y1‖2

= σ1

Combining this with the result from part (a) we have

max
x 6=0,y 6=0

|xT Ay|
‖x‖2‖y‖2

= σ1

36. For each nonzero vector x in Rn

‖Ax‖2

‖x‖2
=

‖UΣV T x‖2

‖x‖2
=

‖ΣV Tx‖2

‖V Tx‖2
=

‖Σy‖2

‖y‖2

where y = V T x. Thus

min
x 6=0

‖Ax‖2

‖x‖2
= min

y 6=0

‖Σy‖2

‖y‖2
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For any nonzero vector y ∈ Rn

‖Σy‖2

‖y‖2
=




n∑

i=1

σ2
i y

2
i




1/2




n∑

i=1

y2
i




1/2
≥ σn‖y‖2

‖y‖2
= σn

Thus

min
‖Σy‖2

‖y‖2
≥ σn

On the other hand

min
y 6=0

‖Σy‖2

‖y‖2
≤ ‖Σen‖2

‖en‖2
= σn

Therefore

min
x 6=0

‖Ax‖2

‖x‖2
= min

y 6=0

‖Σy‖2

‖y‖2
= σn

37. For any nonzero vector x

‖Ax‖2

‖x‖2
≤ ‖A‖2 = σ1

It follows from Exercise 33 that
‖Ax‖2

‖x‖2
≥ σn

Thus if x 6= 0, then

σn‖x‖2 ≤ ‖Ax‖2 ≤ σ1‖x‖2

Clearly this inequality is also valid if x = 0.
38. (a) It follows from Exercise 34 that

‖QA‖2 = ‖A‖2 and ‖A−1QT‖2 = ‖A−1‖2

‖AQ‖2 = ‖A‖2 and ‖QTA−1‖2 = ‖A−1‖2

Thus

cond2(QA) = ‖QA‖2‖A−1QT‖2 = cond2(A)
cond2(AQ) = ‖AQ‖2‖QTA−1‖2 = cond2(A)

(b) It follows from Exercise 34 that

‖B‖2 = ‖A‖2

and
‖B−1‖2 = ‖QTA−1Q‖2 = ‖A−1‖2

Therefore
cond2(B) = cond2(A)
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39. If A is a symmetric n×n matrix, then there exists an orthogonal matrix
Q that diagonalizes A.

QTAQ = D

The diagonal elements of D are the eigenvalues of A. Since A is sym-
metric and nonsingular its eigenvalues are all nonzero real numbers. It
follows from Exercise 38 that

cond2(A) = cond2(D)

and it follows from Exercise 32 that

cond2(D) =
λmax

λmin

SECTION 5
7. (b)

G =




1√
2

1√
2

1√
2

− 1√
2




(GA | Gb) =



√
2 3

√
2 3

√
2

0
√

2 2
√

2


 , x =


 −3

2




(c)

G =




4
5 0 −3

5

0 1 0

−3
5 0 −4

5




(GA | Gb) =




5 −5 2 1
0 1 3 2
0 0 1 −2


 , x =




9
8

−2




12. (a) ‖x− y‖2 = (x− y)T (x − y)
= xTx− xTy − yT x + yTy
= 2xTx− 2yTx
= 2(x− y)Tx

(b) It follows from part (a) that

2uTx =
2

‖x− y‖ (x− y)Tx = ‖x− y‖

Thus
2uuTx = (2uTx)u = x− y
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and hence

Qx = (I − 2uuT )x = x− (x− y) = y

13. (a) Qu = (I − 2uuT )u = u− 2(uTu)u = −u
The eigenvalue is λ = −1.

(b) Qz = (I − 2uuT )z = z − 2(uTz)u = z
Therefore z is an eigenvector belonging to the eigenvalue λ = 1.

(c) The eigenspace corresponding to λ = 1 is

N (Q − I) = N (−2uuT ) = N (uuT )

The matrix uuT has rank 1 and hence its nullity must be n − 1.
Thus the dimension of the eigenspace corresponding to λ = 1 is
n− 1. Therefore the multiplicity of the eigenvalue must be at least
n−1. Since we know that −1 is an eigenvalue, it follows that λ = 1
must have multiplicity n− 1. Since the determinant is equal to the
product of the eigenvalues we have

det(Q) = −1 · (1)n = −1

14. If R is a plane rotation then expanding its determine by cofactors we
see that

det(R) = cos2 θ + sin2 θ = 1

By Exercise 13(c) an elementary orthogonal matrix has determinant
equal to −1, so it follows that a plane rotation cannot be an elementary
orthogonal matrix.

15. (a) Let Q = QT
1 Q2 = R1R

−1
2 . The matrix Q is orthogonal and upper

triangular. Since Q is upper triangular, Q−1 must also be upper
triangular. However

Q−1 = QT = (R1R
−1
2 )T

which is lower triangular. Therefore Q must be diagonal.
(b) R1 = (QT

1 Q2)R2 = QR2. Since

|qii| = ‖Qei‖ = ‖ei‖ = 1

it follows that qii = ±1 and hence the ith row of R1 is ±1 times
the ith row of R2.

16. Since x and y are nonzero vectors, there exist Householder matrices H1

and H2 such that

H1x = ‖x‖e(m)
1 and H2y = ‖y‖e(n)

2

where e(m)
1 and e(n)

1 denote the first column vectors of the m × m and
n × n identity matrices. It follows that

H1AH2 = H1xyT H2

= (H1x)(H2y)T

= ‖x‖ ‖y‖e(m)
1 (e(n)

1 )T
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Set
Σ = ‖x‖ ‖y‖e(m)

1 (e(n)
1 )T

Σ is an m × n matrix whose entries are all zero except for the (1, 1)
entry which equals ‖x‖ ‖y‖. We have then

H1AH2 = Σ

Since H1 and H2 are both orthogonal and symmetric it follows that A
has singular value decomposition H1ΣH2.

17. In constructing the Householder matrix we set

β = α(α − x1) and v = (x1 − α, x2, . . . , xn)T

In both computations we can avoid loss of significant digits by choosing
α to have the opposite sign of x1.

18.

ULU =




1 cos θ−1
sin θ

0 1







1 0
sin θ 1







1 cos θ−1
sin θ

0 1




=




cos θ cos θ−1
sin θ

sin θ 1







1 cos θ−1
sin θ

0 1




=




cos θ − sin θ

sin θ cos θ




SECTION 6

3. (a) v1 = Au0 =

 3

−2


 u1 = 1

3v1 =

 1

−2/3




v2 = Au1 =

−1/3

−1/3


 u2 = −3v2 =


 1

1




v3 = Au2 =

 3

−2


 u3 = 1

3v3 =

 1

−2/3




v4 = Au3 =

−1/3

−1/3


 u4 = −3v4 =


 1

1




6. (a and b). Let xj be an eigenvector of A belonging to λj .

B−1xj = (A − λI)xj = (λj − λ)xj =
1
µj

xj

Multiplying through by µjB we obtain

Bxj = µjxj

Thus µj is an eigenvalue of B and xj is an eigenvector belonging to µj .
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(c) If λk is the eigenvalue of A that is closest to λ, then

|µk| =
1

|λk − λ| >
1

|λj − λ| = |µj|

for j 6= k. Therefore µk is the dominant eigenvalue of B. Thus when
the power method is applied to B, it will converge to an eigenvector
xk of µk. By part (b), xk will also be an eigenvector belonging to
λk.

7. (a) Since Ax = λx, the ith coordinate of each side must be equal. Thus
n∑

j=1

aijxj = λxi

(b) It follows from part (a) that

(λ − aii)xi =
n∑

j=1
j 6=i

aijxj

Since |x1| = ‖x‖∞ > 0 it follows that

|λ − aii| =

∣∣∣∣∣∣∣

n∑

j=1
j 6=i

aijxj

xi

∣∣∣∣∣∣∣
≤

n∑

j=1
j 6=i

|aij|
∣∣∣∣
xj

xi

∣∣∣∣ ≤
n∑

j=1
j 6=i

|aij|

8. (a) Let B = X−1(A + E)X. Since X−1AX is a diagonal matrix whose
diagonal entries are the eigenvalues of A we have

bij =
{

cij if i 6= j
λi + cii if i = j

It follows from Exercise 7 that

|λ − bii| ≤
n∑

j=1
j 6=i

|bij|

for some i. Thus

|λ − λi − cii| ≤
n∑

j=1
j 6=i

|cij|

Since
|λ − λi| − |cii| ≤ |λ − λi − cii|

it follows that

|λ − λi| ≤
n∑

j=1

|cij|
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(b) It follows from part (a) that

min
1≤j≤n

|λ − λj | ≤ max
1≤i≤n




n∑

j=1

|cij|




= ‖C‖∞
≤ ‖X−1‖∞‖E‖∞‖X‖∞
= cond∞(X)‖E‖∞

9. The proof is by induction on k. In the case k = 1

AP1 = (Q1R1)Q1 = Q1(R1Q1) = P1A2

Assuming PmAm+1 = APm we will show that Pm+1Am+2 = APm+1.

APm+1 = APmQm+1

= PmAm+1Qm+1

= PmQm+1Rm+1Qm+1

= Pm+1Am+2

10. (a) The proof is by induction on k. In the case k = 1

P2U2 = Q1Q2R2R1 = Q1A2R1 = P1A2U1

It follows from Exercise 9 that

P1A2U1 = AP1U1

Thus
P2U2 = P1A2U1 = AP1U1

If
Pm+1Um+1 = PmAm+1Um = APmUm

then

Pm+2Um+2 = Pm+1Qm+2Rm+2Um+1

= Pm+1Am+2Um+1

Again by Exercise 9 we have

Pm+1Am+2 = APm+1

Thus
Pm+2Um+2 = Pm+1Am+2Um+1 = APm+1Um+1

(b) Prove: PkUk = Ak. The proof is by induction on k. In the case
k = 1

P1U1 = Q1R1 = A = A1

If
PmUm = Am

then it follows from part (a) that

Pm+1Um+1 = APmUm = AAm = Am+1
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11. To determine xk and β, compare entries on both sides of the block
multiplication for the equation Rk+1Uk+1 = Uk+1Dk+1.


 Rk bk

0T βk





 Uk xk

0T 1


 =


 Uk xk

0T 1





 Dk 0

0T β





 RkUk Rkxk + bk

0T βk


 =


 UkDk βxk

0T β




By hypothesis, RkUk = UkDk, so if we set β = βk, then the diagonal
blocks of both sides will match up. Equating the (1, 2) blocks of both
sides we get

Rkxk + bk = βkxk

(Rk − βkI)xk = −bk

This is a k×k upper triangular system. The system has a unique solution
since βk is not an eigenvalue of Rk. The solution xk can be determined
by back substitution.

12. (a) Algorithm for computing eigenvectors of an n× n upper triangular
matrix with no multiple eigenvalues.

Set U1 = (1)
For k = 1, . . . , n − 1

Use back substitution to solve

(Rk − βkI)xk = −bk

where

βk = rk+1,k+1 and bk = (r1,k+1, r2,k+1, . . . , rk,k+1)T

Set

Uk+1 =

 Uk xk

0T 1




End (For Loop)

The matrix Un is upper triangular with 1’s on the diagonal. Its
column vectors are the eigenvectors of R.

(b) All of the arithmetic is done in solving the n − 1 systems

(Rk − βkI)xk = −bk k = 1, . . . , n − 1

by back substitution. Solving the kth system requires

1 + 2 + · · ·+ k =
k(k + 1)

2
multiplications

and k divisions. Thus the kth step of the loop requires 1
2k2 + 3

2k
multiplications/divisions. The total algorithm requires

1
2

n−1∑

k=1

(k2 + 3k) =
1
2


n(2n − 1)(n − 1)

6
+

3n(n − 1)
2



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=
n3

6
+

4n2 − n − 4
6

multiplications/divisions

The dominant term is n3/6.

SECTION 7
3. (a) α1 = ‖a1‖ = 2, β1 = α1(α1 − α11) = 2, v1 = (−1, 1, 1, 1)T

H1 = I − 1
β1

v1vT
1

H1A =




2 3
0 2
0 1
0 −2




H1b =




8
−1
−8
−5




α2 = ‖(2, 1, −2)T‖ = 3 β2 = 3(3− 2) = 3 v2 = (−1, 1, −2)T

H2 =

 1 0T

0 H22


 where H22 = I − 1

β2
v2vT

2

H2H1A =




2 3
0 3
0 0
0 0




H2H1b =




8
0

−9
−3




5. Let A be an m × n matrix with nonzero singular values σ1, . . . , σr and
singular value decomposition UΣV T . We will show first that Σ+ satis-
fies the four Penrose conditions. Note that the matrix ΣΣ+ is an m×m
diagonal matrix whose first r diagonal entries are all 1 and whose re-
maining diagonal entries are all 0. Since the only nonzero entries in the
matrices Σ and Σ+ occur in the first r diagonal positions it follows that

(ΣΣ+)Σ = Σ and Σ+(ΣΣ+) = Σ+

Thus Σ+ satisfies the first two Penrose conditions. Since both ΣΣ+ and
Σ+Σ are square diagonal matrices they must be symmetric

(ΣΣ+)T = ΣΣ+

(Σ+Σ)T = Σ+Σ

Thus Σ+ satisfies all four Penrose conditions. Using this result it is easy
to show that A+ = V Σ+UT satisfies the four Penrose conditions.

(1) AA+A = UΣV T V Σ+UT UΣV T = UΣΣ+ΣV T = UΣV T = A

(2) A+AA+ = V Σ+UT UΣV T V Σ+UT = V Σ+ΣΣ+UT = V Σ+UT =
A+

(3) (AA+)T = (UΣV T V Σ+UT )T

= (UΣΣ+UT )T

= U (ΣΣ+)T UT
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= U (ΣΣ+)UT

= AA+

(4) (A+A)T = (V Σ+UT UΣV T )T

= (V Σ+ΣV T )T

= V (Σ+Σ)T V T

= V (Σ+Σ)V T

= A+A

6. Let B be a matrix satisfying Penrose condition (1) and (3), that is,

ABA = A and (AB)T = AB

If x = Bb, then

ATAx = ATABb = AT (AB)T b = (ABA)T b = ATb

7. If X =
1

‖x‖2
2

xT , then

Xx =
1

‖x‖2
2

xT x = 1

Using this it is easy to verify that x and X satisfy the four Penrose
conditions.
(1) xXx = x1 = x

(2) XxX = 1X = X

(3) (xX)T = XTx =
1

‖x‖2
xxT = xX

(4) (Xx)T = 1T = 1 = Xx
8. If A has singular value decomposition UΣV T then

AT A = V ΣT UT UΣV T = V ΣT ΣV T(7)

The matrix ΣT Σ is an n × n diagonal matrix with diagonal entries
σ2

1, . . . , σ
2
n. Since A has rank n its singular values are all nonzero and it

follows that ΣT Σ is nonsingular. It follows from equation (7) that

(AT A)−1AT = (V (ΣT Σ)−1V T )(V ΣT UT )
= V (ΣT Σ)−1ΣT UT

= V Σ+UT

= A+

9. Let
b = AA+b = A(A+b)

since
R(A) = {Ax | x ∈ Rn}

it follows that b ∈ R(A).
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Conversely if b ∈ R(A), then b = Ax for some x ∈ Rn. It follows
that

A+b = A+Ax

AA+b = AA+Ax = Ax = b

10. A vector x ∈ Rn minimizes ‖b − Ax‖2 if and only if x is a solution
to the normal equations. It follows from Theorem 7.9.1 that A+b is a
particular solution. Since A+b is a particular solution it follows that a
vector x will be a solution if and only if

x = A+b + z

where z ∈ N (ATA). However, N (ATA) = N (A). Since vr+1, . . . ,vn

form a basis for N (A) (see Exercise 7, Section 7), it follows that x is a
solution if and only if

x = A+b + cr+1vr+1 + · · ·+ cnvn

13. (a) (Σ+)+ is an m × n matrix whose nonzero diagonal entries are the
reciprocals of the nonzero diagonal entries of Σ+. Thus (Σ+)+ = Σ.
If A = UΣV T , then

(A+)+ = (V Σ+UT )+ = U (Σ+)+V T = UΣV T = A

(b) ΣΣ+ is an m×m diagonal matrix whose diagonal entries are all 0’s
and 1’s. Thus (ΣΣ+)2 = ΣΣ+ and it follows that

(AA+)2 = (UΣV T V Σ+UT )2 = (UΣΣ+UT )2 = U (ΣΣ+)2UT

= UΣΣ+UT = AA+

(c) Σ+Σ is an n × n diagonal matrix whose diagonal entries are all 0’s
and 1’s. Thus (Σ+Σ)2 = Σ+Σ and it follows that

(A+A)2 = (V Σ+UT UΣV T )2 = (V Σ+ΣV T )2 = V (Σ+Σ)2V T

= V Σ+ΣV T = A+A

15. (1) ABA = XY T [Y (Y T Y )−1(XT X)−1XT ]XY T

= X(Y T Y )(Y T Y )−1(XT X)−1(XT X)Y T

= XY T

= A

(2) BAB = [Y (Y T Y )−1(XT X)−1XT ](XY T )[Y (Y T Y )−1(XT X)−1XT ]
= Y (Y T Y )−1(XT X)−1(XT X)(Y T Y )(Y T Y )−1(XT X)−1XT

= Y (Y T Y )−1(XT X)−1XT

= B

(3) (AB)T = BT AT

= [Y (Y T Y )−1(XT X)−1Xt]T (Y XT )
= X(XT X)−1(Y T Y )−1Y T Y XT

= X(XT X)−1XT

= X(Y T Y )(Y T Y )−1(XT X)−1XT
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= (XY T )[Y (Y T Y )−1(XT X)−1XT ]
= AB

(4) (BA)T = AT BT

= (Y XT )[Y (Y T Y )−1(XT X)−2XT ]T

= Y XT X(XT X)−1(Y T Y )−1Y T

= Y (Y T Y )−1Y T

= Y (Y T Y )−1(XT X)−1(XT X)Y T

= [Y (Y T Y )−1(XT X)−1XT ](XY T )
= BA

MATLAB EXERCISES

1. The system is well conditioned since perturbations in the solutions are
roughly the same size as the perturbations in A and b.

2. (a) The entries of b and the entries of V s should both be equal to the row
sums of V .

3. (a) Since L is lower triangular with 1’s on the diagonal, it follows that
det(L) = 1 and

det(C) = det(L) det(LT ) = 1
and hence C−1 = adj(C). Since C is an integer matrix its adjoint will
also consist entirely of integers.

7. Since A is a magic square, the row sums of A− tI will all be 0. Thus the row
vectors of A − tI must be linearly dependent. Therefore A − tI is singular
and hence t is an eigenvalue of A. Since the sum of all the eigenvalues is
equal to the trace, the other eigenvalues must add up to 0. The condition
number of X should be small, which indicates that the eigenvalue problem
is well-conditioned.

8. Since A is upper triangular no computations are necessary to determine its
eigenvalues. Thus MATLAB will give you the exact eigenvalues of A. How-
ever the eigenvalue problem is moderately ill-conditioned and consequently
the eigenvalues of A and A1 will differ substantially.

9. (b) Cond(X) should be on the order of 108, so the eigenvalue problem should
be moderately ill-conditioned.

10. (b) Ke = −He.
12. (a) The graph has been rotated 45◦ in the counterclockwise direction.

(c) The graph should be the same as the graph from part (b). Reflecting
about a line through the origin at an angle of π

8
is geometrically the

same as reflecting about the x-axis and then rotating 45 degrees. The
later pair of operations can be represented by the matrix product


 c −s

s c





 1 0

0 −1


 =


 c s

s −c




where c = cos π
4

and s = sin π
4
.
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13. (b)

b(1, :) = b(2, :) = b(3, :) = b(4, :) = 1
2
(a(2, :) + a(3, :))

(c) Both A and B have the same largest singular value s(1). Therefore

‖A‖2 = s(1) = ‖B‖2

The matrix B is rank 1. Therefore s(2) = s(3) = s(4) = 0 and hence

‖B‖F = ‖s‖2 = s(1)
14. (b)

‖A‖2 = s(1) = ‖B‖2

(c) To construct C, set

D(4, 4) = 0 and C = U ∗ D ∗ V ′

It follows that
‖C‖2 = s(1) = ‖A‖2

and
‖C‖F =

√
s(1)2 + s(2)2 + s(3)2 < ‖s‖2 = ‖A‖F

15. (a) The rank of A should be 4. To determine V 1 and V 2 set

V 1 = V (:, 1 : 4) V 2 = V (:, 5 : 6)

P is the projection matrix onto N (A). Therefore r must be in N (A).
Since w ∈ R(AT ) = N (A)⊥, we have

rTw = 0

(b) Q is the projection matrix onto N (AT ). Therefore y must be in N (AT ).
Since z ∈ R(A) = N (AT )⊥, we have

yTz = 0

(d) Both AX and U1(U1)T are projection matrices onto R(A). Since the
projection matrix onto a subspace is unique, it follows that

AX = U1(U1)T

16. (b) The disk centered at 50 is disjoint from the other two disks, so it contains
exactly one eigenvalue. The eigenvalue is real so it must lie in the interval
[46, 54]. The matrix C is similar to B and hence must have the same
eigenvalues. The disks of C centered at 3 and 7 are disjoint from the
other disks. Therefore each of the two disks contains an eigenvalue.
These eigenvalues are real and consequently must lie in the intervals
[2.7, 3.3] and [6.7, 7.3]. The matrix CT has the same eigenvalues as C
and B. Using the Gerschgorin disk corresponding to the third row of CT

we see that the dominant eigenvalue must lie in the interval [49.6, 50.4].
Thus without computing the eigenvalues of B we are able to obtain nice
approximations to their actual locations.
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CHAPTER TEST A

1. The statement is false in general. For example, if

a = 0.11× 100, b = 0.32× 10−2, c = 0.33× 10−2

and 2-digit decimal arithmetic is used, then

fl(fl(a + b) + c) = a = 0.11× 100

and
fl(a + fl(b + c)) = 0.12× 100

2. The statement is false in general. For example, if A and B are both 2 × 2
matrices and C is a 2 × 1 matrix, then the computation of A(BC) requires
8 multiplications and 4 additions, while the computation of (AB)C requires
12 multiplications and 6 additions.

3. The statement is false in general. It is possible to have a large relative error
if the coefficient matrix is ill-conditioned. For example, the n × n Hilbert
matrix H is defined by

hij =
1

i + j − 1
For n = 12, the matrix H is nonsingular, but it is very ill-conditioned. If you
tried to solve a nonhomogeneous linear system with this coefficient matrix
you would not get an accurate solution.

4. The statement is true. For a symmetric matrix the eigenvalue problem is well
conditioned. (See the remarks following Theorem 7.6.1.) If a stable algorithm
is used then the computed eigenvalues should be the exact eigenvalues of a
nearby matrix, i.e., a matrix of the form A + E where ‖E‖ is small. Since
the problem is well conditioned the eigenvalues of nearby matrices will be
good approximations to the eigenvalues of A.

5. The statement is false in general. If the matrix is nonsymmetric then the
eigenvalue problem could be ill-conditioned. If so, then even a stable al-
gorithm will not necessary guarantee accurate eigenvalues. In particular if
A has an eigenvalue-eigenvector decomposition XDX−1 and X is very ill-
conditioned, then the eigenvalue problem will be ill-conditioned and it will
not be possible to compute the eigenvalues accurately.

6. The statement is false. If A−1 and the LU factorization are both available the
it doesn’t matter which you use since it takes the same number of arithmetic
operations to solve LUx = b using forward and back substitution as it does
to multiply A−1b.

7. The statement is true. The 1-norm is computed by taking the sum of the
absolute values on the entries in each column of A and then taking the
maximum of the column sums. The infinity norm is computed by taking the
sum of the absolute values on the entries in each row of A and then taking
the maximum of the row sums. If A is symmetric then the row sums and
column sums will be the same and hence the both norms will be equal.
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8. The statement is false in general. For example if

A =

 4 0

0 3




then ‖A‖2 = 4 and ‖A‖F = 5.
9. The statement is false in general. If A has rank n, then the least squares

problem will have a unique solution. However, if A is ill-conditioned the
computed solution may not be a good approximation to the exact solution
even though it produces a small residual vector.

10. The statement is false in general. For example, if

A =

 1 0

0 10−8


 and B =


 1 0

0 0




then A and B are close since ‖A−B‖F = 10−8. However their pseudoinverses
are not close. In fact, ‖A+ − B+‖F = 108

CHAPTER TEST B

1. If y = Bx then the computation of a single entry of y requires n multipli-
cations and n − 1 additions. Since y has n entries, the computation of the
matrix-vector product Bx requires n2 multiplications and n(n−1) additions.
The computation A(Bx) = Ay requires 2 matrix-vector multiplications. So
the number of scalar multiplications and scalar additions that are necessary
is 2n2 and 2n(n − 1).

On the other hand if C = AB then the computation of the jth column of C
requires a matrix-vector multiplication cj = Abj and hence the computa-
tion of C requires n matrix-vector multiplications. Therefore the computa-
tion (AB)x = Cx will require n+1 matrix-vector multiplications. The total
number of arithmetic operations will be (n+1)n2 scalar multiplications and
(n + 1)n(n − 1) scalar additions.

For n > 1 the computation A(Bx) is more efficient.
2. (a)




2 3 6 3
4 4 8 0
1 3 4 4


 →




4 4 8 0
2 3 6 3
1 3 4 4


 →




4 4 8 0
0 1 2 3
0 2 2 4




→




4 4 8 0
0 2 2 4
0 1 2 3


 →




4 4 8 0
0 2 2 4
0 0 1 1




The solution x = (−3, 1, 1)T is obtained using back substitution.
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(b)

P =




0 1 0
0 0 1
1 0 0


 , PA =




4 4 8
1 3 4
2 3 6




and

LU =




1 0 0
1
4 1 0
1
2

1
2 1







4 4 8

0 2 2

0 0 1




(c) If we set d = P ~=(8, 2, 1)T and solve Ly = d by forward substitution

(L d) =




1 0 0 8
1
4 1 0 2
1
2

1
2

1 1




then the solution is y = (8, 0,−3)T . To find the solution to the system
Ax = c, we solve Ux = y using back substitution.

(U y) =




4 4 8 8

0 2 2 0

0 0 1 −3




The solution is x = (5, 3,−3)T .
3. If Q is a 4 × 4 orthogonal matrix then for any nonzero x in R4 we have

‖Qx‖ = ‖x‖ and hence

‖Q‖2 = max
x 6=0

‖Qx‖
‖x‖ = 1

To determine the Frobenius norm of Q, note that

‖Q‖2
F = ‖q1‖2 + ‖q2‖2 + ‖q3‖2 + ‖q4‖2 = 4

and hence ‖Q‖F = 2.
4. (a) ‖H‖1 = 1 + 1

2 + 1
3 + 1

4 = 25
12

‖H−1‖1 = max(516, 5700, 13620, 8820) = 13620

(b) From part (a) we have cond1(H) = 25
12 · 13620 = 28375 and hence

‖x − x′‖1

‖x‖1
≤ cond1 (H)

‖r‖
‖b‖1

= 28375 · 0.36× 10−11

50
= 2.043× 10−9

5. The relative error in the solution is bounded by

cond∞(A)
‖r‖∞
‖b‖∞

≈ 107ε

so it is possible that one could lose as many as 7 digits of accuracy.
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6. (a) α = 3, β = 3(3− 1) = 6, v = (−2, 2,−2)T

H = I − 1
β
vvT =




1
3

2
3 −2

3

2
3

1
3

2
3

−2
3

2
3

1
3




(b)

G =




1 0 0

0 1√
2

− 1√
2

0 − 1√
2

− 1√
2




7. If A has QR-factorization A = QR and B = RQ then

QT AQ = QT QRQ = RQ = B

The matrices A and B are similar and consequently must have the same
eigenvalues. Furthermore, if λ is an eigenvalue of B and x is an eigenvector
belonging to λ then

QT AQx = Bx = λx

and hence

AQx = λQx

So Qx is an eigenvector of A belonging to λ.
8. The estimate you get will depend upon your choice of a starting vector. If

we start with u0 = x0 = e1, then

v1 = Ae1 = a1, u1 = 1
4v1 = (0.25, 1)T

v2 = Au1 = (2.25, 4)T , u2 = 1
4
v2 = (0.5625, 1)T

v3 = Au2 = (2.5625, 5.25)T, u3 = 1
5.25v3 = (0.548810, 1)T

v4 = Au3 = (2.48810, 4.95238)T, u4 = (0.502404, 1)T

v5 = Au4 = (2.50240, 5.00962)T, u5 == (0.499520, 1)T

v6 = Au5 = (2.49952, 4.99808)T

Our computed eigenvalue is the second coordinate of v6, 4.99808 (rounded to
6 digits) and the computed eigenvector is u5. The actual dominant eigenvalue
of A is λ = 5 and x = (0.5, 1)T is an eigenvector belonging to λ.

9. The least squares solution with the smallest 2-norm is

x = A+b = V Σ+UTb =




1
3

1
2

1
12



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10. If we set α1 = ‖a1‖ = 2, β1 = 2, v1 = (−1, 1, 1, 1)T and H1 = I − 1
β1

v1vT
1

then H1a1 = 2e1. If we multiply the augmented matrix (A b) by H1 we get

H1(A |b) =




2 9 7
0 1 −1
0 2 0
0 −2 −2




Next we construct a 3 × 3 Householder matrix H2 to zero out the last 2 en-
tries of the vector (1, 2,−2)T . If we set α2 = 3, β2 = 6 and v2 = (−2, 2,−2)T ,
then H2 = I − 1

βv2vT
2 . If we apply H2 to the last 3 rows of H1(A |b) we

end up with the matrix 


2 9 7
0 3 1
0 0 −2
0 0 0




The first two rows of this matrix form a triangular system. The solution
x = (2, 1

3
)T to the triangular system is the solution to the least squares

problem.
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