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PREFACE

This solutions manual is designed to accompany the seventh edition of Linear
Algebra with Applications by Steven J. Leon. The answers in this manual supple-
ment those given in the answer key of the textbook. In addition this manual contains
the complete solutions to all of the nonroutine exercises in the book.

At the end of each chapter of the textbook there are two chapter tests (A and
B) and a section of computer exercises to be solved using MATLAB. The questions
in each Chapter Test A are to be answered as either true or false. Although the true-
false answers are given in the Answer Section of the textbook, students are required
to explain or prove their answers. This manual includes explanations, proofs, and
counterexamples for all Chapter Test A questions. The chapter tests labelled B
contain workout problems. The answers to these problems are not given in the
Answers to Selected Exercises Section of the textbook, however, they are provided
in this manual. Complete solutions are given for all of the nonroutine Chapter Test
B exercises.

In the MATLAB exercises most of the computations are straightforward. Con-
sequently they have not been included in this solutions manual. On the other hand,
the text also includes questions related to the computations. The purpose of the
questions is to emphasize the significance of the computations. The solutions man-
ual does provide the answers to most of these questions. There are some questions
for which it is not possible to provide a single answer. For example, aome exercises
involve randomly generated matrices. In these cases the answers may depend on
the particular random matrices that were generated.

Steven J. Leon
sleon@umassd.edu
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SECTION 1

5.

1 1 1 1 1
0 2 1 —2 1
(d) 0 0 4 1 —2
0 0 0 1 -3
0 0 0 0 2
(a) 3{E1 + 2{E2 =8
xr1 + 5{E2 =7
(b) 5{E1 - 2{E2 + Tr3 = 3
2%1 + 3{E2 - 4{E3 =0
(C) 2{E1 —+ T2 +4{E3 = —1
4$1 — 2{E2 + 3{E3 = 4
5{E1 + 2{E2 + 6{E2 =-1
(d) 4x1 —3xo+ x3+2x4 =4
3rx1+ x92—Dbxr3+ 614 =05
1+ To+2x3+4x4 =8
5$1+ $2+3$3—2{E4 =7
. Given the system
—miTy +x2 = by
—maT1 + T2 = by

one can eliminate the variable xo by subtracting the first row from the
second. One then obtains the equivalent system

—mix1 +x2 = by

(ml - m2)$1 = by — by
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10.
11.

(a) If mq # mq, then one can solve the second equation for x;

ba — b1

rn=———"""7-"
myp —mg

One can then plug this value of x; into the first equation and solve for
2o. Thus, if my # ma, there will be a unique ordered pair (x1, x2) that
satisfies the two equations.

(b) If vy = mg, then the 21 term drops out in the second equation

0=0bs—b1

This is possible if and only if by = bs.

(¢) If my # ma, then the two equations represent lines in the plane with
different slopes. Two nonparallel lines intersect in a point. That point
will be the unique solution to the system. If m; = mo and b; = by, then
both equations represent the same line and consequently every point on
that line will satisfy both equations. If m; = mqy and by # ba, then the
equations represent parallel lines. Since parallel lines do not intersect,
there is no point on both lines and hence no solution to the system.

The system must be consistent since (0, 0) is a solution.

A linear equation in 3 unknowns represents a plane in three space. The
solution set to a 3 x 3 linear system would be the set of all points that lie
on all three planes. If the planes are parallel or one plane is parallel to the
line of intersection of the other two, then the solution set will be empty. The
three equations could represent the same plane or the three planes could
all intersect in a line. In either case the solution set will contain infinitely
many points. If the three planes intersect in a point then the solution set
will contain only that point.

SECTION 2

=]

b) The system is consistent with a unique solution (4, —1).

b) 21 and x5 are lead variables and x5 is a free variable.
d) 1 and 3 are lead variables and x2 and x4 are free variables.
f) 29 and x3 are lead variables and x; is a free variable.

(
(
(
(
(1) The solution is (0, —1.5, —3.5).

. (¢) The solution set consists of all ordered triples of the form (0, —a, ).

. A homogeneous linear equation in 3 unknowns corresponds to a plane that

passes through the origin in 3-space. Two such equations would correspond
to two planes through the origin. If one equation is a multiple of the other,
then both represent the same plane through the origin and every point on
that plane will be a solution to the system. If one equation is not a multiple of
the other, then we have two distinct planes that intersect in a line through the
origin. Every point on the line of intersection will be a solution to the linear
system. So in either case the system must have infinitely many solutions.
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In the case of a nonhomogeneous 2 x 3 linear system, the equations cor-
respond to planes that do not both pass through the origin. If one equation
is a multiple of the other, then both represent the same plane and there are
infinitely many solutions. If the equations represent planes that are parallel,
then they do not intersect and hence the system will not have any solutions.
If the equations represent distinct planes that are not parallel, then they
must intersect in a line and hence there will be infinitely many solutions.
So the only possibilities for a nonhomogeneous 2 x 3 linear system are 0 or
infinitely many solutions.

9. (a) Since the system is homogeneous it must be consistent.
14. At each intersection the number of vehicles entering must equal the number
of vehicles leaving in order for the traffic to flow. This condition leads to the
following system of equations

T1+ar = w3+

T +az = w3+ by

r3+ a3 = x4+ b3

T4 +ays = x1+ by
If we add all four equations we get
T1+22+23+T4+ar+aztazt+as =x1+ T2+ w3+ 14 +b1+ b2+ b3+ 0y

and hence

a1+ as +az +ag =by + by + bg + by

15. If (¢1, ¢c2) is a solution, then
ajicy +ajace = 0
az1¢1 + agacy = 0
Multiplying both equations through by «, one obtains
ar1(acr) + aja(ace) = a-0=0
a1 (acr) + asa(ace) = -0 =

Thus (aeq, acg) is also a solution.

16. (a) If x4 = 0 then x1, 2, and x3 will all be 0. Thus if no glucose is produced
then there is no reaction. (0,0,0,0) is the trivial solution in the sense that
if there are no molecules of carbon dioxide and water, then there will be no
reaction.

(b) If we choose another value of x4, say x4 = 2, then we end up with
solution x1; = 12, x9 = 12, x3 = 12, x4 = 2. Note the ratios are still 6:6:6:1.

SECTION 3

8§ —15 11
1. (e) 0 -4 =3
-1 —6 6
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5 —10
(2) [5 -1

8 -9

36 10 56
2. (d>[1o 3 16]
15 20
5. (a) bA = 5 5
10 35
6 8 9
2A+34=|2 2 |+]3
4 14 6
18 24
(b) 64=] 6 6
12 42
6 8 18
34 =32 2 |=] s
4 14 12
r (3 1 2
(c) 4 _[4 1 7]
T 3 4
(AT)T_[i 1 3] _[1 1
2 7
5 4 6
6 (a)A—l—B—[O - 1]_B+A
5 4 6
(b) 3(A+B)_3[O s
12 3 18
3A+3B_[ PR
(15 12 18
“lo 15 3
T 5
(@ (A+BT=[2 10 — |4
05 1
6
4 2 1
AT4+BT =11 3|+ 3
6 5 0
5 14 15
7. (a) 3(AB)=3| 15 42 [ =] 45
0 16 0
6 3
BAB=| 18 9 [f 2]
-6 12

12 15
3 | = )
21 10

24
6
42

—2 )
2 ] - [ i
—4 6
42
126 ]
48

20

35



If we set

E = A(BC) = [

Section 8

2 1 15 42
A(3B) = 6 3 [ g i; ] =] 45 126
-2 4 0 48
T
14
5 15 0
b) (AB)T = | 15 42 = [ ]
0 16 14 42 16
. 2 1 2 6 -2 5 15
BA_[4 6][1 3 4]_[14 42
0 5 3 1 3 6
(a) (A+B)+C— [1 o)+ [2 1] - [3 8]
2 4 1 2 3 6
A+(B+C)_[1 3 +[2 5]—[3 8]
—4 18 3 1 24 14
(b) (AB)C = [ -2 13 [ 2 1 ] o [ 20 11 ]
2 4 —4 1 24 14
ABO = | 3][8 4]_[20 11]
2 4 1 2 10 24
() AAB+O) = 3][2 5] [7 17]
—4 18 14 6 10 24
AB+AC= 13]+[9 4]_[7 17]
0 5 3 1 10 5
(d) (A+B)C = 7][2 1]_[17 8]
14 6 | 10 5
ACHBO=1 4]+[8 4]_[17 8]
. Let
a11b11 + a12b21 a11b12 + ai2baa C11
D = (AB)C =
(4B) [ az1bi1 + azzba1  a21biz + agabaeo ] [ C21
It follows that
di1 = (@11b11 + a12b21)ci1 + (@11b12 + a12b22)can
= apibiicit + aizbaicii + aribiacar + ai2baacan
dia = (@11b11 + a12b21)c12 + (a11b12 + a12ba22)ca0
= apibiici2 + aizbaicia + ar1biacas + ai2baacan
do1 = (a21b11 + a22b21)ci1 + (a21b12 + azbaz)car
= agibiici1 + azzbaicii + azibiacar + agabaacar
doa = (a21b11 + a22b21)c12 + (a21b12 + asabaz)cao

= ag1bi1ci2 + azabaicia + azibiacas 4 agabaacan

biici1 + bizcan
baici1 + bazcan

a12
a22

a11
a21

J

C12
C22

biiciz 4 biacaa
baiciz 4 baacaa
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12.

13.

15.

then it follows that

e11 = api(bricin + bizcar) + ara(barcin + baacar)

= ai1biicir + anbiacar + argbaicit + aiabaacor
e12 = api(biiciz + biacaz) + ara(baiciz + baacaz)

= aiibiicia + arrbiaces + arsbaicia + aiobaacon
ea1 = ag1(br1c11 + biacar) + aga(baici1 + baacar)

= az1biici1 + as1biacar + agebaicit + azabaacor
e2a = ag1(br1c12 + biacaz) + aga(baiciz + baacaz)

= az1biici2 + a21b12c22 + azebaicia + azbazcon

Thus

di1 = en di2 = e12 d21 = e21 dao = ea2

and hence
(AB)C =D =FE = A(BC)

OO OO
OO OO
o O o
[N e )
OO OO
OO OO
OO OO
o O o

and A* = O. If n > 4, then
A" = AMTHAT = A0 =0

(b) x = (2,1)7 is a solution since b = 2a; +ay. There are no other solutions
since the echelon form of A is strictly triangular.

(¢) The solution to Ax = ¢ is x = (=3, —1)”. Therefore ¢ = —2a; — 1a,.
Ifd= a11022 — 421412 7§ 0 then
l a22 —ai2 ari aiz
d —a21 aiy az1 a22
a11G22 — G12G2] 0
d
= = I
0 a11G22 — A12G2]
d
arl ai2 l Q22 —ai12
a21 a22 d —ag21 ay
a11G22 — G12G2] 0
d
= = I
0 Q11G22 — A12G2]

Therefore

l a22 —ai2 — A1
d —az21 ai



16.

17.

18.

19.

20.

21.

Section 8 7

Since
AT A=AA"1 =1
it follows from the definition that A~ is nonsingular and its inverse is A.
Since
ATA™HT = A4 AT =1
(ADTAT = (AA YT =
it follows that
(AH)T = (A7)
If Ax = Ay and x # y, then A must be singular, for if A were nonsingular
then we could multiply by A=! and get

A7 1Ax = A Ay
X =y
Form =1,
(Al)fl — Afl — (Afl)l
Assume the result holds in the case m = k, that is,
(Ak)fl _ (Afl)k
It follows that
(Afl)kJrlAkJrl _ Afl(Afl)kAkA _ AflA -7
and
AkJrl(Afl)kJrl _ AAk(Afl)kAfl _ AAfl -7
Therefore
(Afl)kJrl _ (AkJrl)fl
and the result follows by mathematical induction.
(a) (A+B)? = (A+B)(A+B) = (A+B)A+(A+B)B = A>+ BA+ AB+B?
In the case of real numbers ab + ba = 2ab, however, with matrices
AB + BA is generally not equal to 2AB.

(b)
(A+ B)(A-B) = (A+ B)(A- B)
= (A+B)A—-(A+B)B
= A*+BA—- AB - B?
In the case of real numbers ab—ba = 0, however, with matrices AB—BA
is generally not equal to O.

If we replace a by A and b by the identity matrix, I, then both rules will
work, since

(A+T1)2?=A*+ JA+ Al +B* = A + Al + Al + B* = A> + 2A1 + B?
and

(A+DA-D=A>+TA-AI - =A*+A-A-T*=A*-1?
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22.

23.

24.

25.

26.

27.

28.

There are many possible choices for A and B. For example, one could choose

0 1 11
(01 wa oo () })
More generally if
a b db eb
A_[ca cb] B_[—da —ea]
then AB = O for any choice of the scalars a, b, ¢, d, e.

To construct nonzero matrices A, B, C' with the desired properties, first find
nonzero matrices C' and D such that DC' = O (see Exercise 22). Next, for
any nonzero matrix A, set B = A+ D. It follows that

BC=(A+D)C=AC+DC=AC+0 = AC

A 2 x 2 symmetric matrix is one of the form
a b
=)

42 _ a®>+b* ab+be
T lab+be b2+

If A2 = O, then its diagonal entries must be 0.
a? +0b>=0 and ¥+ct=0
Thus a = b= ¢ =0 and hence A = O.

For most pairs of symmetric matrices A and B the product AB will not be
symmetric. For example

(-

See Exercise 27 for a characterization of the conditions under which the
product will be symmetric.

Thus

(a) AT is an n x m matrix. Since AT has m columns and A has m rows,
the multiplication AT A is possible. The multiplication AA” is possible
since A has n columns and A7 has n rows.

(b) (ATA)T = AT(ATYT = ATA
(AAT)T:(AT)TAT:AAT

Let A and B be symmetric n x n matrices. If (AB)? = AB then

BA=BTAT = (AB)T = AB

Conversely if BA = AB then

(AB)T = BT AT = BA = AB

If A is skew-symmetric then AT = —A. Since the (j, j) entry of AT is a;;
and the (7, j) entry of —A is —a;;, it follows that is a;; = —a;; for each j
and hence the diagonal entries of A must all be 0.



29.

31.

34.

Section 4

(a)
BT
ct =
(b) A=4(A+AT)+ 3(A-AT)

The search vector is x = (1,0, 1,0, 1,0)7. The search result is given by the
vector

(A+ ATYT = AT 4 (AT)YT = AT+ A=B
(A= ATYT = AT - (ATYT = AT — A= —C

y=ATx=(1,2,2,1,1,2,1)7

The ith entry of y is equal to the number of search words in the title of the
air Q12

ith book.
If a = CLQl/CLll, then
o a12
0 b o aal + b
The product will equal A provided

aii
aanl

1 O a2 ai1
a 1 aarz +b a1

aa12 + b= a9

Thus we must choose
a21G12

b= ax —aai2 = agy —
a11

SECTION 4

2.

(a) [(1) (1)], type 1

(b) The given matrix is not an elementary matrix. Its inverse is given by

[ )
0 3

1 0 0
(c) [ 0 1 0 ] type III
-5 0 1
1 0 0
(d) [ 0o 1/5 0 ], type 11
0 0 1
5. (c) Since

6.

C=FB=FFA

where F' and E are elementary matrices, it follows that C' is row equivalent

to A.
1 0 0 1 0 0
],E21_[0 1 0],E31_[0 1 o]
0 -1 1

2 0 1

1 0 0
M E!T=13 1 0
0 0 1

)
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The product L = E; 'E; "E; ! is lower triangular.

1 0 0
L=1]3 1 0
2 -1 1

7. A can be reduced to the identity matrix using three row operations

G- 06) -y -(61)

The elementary matrices corresponding to the three row operations are

1 0 1 -1 L9
_ — — 2
a=(51) m=(s 1) m=(5 1)
EsFEsF1A=1

I 10 11 2 0
A_E11E31E31_[3 1] [o 1] [o 1]

and A-1 = EsEs>Eq.

s o (V) (3 5)

1 00y (-2 12
d | -2 10][ 032]
3 -2 1 00 2

2

1

—2

1 0 1
9. (a) | 3 3 4][—1

So

and hence

2 2 3 0

1 2 -3 1 0
-1 1 -1 3 3
0o -2 =3 2 2

1 -1 0
10. (e) O 1 -1

w

-

O O OO
— oo = OO
N

oo
Il
o——

0 0 1
12. (b) XA+ B=C
= (C - B)A!

B 8 —14
“l-13 19

(d) XA+C =X
XA-XI=-C
X(A-I)=-C
X=-C(A-I)"

-4 )
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13. (a) If E is an elementary matrix of type I or type II then E is symmetric.
Thus E7 = E is an elementary matrix of the same type. If E is the
elementary matrix of type III formed by adding « times the ith row of
the identity matrix to the jth row, then E7 is the elementary matrix
of type III formed from the identity matrix by adding « times the jth

row to the ith row.

(b) In general the product of two elementary matrices will not be an ele-
mentary matrix. Generally the product of two elementary matrices will
be a matrix formed from the identity matrix by the performance of two

row operations. For example, if

100
Ei=|2 1 0 and  Fp=

0 0 0

then F; and FEs are elementary matrices, but

100
EWEy=(12 1 0

2 01

is not an elementary matrix.

14. If T = UR, then
lij = Zuikaj
k=1

Since U and R are upper triangular
Uil = Ui =+ =Uj—1 =0
Tjtly = Tj+2,4 = " —Tnj =0

If 7 > j, then

7 n
lij = E UikThj + E Uik kj
k=1

k=j+1
7 n
= ZOTkj—l- Z w0
k=1 k=j+1
=0

Therefore T is upper triangular.
If © = j, then

i—1

1 00
0 1 0

2 0 1

n
tig =ty = Wikt F Uit Y WikTk

k=1 k=j+1

i—1 n
= Zorkj+ujjrjj+ Z uikO
k=1

k=j+1
= UgsTy;
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Therefore
tjj:'U:jjTjj j:l,...,n
15. If we set x = (2,1 —4)7, then

16.

17.

18.

19.

20.

Ax:2a1+1a2—4a3:0

Thus x is a nonzero solution to the system Ax = 0. But if a homogeneous
system has a nonzero solution, then it must have infinitely many solutions.
In particular, if ¢ is any scalar, then ¢x is also a solution to the system since

A(ex) =cAx=c0=0

Since Ax = 0 and x # 0 it follows that the matrix A must be singular. (See
Theorem 1.4.2)
If a; = 3ay — 2a3, then

ai —3824-283 =0
Therefore x = (1, —3,2)7 is a nontrivial solution to Ax = 0. It follows form
Theorem 1.4.2 that A must be singular.
If xg # 0 and Axy = Bxg, then Cxg = 0 and it follows from Theorem 1.4.2
that C' must be singular.

If B is singular, then it follows from Theorem 1.4.2 that there exists a nonzero
vector x such that Bx = 0. If C = AB, then

Cx=ABx=A0=0
Thus, by Theorem 1.4.2, C' must also be singular.

(a) If U is upper triangular with nonzero diagonal entries, then using row
operation II, U can be transformed into an upper triangular matrix with
1’s on the diagonal. Row operation IIT can then be used to eliminate
all of the entries above the diagonal. Thus U is row equivalent to I and
hence is nonsingular.

(b) The same row operations that were used to reduce U to the identity
matrix will transform I into U~!. Row operation II applied to I will
just change the values of the diagonal entries. When the row operation
IIT steps referred to in part (a) are applied to a diagonal matrix, the
entries above the diagonal are filled in. The resulting matrix, U1, will
be upper triangular.

Since A is nonsingular it is row equivalent to . Hence there exist elementary
matrices F1, Fo, ..., B such that
Ey---E1A=1
It follows that
A =FE,- - Ey
and
E.--Ey\B=A"'B=C

The same row operations that reduce A to I, will transform B to C. There-
fore the reduced row echelon form of (A | B) will be (I | C).



21.

22.

23.

24.

25.

26.

Section 4 13

(a) If the diagonal entries of Dy are aq, @, . .., au, and the diagonal entries
of Dy are (1, B2, . . ., Bn, then D1 D5 will be a diagonal matrix with diag-
onal entries o101, asfs, ..., anB, and Dy D; will be a diagonal matrix
with diagonal entries 31 aq, focva, . . ., By, Since the two have the same
diagonal entries it follows that Dy Dy = Dy D1

(b)
AB = A(aol + a1A+ - -+ apAF)
= agA+ a1 A% + -+ qp AP
= (apl + a1 A+ ---+arAM)A
= BA
If A is symmetric and nonsingular, then
(A7) = (A)1(A47) = (A)7AT) A = A~

If A is row equivalent to B then there exist elementary matrices F1, Es, . . ., Ey
such that
A=EyE,_,---E1B
Each of the E;’s is invertible and E; ' is also an elementary matrix (Theorem
1.4.1). Thus
B=E'E;' . E'A

and hence B is row equivalent to A.

(a) If Aisrow equivalent to B, then there exist elementary matrices E1, Fo, . .., Ej
such that
A=FEyFEy_1---E1B
Since B is row equivalent to C', there exist elementary matrices Hy, Ho, ..., H;
such that

B=H;Hj ,-- - H,C

Thus
A=FEEy_1---E1HjHj 1---H,C

and hence A is row equivalent to C.
(b) If A and B are nonsingular n x n matrices then A and B are row
equivalent to I. Since A is row equivalent to I and [ is row equivalent
to B it follows from part (a) that A is row equivalent to B.
If U is any row echelon form of A then A can be reduced to U using row
operations, so A is row equivalent to U. If B is row equivalent to A then it
follows from the result in Exercise 24(a) that B is row equivalent to U.
If B isrow equivalent to A, then there exist elementary matrices Fy, o, ..., E}
such that
B=FEyEy_1---E1A

Let M = ExEy_1--- FEq. The matrix M is nonsingular since each of the F;’s
is nonsingular.
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Conversely suppose there exists a nonsingular matrix M such that
B = MA. Since M is nonsingular it is row equivalent to I. Thus there exist
elementary matrices E1, Es, ..., E} such that
M =FEyEp_1---Fql
It follows that
B=MA=FEyE;_1---FEA
Therefore B is row equivalent to A.
27. (a) The system Vi =y is given by

2
1 T i e ] c1 Y1
1 To x% e Ty Co Y2
1 T 2 e n
n+1 Tni1 Tn+1 Cntl Yn+1

Comparing the ith row of each side, we have
c1 +eami+ -t e =Y
Thus
px)=y i=12,....,.n+1
(b) If 21,9, ..., xn41 are distinct and Ve = 0, then we can apply part (a)
with y = 0. Thus if p(z) = ¢1 + cox + -+ - + ¢p412"™, then

p(x;) =0 i=1,2,....n+1

The polynomial p(z) has n + 1 roots. Since the degree of p(x) is less
than n + 1, p(z) must be the zero polynomial. Hence

cir=cy=:"=cCpy1 =0

Since the system Ve = 0 has only the trivial solution, the matrix V'
must be nonsingular.

SECTION 5

al ala;, alay, .-+ aTa,
al ala; alfa, -+ ala,
2. B=ATA= 2 (a,a9,...,a,) = 2 2 2
al ala; ala, ala,
1 -2 1
11 -1 6 0 1
5(3“)[212][? ; ;]+[—1](123)_[11 -1

U oW
|
| Utk
N ——
s
[\V]
|
[ —
(en)
o O
| —
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The block multiplication is performed as follows:

A1 Arz Af, AL
Ag1 Az Afy, AL,

AnAl) 4+ A Al A A3+ A AT
AnAT) 4 A AT, Ag A3} + Ax AT,

e e () e
NENEONEE

(b) Since y,x!' = (x;y7)T for j = 1,2,3, the outer product expansion of

Y X7 is just the transpose of the outer product expansion of XY 7. Thus

YXT = yix| + yox3 +ysx3

(2 4 2 4 20 12
= [4 8]+[3 6]+[ 5 3]

7. It is possible to perform both block multiplications. To see this suppose A1
is a k xr matrix, A2 is a k x (n—r) matrix, Asy is an (m—k) X r matrix and
Agz is (m — k) x (n —r). It is possible to perform the block multiplication
of AAT since the matrix multiplication A1 AT, A11 AL, A2 AL, A2 AL,
A AT Ag1 AL Axn AT, Agp AT, are all possible. It is possible to perform
the block multiplication of AT A since the matrix multiplications A%} A;,
A,{lAlg, AglAgl, AglAlla A,{;Alg, A%;Agl, A%;AQQ are all possible.

8. AX = A(x1,Xa,...,%,) = (Ax1, AXs, ..., Ax,.)
B = (blaan"'abT)
AX = B if and only if the column vectors of AX and B are equal
AXj:bj jzl,...,T

9. (a) Since D is a diagonal matrix, its jth column will have d;; in the jth row
and the other entries will all be 0. Thus d; = d;,e; for j =1,...,n.

(b)
AD = A(dyie1, dyes,. .., dnney,)
= (duAel, dysAey, .. ., dnnAen)

= (dnai, dosag, ..., dppay)

10. (a)

D
Us = [U1 UQ] [01] — U3, + U0 = U,



16 CHAPTER 1

(b) If we let X = UX, then
X =U13 = (01uy,00us, ...,0,uy)
and it follows that

A=UxvT =xvT = alulvlT + aquVQT 4+ anunvg

11.
Aﬁl C A Aio I AﬁlAlQ + CAsg
@) A;21 @) AQQ @) I
If
AfllAlg +CAy =0
then
C=—-AApAy
Let

Afll _Af11A12A521
B =
@) Ass
Since AB = BA = I it follows that B = A~1.

12. Let 0 denote the zero vector in R™. If A is singular then there exists a vector
x1 # 0 such that Ax; = 0. If we set

= (%)
we= (89) (5] = (dse) = ()

By Theorem 1.4.2, M must be singular. Similarly, if B is singular then there
exists a vector xo # 0 such that Bxy, = 0. So if we set

< ()

then x is a nonzero vector and Mx is equal to the zero vector.
15. The block form of S~! is given by

I v —A
g1 = [ !
It follows that

sus- (5 1) (% 9)(5 Y

then
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_ [ o O ]
B BA
16. The block multiplication of the two factors yields
[I O][Au A12]_[ Aqy Agz ]
B I O C BAyy,  BAp+C
If we equate this matrix with the block form of A and solve for B and C' we
. B = Ay Ay} and C = Ay — Ay A Ara
To check that this works note that
BAy = Ag Al A = Ay
BAj s +C = A21Af11A12 + Ago — A21Af11A12 = Ay
and hence
[I O][Au A12]_[A11 A12]_A
B I 0] C Ay Ag
17. In order for the block multiplication to work we must have
XB=S and YM=T

Since both B and M are nonsingular, we can satisfy these conditions by
choosing X = SB~! and Y =TM L.

18. (a)
bl blc
b2 bQC
BC = . (c) = . =cb
by, b,c
(b)
1
€2
Ax = (alaaQa <. 'aan)
LTn

= aj(r1) +az(z2) + - +an(wn)
(¢) It follows from parts (a) and (b) that
AX = al(xl) —+ ag(:cg) + -4 an(xn)

= ri1a; +x0a9 + -+ xpa,
19. If Ax = 0 for all x € R", then
aj=Ae; =0 for j=1,...,n

and hence A must be the zero matrix.
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20. If
Bx=Cx forall xe R"

then
(B-C)x=0 forall xeR"

It follows from Exercise 19 that

B-C =0
B =C
21. (a)
A7t 0 A a x B A7t 0 b
—cTA-1 1 ' B Toy1 ) | —cTA7D 1 b1
I A la x B A"'b
07  —cTAlta+p Top1 ) | —cTA D+ b,y
(b) Tf
y=Ata and z=A"'b
then
(_CTY + B)anrl =-c'z +bpi1
—CTZ + anrl T
Tl = T g (B—c'y#0)
and

X+ z,1Ata=A"1b

x=A"'"b—z, 1A ta=z—z,.1y

MATLAB EXERCISES

1. In parts (a), (b), (c) it should turn out that A1 = A4 and A2 = A3. In part
(d) A1 = A3 and A2 = A4. Exact equality will not occur in parts (¢) and
(d) because of roundoff error.

2. The solution x obtained using the \ operation will be more accurate and yield
the smaller residual vector. The computation of x is also more efficient since
the solution is computed using Gaussian elimination with partial pivoting
and this involves less arithmetic than computing the inverse matrix and
multiplying it times b.

3. (a) Since Ax = 0 and x # 0, it follows from Theorem 1.4.2 that A is

singular.
(b) The columns of B are all multiples of x. Indeed,

B = (x, 2%, 3x, 4x, 5x, 6X)
and hence

AB = (Ax,2Ax,3Ax,4Ax,5A%,6A4x) = O
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If D= B+C, then
AD = AB + AC = O + AC = AC

4. By construction B is upper triangular whose diagonal entries are all equal to
1. Thus B is row equivalent to I and hence B is nonsingular. If one changes
B by setting b1g1 = —1/256 and computes Bx, the result is the zero vector.
Since x # 0, the matrix B must be singular.

(a)

Since A is nonsingular its reduced row echelon form is I. If Fy, ..., E}
are elementary matrices such that Ey---E1A = I, then these same
matrices can be used to transform (A b) to its reduced row echelon
form U. It follows then that

U=E,---E(A b)=A"1(A b)=( A 'b)

Thus, the last column of U should be equal to the solution x of the
system Ax = b.

After the third column of A is changed, the new matrix A is now sin-
gular. Examining the last row of the reduced row echelon form of the
augmented matrix (A b), we see that the system is inconsistent.

The system Ax = c is consistent since y is a solution. There is a free
variable x3, so the system will have infinitely many solutions.

The vector v is a solution since

Av =A(w +3z) = Aw + 34z =c

For this solution the free variable x3 = v3 = 3. To determine the general
solution just set x = w + tz. This will give the solution corresponding
to xg =t for any real number ¢.

There will be no walks of even length from V; to V; whenever i + j is
odd.

There will be no walks of length £ from V; to V; whenever ¢ + j 4 & is
odd.

The conjecture is still valid for the graph containing the additional
edges.

If the edge {Vg, V3} is included, then the conjecture is no longer valid.
There is now a walk of length 1 Vg to Vs and i+ j+k=6+8+ 1 1is
odd.

. The change in part (b) should not have a significant effect on the survival

potential for the turtles. The change in part (c) will effect the (2,2) and (3, 2)
of the Leslie matrix. The new values for these entries will be ls5 = 0.9540 and
l32 = 0.0101. With these values the Leslie population model should predict
that the survival period will double but the turtles will still eventually die

out.

9. (b) x1 =c—Vx2.

10.

(b)

o (I kB
AT = [kB I
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This can be proved using mathematical induction. In the case k =1
42 _ o I o I1)_(I B
I B I B B 1
If the result holds for £ =m

then
A2m+2 — A2A2m

- [(mme (mJ}UB]

It follows by mathematical induction that the result holds for all positive
integers k.

0] 1 I kB kB 1
2k+1 _ 2k _ _
et A N P B (A

(b)

11. (a) By construction the entries of A were rounded to the nearest integer.
The matrix B = ATA must also have integer entries and it is symmetric

since
BT = (ATA)T = AT(ATYT = ATA =B
(b)
T I 0 Bll 0] I ET
et = (5 9] (% ) (60
B B B ET
~ |\ EBy;y EB\/ET+F
where

E= Bngﬁl and F = BQQ — BngﬁlBlg
It follows that
B ET = Bll(Bﬁl)TBng = B11B;'Bi2 = By
EBy1 = Bo1Bj'Bi1 = B

EB\ET + F = By ET + Byy — B2y By} Bio
= By B;'Bia + Bas — B2 By Bio
= B

Therefore
LDLT =B
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1. The statement is false in general. If the row echelon form has free variables
and the linear system is consistent, then there will be infinitely many solu-
tions. However, it is possible to have an inconsistent system whose coefficient
matrix will reduce to an echelon form with free variables. For example, if

() ()

then A involves one free variable, but the system Ax = b is inconsistent.

2. The statement is true since the zero vector will always be a solution.

3. The statement is true. A matrix A is nonsingular if and only if it is row
equivalent to the I (the identity matrix). A will be row equivalent to I if
and only if its reduced row echelon form is I.

4. The statement is false in general. For example, if A = I and B = —I, the
matrices A and B are both nonsingular, but A+ B = O is singular.
5. The statement is false in general. If A and B are nonsingular, then AB

must also be nonsingular, however, (AB)~! is equal to B~1A~! rather than
A~'B~!. For example, if

) ey

then
(21 1 1 -1
(21 e amoo ()
however,
11 10 —1 10}y ( 2 -1
S Pt N S N By
Note that

- (L)) (4 3) e

6. The statement is false in general.
(A-B)?=A?-BA—-AB+ B*# A*> - 2AB + B?
since in general BA # AB. For example, if

11 0 1
i (U)o s (900
2
o (1 0) _ (10
(4-B) _[1 1] _[2 1]
however,

, , (2 2 0 2 0 0) (20
A—2A3+B—[2 2]_[0 2]*[0 0]_[2 0]

then
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7. The statement is false in general. If A is nonsingular and AB = AC, then we

10.

can multiply both sides of the equation by A~! and conclude that B = C.
However, if A is singular, then it is possible to have AB = AC and B # C.
For example, if

11 11 2 2
() (0 e (3
then
1 1) (1 1 5 5
AB—[11] 44_[55]
1 1) (2 2 5 5
AC—[1 1] 3 3 _[5 5]

. The statement is false. An elementary matrix is a matrix that is constructed

by performing exactly one elementary row operation on the identity matrix.
The product of two elementary matrices will be a matrix formed by per-
forming two elementary row operations on the identity matrix. For example,

100 100
Ei=]2 1 0 and  Ey=[0 1 0
00 1 3.0 1

are elementary matrices, however,

100
EWEy=(2 1 0

3 01

is not an elementary matrix.

. The statement is true. The row vectors of A are z1y7, zoy”, ..., zny". Note,

all of the row vectors are multiples of y”'. Since x and y are nonzero vectors,
at least one of these row vectors must be nonzero. However, if any nonzero
row is picked as a pivot row, then since all of the other rows are multiples
of the pivot row, they will all be eliminated in the first step of the reduction
process. The resulting row echelon form will have exactly one nonzero row.
The statement is true. If b = a; + ap + a3, then x = (1,1,1)7 is a solution
to Ax = b, since

Ax:xlal + xoas + x3a3 = a; +az + as =b
If ag = ag, then we can also express b as a linear combination
b:a1+0a2+2a3

Thus y = (1,0,2)7 is also a solution to the system. However, if there is more
than one solution, then the echelon form of A must involve a free variable. A
consistent system with a free variable must have infinitely many solutions.
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1.

1 -1 321 1 -1 3 2 1
[—1 1—21—2]—> [O 0 1 3 —1]
2 -2 77 1 0 0 1 3|-1
1 -1 0 =7| 4
— [O 0 1 3 —1]
0 0 0 0 0

The free variables are x5 and x4. If we set 2 = a and x4 = b, then

r1=4+a+7b and r3=—1—3b

and hence the solution set consists of all vectors of the form

2. (a)
(b)

(c)

3. (a)

(b)

4. (a)

44+a+T7b
a
—1-3b
b

X =

A linear equation in 3 unknowns corresponds to a plane in 3-space.
Given 2 equations in 3 unknowns, each equation corresponds to a plane.
If one equation is a multiple of the other then the equations represent
the same plane and any point on the that plane will be a solution to
the system. If the two planes are distinct then they are either parallel
or they intersect in a line. If they are parallel they do not intersect, so
the system will have no solutions. If they intersect in a line then there
will be infinitely many solutions.

A homogeneous linear system is always consistent since it has the trivial
solution x = 0. It follows from part (b) then that a homogeneous sys-
tem of 2 equations in 3 unknowns must have infinitely many solutions.
Geometrically the 2 equations represent planes that both pass through
the origin, so if the planes are distinct they must intersect in a line.

If the system is consistent and there are two distinct solutions there must
be a free variable and hence there must be infinitely many solutions. In
fact all vectors of the form x = x1 + ¢(x; — x2) will be solutions since

Ax = Axy 4 ¢(Ax; — Axs) =b+c¢(b—Db)=Db

If we set z = x; — x5 then z # 0 and Az = 0. Therefore it follows from
Theorem 1.4.2 that A must be singular.

The system will be consistent if and only if the vector b = (3,1)7 can
be written as a linear combination of the column vectors of A. Linear
combinations of the column vectors of A are vectors of the form

() () -mros (3]

Since b is not a multiple of (1,2)7 the system must be inconsistent.
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(b) To obtain a consistent system choose b to be a multiple of (1,2)7. If
this is done the second row of the augmented matrix will zero out in
the elimination process and you will end up with one equation in 2
unknowns. The reduced system will have infinitely many solutions.

5. (a) To transform A to B you need to interchange the second and third rows
of A. The elementary matrix that does this is

1 00
E=1]10 01
0 1 0

(b) To transform A to C' using a column operation you need to subtract
twice the second column of A from the first column. The elementary
matrix that does this is

10 0
F=|1-2 10
0 0 1

6. If b = 3a; + ay + 4a3 then b is a linear combination of the column vectors
of A and it follows from the consistency theorem that the system Ax = b is
consistent. In fact x = (3,1,4)7 is a solution to the system.

7. If a; —3ay +2a3 = 0 then x = (1, —3,2)7 is a solution to Ax = 0. It follows
from Theorem 1.4.2 that A must be singular.

8. If
1 4 2 3
(0w s (20

[ (- (-3 1)

9. In general the product of two symmetric matrices is not necessarily symmet-

ric. For example if
1 2 11
=(ed)oe= )

then A and B are both symmetric but their product
1 2 11 3 9
AB_[2 2] [1 4]_[4 10]

10. If F and F are elementary matrices then they are both nonsingular and their
inverses are elementary matrices of the same type. If C' = EF then C'is a

product of nonsingular matrices, so C' is nonsingular and O~ = F~1E~1,
11.

then

is not symmetric.

1 O O
0] I O
O -B 1

A=




Chapter Test B 25

12. (a) The column partition of A and the row partition of B must match up,
so k must be equal to 5. There is really no restriction on r, it can be
any integer in the range 1 < r < 9. In fact » = 10 will work when B has

block structure
B
Bay

(b) The (2,2) block of the product is given by As1Bia + AgsBao
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. (c) det(A) = -3
7. Given that a;; = 0 and ag; # 0, let us interchange the first two rows of

A and also multiply the third row through by —as;. We end up with the

matrix
a21 a22 a23
[ 0 a1z a3 ]
—a21031 —a21032 —a21a33
Now if we add ag; times the first row to the third, we obtain the matrix
a21 @22 a23
[ 0 a1z a3 ]
0 az1a2 — (21432 (31023 — (21033

This matrix will be row equivalent to I if and only if

a12 a13
31422 — 21432 a31a23 — 21433

£0

Thus the original matrix A will be row equivalent to [ if and only if

12031023 — A12021033 — 013031022 + 13021032 75 0

. Theorem 2.1.3. If A is an n x n triangular matrix then the determinant

of A equals the product of the diagonal elements of A.

Proof: The proof is by induction on n. In the case n = 1, A = (a11) and
det(A) = ai1. Assume the result holds for all k£ x k triangular matrices and
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let Abea (k+1)x (k+ 1) lower triangular matrix. (It suffices to prove the
theorem for lower triangular matrices since det(A”) = det(A).) If det(A) is
expanded by cofactors using the first row of A we get

det(A) = all det(MH)

where M;; is the k x k matrix obtained by deleting the first row and column
of A. Since M7 is lower triangular we have

det(Mi1) = azass - - - Gkt1,k+1
and consequently

det(A) = ar1a22 - - - Qg1 ky1

. If the ith row of A consists entirely of 0’s then

det(A) = a;1 41 + aiglio + -+ ainAin, =0
If the ith column of A consists entirely of 0’s then
det(A) = det(AT) =0
In the case n = 1, if A is a matrix of the form
(2 7]
a b

then det(A) = ab—ab = 0. Suppose that the result holds for (k+1) x (k+1)
matrices and that A is a (k + 2) x (k + 2) matrix whose ith and jth rows
are identical. Expand det(A) by factors along the mth row where m # i and

m# j.
det(A) = ama det(Mn1) + amo det(Mna) + - -+ + am ko det(Moy, k12).

Each My, 1 <s<k+2/isa (k+1)x (k+1) matrix having two rows that
are identical. Thus by the induction hypothesis

det(Mps) =0 (1< s<k+2)

and consequently det(A) = 0.
(a) In general det(A + B) # det(A) + det(B). For example if

1 0 0 0
P IR EE)

det(A) +det(B) =0+0=10

then

and
det(A+ B) =det(l) =1

AB — a11b11 + a12b21 a11b12 + a12baa
a1b11 + az2b21 a21b12 + ag2baa
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and hence
det(AB) = (ai1biiaz1bi2 + ar1biiazebas + a12ba1a21b12 + a12b21a22022)
—(az21bi1a11b12 + a21br1ai2baz + azebaiai1bia + a22b21a12b22)
= a11bi1a22b22 + a12b21a21b12 — a21b11a12022 — azzbaia1b12
On the other hand
det(A) det(B) = (a11a22 — az1a12)(b11b22 — b21b12)
= a11a22b11b22 + a21a12b21b12 — az1a12011022 — a11a22b21b12
Therefore det(AB) = det(A) det(B)

(¢) In part (b) it was shown that for any pair of 2 x 2 matrices, the de-
terminant of the product of the matrices is equal to the product of the
determinants. Thus if A and B are 2 x 2 matrices, then

det(AB) = det(A) det(B) = det(B) det(A) = det(BA)
12. (a) If d = det(A + B), then
d = (a11 +bi1)(a22 + ba2) — (a21 + ba21)(a12 + bi2)
= a11a22 + a11baz + bi1azz + biibag — azia12 — az1biz — baraiz — bai1biz

= (a11a22 — az1a12) + (b11baa — ba1b12) + (a11baz — bora12) + (br1a2e — as1bi2)
= det(A) + det(B) + det(C') + det(D)

(b) If
B _ EA _ aan aag9 ]
[ Baii Baiz
then
C - a11 a12 _ Qa1 Qa2
Bai Baiz a21 a2
and hence

det(C) = det(D) =0
It follows from part (a) that
det(A + B) = det(A) + det(B)
13. Expanding det(A) by cofactors using the first row we get
det(A) = ay1 det(Mi1) — a12 det(M;2)

If the first row and column of M;5 are deleted the resulting matrix will be
the matrix B obtained by deleting the first two rows and columns of A. Thus
if det(Mi2) is expanded along the first column we get

det(M12) = a2 det(B)
Since as1 = a1 we have

det(A) = ail det(MH) - CL%Q det(B)
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5.

11.

12.

To transform the matrix A into the matrix A one must perform row oper-
ation II n times. Each time row operation II is performed the value of the
determinant is changed by a factor of a. Thus

det(aA) = a™ det(A)

Alternatively, one can show this result holds by noting that det(al) is equal
to the product of its diagonal entries. Thus, det(al) = o™ and it follows
that

det(aA) = det(alA) = det(al) det(A) = a™ det(A)

. Since

det(A ') det(A) = det(A ' A) = det(I) = 1
it follows that
1

det(A™) = o

. If E is an elementary matrix of type I or II then E is symmetric, so BT = E.

If F is an elementary matrix of type III formed from the identity matrix by
adding ¢ times its ith row to its jth row, then E7 will be the elementary
matrix of type III formed from the identity matrix by adding c times its jth
row to its ¢th row

- (b) 18 (d) =6, () -3
10.

Row operation IIT has no effect on the value of the determinant. Thus if B
can be obtained from A using only row operation ITI, then det(B) = det(A).
Row operation I has the effect of changing the sign of the determinant. If
B is obtained from A using only row operations I and III, then det(B) =
det(A) if row operation I has been applied an even number of times and
det(B) = —det(A) if row operation I has been applied an odd number of
times.

Since det(A?) = det(A)? it follows that det(A?) must be a nonnegative
real number. (We are assuming the entries of A are all real numbers.) If
A?2 + 1 = O then A? = —I and hence det(A?) = det(—I). This is not
possible if n is odd, since for n odd, det(—I) = —1. On the other hand it is
possible for A%2 +I = O when n is even. For example when n = 2, if we take

()

then it is easily verified that A2 + I = O.

(a) Row operation IIT has no effect on the value of the determinant. Thus

1 a2 1 T x2
det(V)=|1 a2 23 |=|0 a3—mx x5 — 22
1 T3 x% 0 T3 — T x% — x%
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14.

15.

16.

17.

18.

and hence
det(V) = (z2 —z1)(x5 — ) — (23 — 21) (23 — 27)
(x2 —z1)(z3 — 21)[(73 + 71) — (T2 + 1))

= (332 - 331)(333 - 331)(333 - 332)

(b) The determinant will be nonzero if and only if no two of the z; values
are equal. Thus V will be nonsingular if and only if the three points x1,
To, x3 are distinct.

Since

det(AB) = det(A) det(B)
it follows that det(AB) # 0 if and only if det(A) and det(B) are both
nonzero. Thus AB is nonsingular if and only if A and B are both nonsingular.

If AB = I, then det(AB) = 1 and hence by Exercise 14 both A and B are
nonsingular. It follows then that

B=IB=(A"'"A)B=A"'(AB)=A"'T=A""

Thus to show that a square matrix A is nonsingular it suffices to show that
there exists a matrix B such that AB = I. We need not check whether or
not BA =1.

If Ais an xn skew symmetric matrix, then
det(A) = det(A”) = det(—A) = (—1)" det(A)
Thus if n is odd then
det(A) = —det(A)
2det(A) =0
and hence A must be singular.

If A, is nonzero and one subtracts ¢ = det(A)/A,, from the (n,n) entry
of A, then the resulting matrix, call it B, will be singular. To see this look
at the cofactor expansion of the B along its last row.

det(B) - bnanl + -+ bn,nlen,nfl + bnann
= anlAnl +- An,nflAn,nfl + (ann - C)Ann
= det(A) — cAnn
=0

xry T2 I3 xry T2 I3
X = X1 ) T3 Y = Y1 Y2 Y3
Yyr Y2 Y3 Yy Y2 Y3

Since X and Y both have two rows the same it follows that det(X) = 0 and
det(Y') = 0. Expanding det(X) along the first row, we get

0 = 21 X171 + 22 X12 +23X73

= ZT121 + X222 + Tr3z3
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= XTZ

Expanding det(Y") along the third row, we get
0 = y1Y31 + y2Y30 + y3Y33

= Y121 + Y222 + Y323

= ylz
Prove: Evaluating an n x n matrix by cofactors requires (n! — 1) additions
and

n—1 '

n!

k!
k=1

multiplications.

Proof: The proof is by induction on n. In the case n = 1 no additions and
multiplications are necessary. Since 1! — 1 = 0 and

0 pl

k!
k=1

=0

the result holds when n = 1. Let us assume the result holds when n = m. If
Aisan (m+1) x (m+ 1) matrix then

det(A) = a1l det(MH) — a2 det(M12) R a1 m+1 det(M17m+1)
Each M,  is an m x m matrix. By the induction hypothesis the calculation
of det(M;) requires (m! — 1) additions and

m—1
m!

k!
k=1

multiplications. The calculation of all m+1 of these determinants requires
(m + 1)(m! — 1) additions and

m—1

m +1)!
Z%

k=1
multiplications. The calculation of det(A) requires an additional m + 1 mul-

tiplications and an additional m additions. Thus the number of additions
necessary to compute det(A) is

(m+1L(m —1)+m=m+1)! -1

and the number of multiplications needed is

1) 1) m+1)! " (m+1)!
SN S JUELINEL L YL

In the elimination method the matrix is reduced to triangular form and the
determinant of the triangular matrix is calculated by multiplying its diagonal
elements. At the first step of the reduction process the first row is multiplied
by m;1 = —a;1/a11 and then added to the ith row. This requires 1 division,
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n — 1 multiplications and n — 1 additions. However, this row operation is
carried out for ¢ = 2, ..., n. Thus the first step of the reduction requires n—1
divisions, (n —1)? multiplications and (n —1)? additions. At the second step
of the reduction this same process is carried out on the (n — 1) x (n — 1)
matrix obtained by deleting the first row and first column of the matrix
obtained from step 1. The second step of the elimination process requires
n — 2 divisions, (n — 2)? multiplications, and (n — 2)? additions. After n — 1
steps the reduction to triangular form will be complete. It will require:

-1
m-—1)+n-2)+---+1 = % divisions
2n —1)(n—1
(n—124+n-27>%*+---+1% = n(2n 6)(n ) multiplications
(n—1)2+(n—22+--+12 = ”(2”_?(”_1) additions

It takes n — 1 additional multiplications to calculate the determinant of the
triangular matrix. Thus the calculation det(A) by the elimination method

requires:
n(n—1) N n(2n—1)(n—1) b n-1) = (n—1)(n®4+n+3)
2 6 3
multiplications and divisions and n(2n — 16> (n—1) additions.
SECTION 3
o o 4 -1 IR
1. (b) det(4) =10, adjA = [ 1 3 ], A= 1OadJA
1 -1 0
(d) det(A) =1, At =adjA=| 0 1 -1
0 0 1
6. AadjA=0
7. The solution of Ix = b is x = b. It follows from Cramer’s rule that
- - det(BJ) -
bj =x; = Q) det(B;)

8. If det(A) = « then det(A™!) = 1/a. Since adj A = aA~! we have
det(adj A) = det(aA™") = a™det(A™') = a" 1 = det(A)" !
10. If A is nonsingular then det(A) # 0 and hence
adj A = det(A)A™*

is also nonsingular. It follows that

1

(di )™ = 3

(A7 = det(A~ 1A
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Also
adj A~ =det(A™ (A1) =det(A1)A

11. If A = O then adj A is also the zero matrix and hence is singular. If A is
singular and A # O then

AadjA=det(A)I=0I=0
If aT" is any nonzero row vector of A then
a’adjA =07 or (adj A)Ta=0
By Theorem 1.4.2, (adj A)7' is singular. Since
det(adj A) = det[(adj A)*] =0

it follows that adj A is singular.
12. If det(A) = 1 then
adjA =det(A)A™ = A1
and hence
adj(adj A) = adj(A™")

It follows from Exercise 10 that

adj(adj A) = det(A™ 1A = A=A

13. The (j,i) entry of Q7 is ¢;;. Since

Q*l

IR
= Geng) M@

its (j,4) entry is Qi;/ det(Q). If Q=1 = QT then

A Qij
%= det(Q)

MATLAB EXERCISES

2. The magic squares generated by MATLAB have the property that they are
nonsingular when n is odd and singular when n is even.

3. (a) The matrix B is formed by interchanging the first two rows of A.
det(B) = — det(A).
(b) The matrix C' is formed by multiplying the third row of A by 4.
det(C) = 4 det(A).
(¢) The matrix D is formed from A by adding 4 times the fourth row of A
to the fifth row.
det(D) = det(A).
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5. The matrix U is very ill-conditioned. In fact it is singular with respect to the
machine precision used by MATLAB. So in general one could not expect to
get even a single digit of accuracy in the computed values of det(U”) and
det(UUT). On the other hand, since U is upper triangular, the computed
value of det(U) is the product of its diagonal entries. This value should be
accurate to the machine precision.

6.

(a)

()

Since Ax = 0 and x # 0, the matrix must be singular. However,
there may be no indication of this if the computations are done in
floating point arithmetic. To compute the determinant MATLAB does
Gaussian elimination to reduce the matrix to upper triangular form U
and then multiplies the diagonal entries of U. In this case the product
U11U22U33U44U55 has magnitude on the order of 10'. If the computed
value of ugg has magnitude of the order 107% and k < 14, then MAT-
LAB will round the result to a nonzero integer. (MATLAB knows that
if you started with an integer matrix, you should end up with an integer
value for the determinant.) In general if the determinant is computed
in floating point arithmetic, then you cannot expect it to be a reliable
indicator of whether or not a matrix is nonsingular.

Since A is singular, B = AAT should also be singular. Hence the exact
value of det(B) should be 0.

CHAPTER TEST A

1.

The statement is true since

det(AB) = det(A) det(B) = det(B) det(A) = det(BA)

. The statement is false in general. For example, if

1 0 0 0
P I )

then det(A + B) = det(I) = 1 while det(A) + det(B) =0+ 0= 0.

. The statement is false in general. For example, if A = I, (the 2 x 2 identity

matrix), then det(2A4) = 4 while 2det(A) = 2.

. The statement is true. For any matrix C, det(C7T) = det(C'), so in particular

for C = AB we have

det((AB)T) = det(AB) = det(A) det(B)

. The statement is false in general. For example if

2 3 1 0
(20w e (10

then det(A) = det(B) = 8, however, A # B.

. The statement is true. For a product of two matrices we know that

det(AB) = det(A) det(B)
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Using this it is easy to see that the determinant of a product of & matrices
is the product of the determinants of the matrices, i.e,

det(A1A2 ce Ak> = det(Al) det(Ag) s det(Ak)

(This can be proved formally using mathematical induction.) In the special
case that A1 = Ay = --- = Aj, we have

det(A") = det(A)F
7. The statement is true. A triangular matrix 7" is nonsingular if and only if
det(T) = t11t22 s 'tnn 7§ 0

Thus T is nonsingular if and only if all of its diagonal entries are nonzero.

8. The statement is true. If Ax = 0 and x # 0, then it follows from Theorem
1.4.2 that A must be singular. If A is singular then det(A) = 0.

9. The statement is false in general. For example, if

()

and B is the 2 x 2 identity matrix, then A and B are row equivalent, however,
their determinants are not equal.

10. The statement is true. If A*¥ = O, then
det(A)* = det(A*) = det(O) = 0
So det(A) = 0, and hence A must be singular.

CHAPTER TEST B

1. (a) det(3A) = (1)° det(4) = L -4 = L
(b) det(B~1AT) = det(B~1)det(AT) = —dctl(B) det(A) =4 -4=2
(c) det(EA?) = —det(A?) = —det(A)? = —16
2. (a)
r —1 1 -1 1 T
det(A) = 3:’ B _’ B +’ B

=z@@*-1)—(z—1)+(-1+2)
= z(x—1)(x+1)

(b) The matrix will be singular if  equals 0, 1, or -1.

3. (a)
11 1 1 111 1
12 3 4 012 3
136 10| o235 9 (g =l31 =l = 1)
1 4 10 20 03 9 19
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10.

11 1 1 11 1 1
0 12 3 01 2 3
025 9| " ]oo 1 3 (ls2 =2, Lz =3)
0 3 9 19 00 3 10
111 1 11 1 1
012 3 01 2 3
oo1 3] oo 13 (las = 3)
00 3 10 0001
100 0 111 1
1100 01 2 3
A=LU=17 5 1 0l |0 0 1 3
1 3 3 1 000 1
(b) det(A) =det(LU) = det(L)det(U) =1-1=1

If A is nonsingular then det(A) # 0 and it follows that
det(AT A) = det(AT) det(A) = det(A) det(A) = det(A)? > 0

Therefore AT A must be nonsingular.

. If B= S~'AS, then

det(B) = det(S™'AS) = det(S™1)det(A)det(S)

1
= 5 det(A) det(S) = det(A)

. If A is singular then det(A4) = 0 and if B is singular then det(B) so if one

of the matrices is singular then
det(C) = det(AB) = det(A) det(B) =0

Therefore the matrix C' must be singular.

. The determinant of A — A\I will equal 0 if and only if A — A/ is singular. By

Theorem 1.4.2, A— AI is singular if and only if there exists a nonzero vector
x such that (A — AI)x = 0. It follows then that det(A — A\I) = 0 if and only
if Ax = Ax for some x # 0.

. If A = xy then all of the rows of A are multiplesof y”. In fact a(i,:) = z;y*

for j = 1,...,n. It follows that if U is any row echelon form of A then U
can have at most one nonzero row. Since A is row equivalent to U and

det(U) = 0, it follows that det(A) = 0.

. Let z=x —y. Since x and y are distinct it follows that z # 0. Since

Az = Ax — Ay =0

it follows from Theorem 1.4.2 that A must be singular and hence det(A) = 0.
If A has integer entries then adj A will have integer entries. So if | det(A)| =1
then

1
A= djA=+adjA
det(A) ™Y A

and hence A~ must also have integer entries.
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3. To show that C' is a vector space we must show that all eight axioms are
satisfied.
Al. (a+bi)+ (c+di) =(a+c)+ (b+d)i
= (c+a)+ (d+b)i
= (c+ di) + (a + bi)
A2, (x+y)+z=[(z1+ 220) + (y1 +y20)] + (21 + 220)
=(z1+y1+21) + (v2 +y2 + 22)i
= (z1 + 21) + [(y1 + y2i) + (21 + 221))]
=x+(y+z)
A3. (a+bi)+ (04 0) = (a + bi)
A4. If z = a + bi then define —z = —a — bi. It follows that
z+(—z)=(a+bi)+(—a—bi)=04+0i=0
A5. af(a+bi) + (¢ + di)] = (ca + ac) + (ab+ ad)i
= afa+ bi) + a(c+ di)
A6. (a+ B)(a+bi) = (a+ B)a+ (a+ B)bi
=a(a+ bi) + f(a + bi)
A7, (af)(a + bi) = (af)a + (af)bi
= a(fa + (i)

37
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A8. 1-(a+bi)=1-a+1-bi=a+bi
4. Let A = (ai;), B = (b;;) and C = (¢;;) be arbitrary elements of R™*"™.
Al. Since a;;+b;; = b;; +a;; for each i and j it follows that A+ B = B+ A.
A2. Since
(@ij + bij) + cij = aij + (bij + cij)
for each 7 and j it follows that
(A+B)+C=A+(B+0)
A3. Let O be the m x n matrix whose entries are all 0. If M = A + O then
Mmi; = Q45 + 0= Q5
Therefore A+ O = A.
A4. Define —A to be the matrix whose ijth entry is —a;;. Since
aij + (—ai;) =0
for each ¢ and j it follows that
A+ (-A) =0
A5. Since
O[(CLij + b”) = Qa4 + Oébl'j
for each 7 and j it follows that
a(A+ B)=aA+ aB
A6. Since
(a+ B)aij = aaij + Pai
for each 7 and j it follows that
(a4 B)A=aA+ A
AT. Since
(aB)aij = a(Baij)
for each 7 and j it follows that
(af)A = a(BA)
A8. Since
1 . CLij = CLij
for each 7 and j it follows that
1A=A
5. Let f, g and h be arbitrary elements of Cla, b].
Al. For all z in [a, b]
(f+9)(@) = f(z) +9(z) = g(x) + f(z) = (9 + [)(2).
Therefore
frg=9+f



A2.

A3.

A4.

Ab5.

AG6.

AT.

AS8.

Section 1

For all z in [a, ],

[(f +9) +hl(z) =

Therefore
[(f+9) +hl=1[f+(9+h)]
If z(x) is identically 0 on [a, b], then for all = in [a, b]

(f +2)(@) = f(z) + 2(z) = f(x) + 0 = f(x)

Thus
fre=f
Define —f by
(=f)(x) = —f(x) for all z in [a,b]
Since

(f + (=N)() = fz) = f(@) =0

for all = in [a, b] it follows that
fH(-f)=z
For each z in [a, b]
[a(f +9)l(x) = af(x) +ag(x)
= (af)(@) + (ag)(z)
Thus
a(f+g)=af+ayg

For each z in [a, b]

[(a+ B)f](z)

(a+0)f(x)
af(z)+ Bf(x)
= (af)(x) + (8f)(z)

Therefore
(a+B)f =af+pf
For each z in [a, b],
[(aB)f](z) = aff(z) = a[8f(z)] = [a(Bf)](x)
Therefore
(aB)f = a(Bf)

For each z in [a, b]

Therefore

39
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6.
9.

10.

12.

13.
14.

The proof is exactly the same as in Exercise 5.
(a) If y = 30 then

y+y=030+p0=p30+0)=p30=y
and it follows that

y+y)+(=y)=y+(-y)
y+ly+(=y)]=0
y+0=0
y=0
(b) If ax = 0 and « # 0 then it follows from part (a), A7 and A8 that

1 1 1
0=—-0=—(ax) = (—a)x—lx—x

« « «

Axiom 6 fails to hold.

(a+pB)x = ((a+B)z1, (a+ B)ra)
ax+ fx = ((a+ B)z1,0)

Al. z@y=x-y=y-x=ydz
A2. Yy Dz=2-y 2= (yd=2)
A3. Since x @1 =z -1 =z for all x, it follows that 1 is the zero vector.

A4. Let

_ 1
—p=—-logx=g"t==
T

It follows that
1
x@(—x)=x-—=1 (the zero vector).

x

Therefore % is the additive inverse of = for the operation @.
A5. ao(z@y) =(@y)* = (z-y)* =2y
aoxdaoy=z"Py* =a% y*
A6. (a+ f)ox = @) = g 2P
aozx®for=z®z’ =2z
A7. (afB)ox =z
ao(fox)=aoxl = (zP)* =z
A8. lox=2'=2x
Since all eight axioms hold, RT is a vector space under the operations
of o and .
The system is not a vector space. Axioms A3, A4, A5, A6 all fail to hold.

Axioms 6 and 7 fail to hold. To see this consider the following example. If
a=1.5=18and z =1, then

(a+p)ox=1[33]-1=3

B

and
aoxr+ fox=[15]-1+[1.8]-1=1-14+1-1=2
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16.
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So Axiom 6 fails. Furthermore,
(af)ox=[2.7]-1=2
and
ao(fox)=[15](1.8]-1)=1-(1-1)=1

so Axiom 7 also fails to hold.
If {an}, {bn}, {cn} are arbitrary elements of S, then for each n

an +b, =0b, +an,

and
ayn + (bn + Cn) - (an + bn) + ¢y

Hence

{an} + {bn} = {bn} + {an}
{an}t + ({bn} +{cn}) = ({an}t +{bn}) + {cn}
so Axioms 1 and 2 hold.

The zero vector is just the sequence {0,0,...} and the additive inverse
of {a,} is the sequence {—a,}. The last four axioms all hold since

alan + by) = aa, + ab,
(a + 6)an = aay + 6an
afa, = aBay)

la, = a,

for each n. Thus all eight axioms hold and hence S is a vector space.
If

p(r) = a1+ agz + - +anz"" < a=(ar,az,...,a,)"

Q(x):b1+b2$—|—"'+bn$nil e b:(blab2a---abn)T

then
ap(z) = aay + aagx + -+ -+ aa,x" !
aa = (aai,aas, ..., aa,)’
and
(p+a)(x) = (a1 +b1) + (a2 + b2)x + -+ + (an + by)z"
a+b = (Cll —|—b1,a2+b2,...an—|—bn)T
Thus

ap < aa and p+qg—a+b
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SECTION 2

7. C"[a,b] is a nonempty subset of C[a,b]. If f € C™[a,b], then £ is contin-
uous. Any scalar multiple of a continuous function is continuous. Thus for
any scalar «, the function

(af)™ = aft™

is also continuous and hence af € C"[a,b]. If f and g are vectors in C"[a, b]
then both have continuous nth derivatives and their sum will also have a
continuous nth derivative. Thus f 4+ g € C"[a, b] and therefore C"[a, b] is a
subspace of Cla, b].

8. (a)

11 (a)

If B € 51, then AB = BA. It follows that
A(aB) = aAB =aBA = (aB)A

and hence aB € S;.
If B and C are in Sy, then

AB = BA and AC=CA

thus
A(B4+C)=AB+ AC=BA+CA=(B+C)A

and hence B 4+ C € S;. Therefore S; is a subspace of R?*2,
If B € Sy, then AB # BA. However, for the scalar 0, we have

0B=0¢S,

Therefore S is not a subspace. (Also, S is not closed under addition.)
If B € S3, then BA = O. It follows that

(aB)A = «a(BA) =a0 =0
Therefore, aB € S3. If B and C are in S5, then
BA=0 and CA=0
It follows that
(B+C)A=BA+CA=0+0=0

Therefore B + C € S5 and hence S5 is a subspace of R2*2,
x € Span(x1,x2) if and only if there exist scalars ¢; and ¢y such that

C1X1 + C9Xo = X

Thus x € Span(xy, X2) if and only if the system Xc = x is consistent.
To determine whether or not the system is consistent we can compute
the row echelon form of the augmented matrix (X |x).

-1 3 2 1 =3 —2
2 4 6] — |0 1 1
3 2 6 0 0 1

The system is inconsistent and therefore x ¢ Span(xy, X2).



12.

13.

15.

16.

17.

Section 2 43

-1 3 -9 1 -3 —2
2 4 21 =10 1 —2

3 2 ) 0 0 0

The system is consistent and therefore y € Span(xy, x2).

(a) Since the vectors x1, Xa, ..., X span V', any vector v in V' can be written
as a linear combination v = ¢1x1 + coXo + - - - + ¢ Xi. If we add a vector
Xk41 to our spanning set, then we can write v as a letter combination
of the vectors in this augmented set since

VvV =c1X1 + coXo + -+ X + 0V

So the new set of k£ + 1 vectors will still be a spanning set.
(b) If one of the vectors, say xy, is deleted from the set then we may or
may not end up with a spanning set. It depends on whether xj is in

Span(xi, X, ..., Xg—1). f x} & Span(xi,Xo,...,Xp—1), then {x1, X2, ..., X1}
cannot be a spanning set. On the other hand if x;, € Span(x1, X2, ..., Xk—1),
then

Span(x1,X2, ..., Xx) = Span(x1, Xg, ..., Xx—1)

and hence the k — 1 vectors will span the entire vector space.
If A= (a;j) is any element of R?*2, then

- ail 0 0 a2 0 0 0 0
A_[o 0]+[0 O]+[a21 0]+[o a22]
= a1 Fr1 +a12E12 + a1 B2 + azaFas

If {a,} € So, then a,, — 0 as n — oo. If « is any scalar, then aa, — 0 as
n — oo and hence {aa,} € Sp. If {b,} is also an element of Sy, then b, — 0
as n — oo and it follows that

lim (ap, +b,) = lim a, + lim b, =040=0
Therefore {a,, + b,} € Sp, and it follows that Sy is a subspace of S.

Let S # {0} be a subspace of R and let a be an arbitrary element of R*.
If s is a nonzero element of S, then we can define a scalar « to be the real
number a/s. Since S is a subspace it follows that

a

as=-s=a

s
is an element of S. Therefore S = R!.
(a) implies (b).
If N(A) = {0}, then Ax = 0 has only the trivial solution x = 0. By Theorem
1.4.2, A must be nonsingular.

(b) implies (c).
If A is nonsingular then Ax = b if and only if x = A='b. Thus A~!b is the
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unique solution to Ax = b.
(c) implies (a).

If the equation Ax = b has a unique solution for each b, then in particular
for b = 0 the solution x = 0 must be unique. Therefore N(A) = {0}.

18. Let a be a scalar and let x and y be elements of UN V. The vectors x and y
are elements of both U and V. Since U and V are subspaces it follows that

ax €U and x+yeU
axeV and x+yeV

Therefore
axeUNV and x+yeUNnV

Thus U NV is a subspace of W.
19. SUT is not a subspace of R?.
SUT = {(s,t)T | s=0o0rt=0}

The vectors e; and ey are both in S U T, however, e; +es ¢ SUT.

20. If ze U+ V, then z = u+ v where u € U and v € V. Since U and V are
subspaces it follows that

aouelU and aveV
for all scalars a. Thus
az = au + av
is an element of U + V. If z; and z5 are elements of U + V, then
zi=u; +v; and 2z =us+ Vs

where uy,uy € U and vy,vy € V. Since U and V are subspaces it follows
that
wt+welU and vi+veeV

Thus
z1 + 22 = (1 + vi) + (U2 + v2) = (U1 + ug) + (v1 + va)

is an element of U + V. Therefore U + V is a subspace of W.

21. (a) The distributive law does not work in general. For a counterexample,
consider the vector space R?. If we set y = e; + e and let

S = Span(e;), T = Span(ez), U = Span(y)
then
T+U=R* SNnT={0}, SNU-={0}
and hence
SN(T+U) = SNR*=S
(SNT)+ (SNU) = {0} + {0} = {0}
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This distributive law also does not work in general. For a counterexam-
ple we can use the same subspaces S, T, and U of R? that were used in
part (a). Since
TNU={0} and S+U=R?
it follows that
S+(TnU) =85+{0}=5
(S+T)N(S+U) = R*N R* = R?

5.

7.

(a)

(a)
(b)

If xi41 € Span(xi,Xa, ..., Xk ), then the new set of vectors will be lin-
early dependent. To see this suppose that

X1 = C1X1 + CoXg + -+ + CpXp

If we set cx41 = —1, then

Cc1X1 + CaXo + -+ CpXp + Cpp1Xpr1 = 0
with at least one of the coefficients, namely c;11, being nonzero.
On the other hand if xx41 & Span(x1,Xa, ..., X;) and

Cc1X1 + X + - -+ CpXp + Cpp1Xpr1 = 0
then cgy1 = 0 (otherwise we could solve for xiy1 in terms of the other
vectors). But then

c1X1 +coxXo + -+ cpXp Fopxe =0

and it follows from the independence of x1, ..., x; that all of the ¢; co-
efficients are zero and hence that x1, ..., Xg41 are linearly independent.
Thus if x1, . . ., X are linearly independent and we add a vector xx41 to
the collection, then the new set of vectors will be linearly independent
if and only if xx 41 & Span(x1,xX2,...,Xk)

Suppose that x1,xo9,...,Xx; are linearly independent. To test whether
or not xi,Xsa,...,X;—1 are linearly independent consider the equation

(1) C1X1 +CoXo + -+ Cp_1Xp—1 = 0
If ¢1,¢9,. .., ck—1 work in equation (1), then

C1X] + CcoXo + - -+ cp1Xp—1 +0x, =0

and it follows from the independence of x1, ..., x; that
ca=cg=--=¢,-1=0
and hence X1, ...,x;_1 must be linearly independent.

W (cos ma, sina) = 7. Since the Wronskian is not identically zero the
vectors are linearly independent.
W (z,e®, e*®) =2(x —1)e3* £ 0
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—8z3

——s Z0

1+ 22)2 #

(d) To see that 3 and |z|® are linearly independent suppose

(c) W(2?,In(1 +2?),1+2%) =

cxd + ez =0
n [—1,1]. Setting x = 1 and = = —1 we get

c1+co = 0
—C1 + Cy = 0
The only solution to this system is ¢; = ca = 0. Thus 23 and |z|® are
linearly independent.
8. The vectors are linearly dependent since

cosz —142sin?2= =0

on [—m, 7.
10. (a) If
c1(2z) + colx| =0

for all « in [—1, 1], then in particular we have

—2c1+c =0 (x=-1)
2c14+c2 =0 (x=1)
and hence ¢; = ¢g = 0. Therefore 2z and |z| are linearly independent in
C[-1,1].
(b) For all z in [0, 1]
1-2¢04 (=2)|z|=0
Therefore 2z and |z| are linearly dependent in C[0, 1].

11. Let vy,...,v, be vectors in a vector space V. If one of the vectors, say vy,
is the zero vector then set

cp=1, co=c3=---=¢,=0
Since
c1vy+cave+ -+, vy, =0
and ¢; # 0, it follows that vq,..., v, are linearly dependent.

12. If vi = avs, then
lvi —avy =0
and hence vy, vy are linearly dependent. Conversely, if vy, vo are linearly
dependent, then there exists scalars c;, c2, not both zero, such that

C1V1 + vy = 0

If say ¢ # 0, then
C2
V] = —— Vg
C1
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14.

15.

16.
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Let vi,va, ..., v, be alinearly independent set of vectors and suppose there
is a subset, say vy, ..., vy of linearly dependent vectors. This would imply
that there exist scalars ¢y, co, ..., cg, not all zero, such that

c1vy+cave+ -+ v =0

but then

cavi+ - +cepve+0vpgr 4+ +0v, =0
This contradicts the original assumption that vy, v, ..., v, are linearly in-
dependent.

If x € N(A) then Ax = 0. Partitioning A into columns and x into rows and
performing the block multiplication, we get

ria; + Toag, - + rpa, = 0
Since ap, aq, ..., a, are linearly independent it follows that
1 =To=-+-=x, =0
Therefore x = 0 and hence N(A) = {0}.
If
aypteyy+--+ ey, =0
then

C1AX] + c0Axo + -+ Ax, = 0
A(erxy + coxo + -+ cpxi) = 0
Since A is nonsingular it follows that
c1X1 +coxXo+ -+ X =0
and since X1, ..., Xy are linearly independent it follows that
co=cp=---=¢p =0

Therefore y;,¥ys, ...,y are linearly independent.

Since vi,...,Vv, span V we can write
V=cCV]+cvy+---4+c,vp
If we set ¢,41 = —1 then ¢,41 # 0 and
vy + -+ cpvp Feppiv=20

Thus vy, ..., v,, v are linearly dependent.
If {va,..., v, } were a spanning set for V' then we could write

Vi =CoVy + -+ CpVp
Setting ¢; = —1, we would have
c1vy+cave+ -+, vy, =0

which would contradict the linear independence of vy, va, ..., v,.
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SECTION 4
3. (a) Since

1 3 |=270

it follows that x; and xo are linearly independent and hence form a
basis for R2.

(b) It follows from Theorem 3.4.1 that any set of more than two vectors in
R? must be linearly dependent.

’24

5. (a) Since
2 3 2
1 -1 6 |=0
3 4 4

it follows that x;, X2, x3 are linearly dependent.
(b) If ¢1x1 + coxo = 0, then

2¢1 + 3¢ =
Cl1 — Cy =
301 + 402 = 0

and the only solution to this system is ¢; = ¢ = 0. Therefore x; and
X9 are linearly independent.

8 (a) Since the dimension of R? is 3, it takes at least three vectors to span
R3. Therefore x; and Xy cannot possibly span R3.
(b) The matrix X must be nonsingular or satisfy an equivalent condition
such as det(X) # 0.
(c) If x3 = (a,b,c)’ and X = (x1,X2,x3) then

1 3 a
det(X)=|1 -1 b |=5a—b—4c
1 4 c
If one chooses a, b, and ¢ so that
564 —b—4c#0

then {x1,x2,x3} will be a basis for R3.

9. (a) If a; and ay are linearly independent then they span a 2-dimensional
subspace of R3. A 2-dimensional subspace of R? corresponds to a plane
through the origin in 3-space.

(b) If b = Ax then

b= riai + roa2
so b is in Span(a;, as) and hence the dimension of Span(a, ag, b) is 2.

10. We must find a subset of three vectors that are linearly independent. Clearly
x; and x5 are linearly independent, but

X3 = X2 — X1
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SO X1, X2, X3 are linearly dependent. Consider next the vectors xi, X2, X4.
If X = (x1,X2,%x4) then

1 2 2
det(X)=|2 5 7]=0
2 4 4

so these three vectors are also linearly dependent. Finally if use x5 and form
the matrix X = (x1, X2, X5) then

1 2 1
det(X)=|2 5 1|=-2
2 4 0

so the vectors x1, X2, X5 are linearly independent and hence form a basis for
R3.
dimU = 2. The set {e1,e2} is a basis for U.

dimV = 2. The set {ez,e3} is a basis for V.

dimU NV = 1. The set {ez} is a basis for UN V.

dimU + V = 3. The set {e1, ez, e} is a basis for U + V.

Let {u;,us} be a basis for U and {v1,va} be a basis for V. It follows from
Theorem 3.4.1 that uy, us, vy, ve are linearly dependent. Thus there exist
scalars c¢1, co, c3, ¢4 not all zero such that

c1u] + Ccoug + C3Vy + C4 Ve = 0
Let
X = C1U] + CaUp = —C3V] — C4V2
The vector x is an element of U N'V. We claim x # 0, for if x = 0, then
ciuy + coug = 0= —C3V] — C4V2

and by the linear independence of u; and us and the linear independence of
v and vy we would have

cp=ca=c3=c4=0

contradicting the definition of the ¢;’s.

Let U and V be subspaces of R"™ with the property that U NV = {0}.
If either U = {0} or V' = {0} the result is obvious, so assume that both
subspaces are nontrivial with dimU = k > 0 and dimV = r > 0. Let
{uy,...,u;} be a basis for U and let {vi,...,v,} be a basis for V. The
vectors uy, ..., U, Vi, ..., v, span U + V. We claim that these vectors form
a basis for U 4+ V and hence that dimU + dim V' = k + r. To show this we
must show that the vectors are linearly independent. Thus we must show
that if

(2) ciug + -+ cpug + cpr1vi + o+ Crapve =0

then ¢; = co =+ = cpyr = 0. If we set

u=cu; +---+cpug and V = Ckt1V1 + *+ F Chpr Vi
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then equation (2) becomes

u+v=0

This implies u = —v and hence that both u and v are in both in UNV = {0}.
Thus we have

u=-cu+--+cu,=0

V = Cpy1V1+ -+ Chyr vy =0

So, by the independence of uy, ..., u; and the independence of vy, ..., v, it
follows that

SECTION 5

c1=C == Chtr =0

11. The transition matrix from E to F is U™'V. To compute U~V note that

UNU V)= |UV)

and hence (I | U~'V) and (U | V) are row equivalent. Thus (I | U7V is
the reduced row echelon form of (U | V).

SECTION 6

1.

(a)

The reduced row echelon form of the matrix is

1 0 2
01 0
0 0 0

Thus (1, 0, 2)and (0, 1, 0) form a basis for the row space. The first
and second columns of the original matrix form a basis for the column
space:

a;=(1, 2, 97 and ay=(3, 1, )T

The reduced row echelon form involves one free variable and hence the
nullspace will have dimension 1. Setting z3 = 1, we get 1 = —2 and
29 = 0. Thus (=2, 0, 1)7 is a basis for the nullspace.

The reduced row echelon form of the matrix is

1 0 0 —10/7
o 1 0 -2/7
0o 0 1 0

Clearly then, the set
{(15 05 05 _10/7)5 (Oa 15 05 _2/7)5 (Oa 05 15 0)}
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is a basis for the row space. Since the reduced row echelon form of the
matrix involves one free variable the nullspace will have dimension 1.
Setting the free variable x4 =1 we get

$1:10/7, CC2:2/7, CC3:O

Thus {(10/7, 2/7, 0, 1)} is a basis for the nullspace. The dimension
of the column space equals the rank of the matrix which is 3. Thus the
column space must be R? and we can take as our basis the standard
basis {e1, ez, e3}.

(¢) The reduced row echelon form of the matrix is

1 0 0 —0.65
[ 0 1 0 1.05 ]
0 0 1 0.75
The set {(1, 0, 0, —0.65), (0, 1, 0, 1.05), (0, 0, 1, 0, 0.75)} is a basis
for the row space. The set {(0.65, —1.05, —0.75, 1)7} is a basis for
the nullspace. As in part (b) the column space is R and we can take
{e1,e2,e3} as our basis.
(b) The reduced row echelon form of A is given by

1 2 0 5 =3 0
U=10 0 1 -1 2 0
0 0 0 0 0 1

The lead variables correspond to columns 1, 3, and 6. Thus a;, as, ag form
a basis for the column space of A. The remaining column vectors satisfy the
following dependency relationships.

as = 281
as, = ba; —ag
as — —381 + 283

. (c) consistent, (d) inconsistent, (f) consistent

. There will be exactly one solution. The condition that b is in the column
space of A guarantees that the system is consistent. If the column vectors
are linearly independent, then there is at most one solution. Thus the two
conditions together imply exactly one solution.

. (a) Since N(A) = {0}
Ax =zia; + -+ z2,a, =0

has only the trivial solution x = 0, and hence ay,...,a, are linearly
independent. The column vectors cannot span R™ since there are only
n vectors and n < m.

(b) If b is not in the column space of A, then the system must be inconsistent
and hence there will be no solutions. If b is in the column space of A,
then the system will be consistent, so there will be at least one solution.
By part (a), the column vectors are linearly independent, so there cannot
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10.

11.

12.

13.

be more than one solution. Thus, if b is in the column space of A, then
the system will have exactly one solution.

(a) If A and B are row equivalent, then they have the same row space and
consequently the same rank. Since the dimension of the column space
equals the rank it follows that the two column spaces will have the same
dimension.

(b) If A and B are row equivalent, then they will have the same row space,
however, their column spaces are in general not the same. For example

if
10 0 0
e (20) e e (00)
then A and B are row equivalent but the column space of A is equal to
Span(e;) while the column space of B is Span(ez).

The column vectors of A and U satisfy the same dependency relations. By
inspection one can see that

us = 2u; + uy and w = u; +4us

Therefore
—6 4 -2
10 -3 7
ap=2atar=| =]
2 -1 1

and

-3 16 13
5 —12 -7
ar=artda = o+ o[ =] 30
1 —4 -3

If Ais 5 x 8 with rank 5, then the column space of A will be R®. So by the
Consistency Theorem, the system Ax = b will be consistent for any b in
R5. Since A has 8 columns, its reduced row echelon form will involve 3 free
variables. A consistent system with free variables must have infinitely many
solutions.

If U is the reduced row echelon form of A then the given conditions imply
that

u; = e, Uz = €, u3 = u; +2uz, uy =e3, us = 2u; — Uz +3uy

Therefore
1 0 1 0
o 1 2 0 -1
U= 0 0 0 1 3
0O 0 0 O 0

(a) Since A is 5 x 3 with rank 3, its nullity is 0. Therefore N(A) = {0}.
(b) If
c1yy +c2ys +e3y; =0



14.

15.

16.

Section 6 53

then

Clel + CQAXQ + CgAXg =0

A(clxl + coXo + Cng) =0
and it follows that ¢1x; 4 coxa + c3x3 is in N(A). However, we know
from part (a) that N(A) = {0}. Therefore

C1X1 + coXo + C3X3 — 0

Since X1, X2, x3 are linearly independent it follows that ¢y = co = c3 =0
and hence y, y,, y3 are linearly independent.

(c) Since dim R® = 5 it takes 5 linearly independent vectors to span the
vector space. The vectors y;, y,, ¥3 do not span R® and hence cannot
form a basis for R°.

Given A is m x n with rank n and y = Ax where x # 0. If y = 0 then
ria; +x2a0 + -+ xrha, = 0

But this would imply that the columns vectors of A are linearly dependent.
Since A has rank n we know that its column vectors must be linearly inde-
pendent. Therefore y cannot be equal to O.

If the system Ax = b is consistent, then b is in the column space of A.
Therefore the column space of (A | b) will equal the column space of A.
Since the rank of a matrix is equal to the dimension of the column space it
follows that the rank of (A | b) equals the rank of A.

Conversely if (A | b) and A have the same rank, then b must be in the
column space of A. If b were not in the column space of A, then the rank of
(A | b) would equal rank(A) + 1.

(a) If x € N(A), then
BAx=B0=0

and hence x € N(BA). Thus N(A) is a subspace of N(BA). On the
other hand, if x € N(BA), then
B(Ax) = BAx =0
and hence Ax € N(B). But N(B) = {0} since B is nonsingular. There-
fore Ax = 0 and hence x € N(A). Thus BA and A have the same
nullspace. It follows from the Rank-Nullity Theorem that
rank(A) = n—dim N(A)
= n—dim N(BA)
= rank(BA)
(b) By part (a), left multiplication by a nonsingular matrix does not alter

the rank. Thus

rank(A) = rank(AT) = rank(CT AT)
rank((AC)T)
= rank(AC)
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17.

18.

19.

20.

21.

Corollary 3.6.4. An nxn matrix A is nonsingular if and only if the column
vectors of A form a basis for R™.

Proof: It follows from Theorem 3.6.3 that the column vectors of A form a
basis for R™ if and only if for each b € R™ the system Ax = b has a unique
solution. We claim Ax = b has a unique solution for each b € R™ if and
only if A is nonsingular. If A is nonsingular then x = A~!'b is the unique
solution to Ax = b. Conversely, if for each b € R", Ax = b has a unique
solution, then x = 0 is the only solution to Ax = 0. Thus it follows from
Theorem 1.4.2 that A is nonsingular.

If N(A— B) = R" then the nullity of A— B is n and consequently the rank
of A — B must be 0. Therefore

A-B =0

A =18
(a) The column space of B will be a subspace of N(A) if and only if
Ab; =0 for j=1,...,n
However, the jth column of AB is
ABe; = Abj, ji=1,....n

Thus the column space of B will be a subspace of N(A) if and only if
all the column vectors of AB are 0 or equivalently AB = O.

(b) Suppose that A has rank r and B has rank k and AB = O. By part (a)
the column space of B is a subspace of N(A). Since N(A) has dimension
n — r, it follows that the dimension of the column space of B must be
less than or equal to n — r. Therefore

rank(A) + rank(B) =r +k <r+(n—r)=n

Let x¢ be a particular solution to Ax = b. If y = xo + 2, where z € N(A),
then
Ay =Axo+Az=b+0=Db
and hence y is also a solution.
Conversely, if xg and y are both solutions to Ax = b and z =y — xq,
then
Az = Ay —Axg=b—-b=0
and hence z € N(A).

(a) Since
x1 xlyT
X2 $2yT
Tm xmyT

the rows of A are all multiples of y”. Thus {y”} is a basis for the row
space of A. Since

A=xy" = x(y1, 92, Yn)
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= (11X, 92X, ..., YnX)

it follows that the columns of A are all multiples of x and hence {x} is
a basis for the column space of A.
Since A has rank 1, the nullity of A isn — 1.

If c is a vector in the column space of C, then
c= ABx

for some x € R". Let y = Bx. Since ¢ = Ay, it follows that c is in the
column space of A and hence the column space of C' is a subspace of
the column space of A.

If ¢” is a row vector of C, then c is in the column space of CT. But
CT = BTAT. Thus, by part (a), ¢ must be in the column space of BT
and hence ¢” must be in the row space of B.

It follows from part (a) that rank(C') < rank(A) and it follows from
part (b) that rank(C') < rank(B). Therefore

rank(C) < min{rank(A), rank(B)}

In general a matrix £ will have linearly independent column vectors if
and only if Ex = 0 has only the trivial solution x = 0. To show that
C has linearly independent column vectors we will show that Cx # 0
for all x # 0 and hence that Cx = 0 has only the trivial solution. Let
x be any nonzero vector in R" and let y = Bx. Since B has linearly
independent column vectors it follows that y # 0. Similarly since A has
linearly independent column vectors, Ay # 0. Thus

Cx=ABx=Ay #0

If A and B both have linearly independent row vectors, then BT and
AT both have linearly independent column vectors. Since CT = BTAT
it follows from part (a) that the column vectors of CT are linearly inde-
pendent, and hence the row vectors of C' must be linearly independent.

If the column vectors of B are linearly dependent then Bx = 0 for some
nonzero vector x € R". Thus

Cx=ABx=A40=0

and hence the column vectors of C' must be linearly dependent.
If the row vectors of A are linearly dependent then the column vectors
of AT must be linearly dependent. Since CT = BT AT it follows from
part (a) that the column vectors of CT must be linearly dependent. If
the column vectors of CT are linearly dependent, then the row vectors
of C' must be linearly dependent.
Let C denote the right inverse of A and let b € R™. If we set x = Cb
then

Ax=ACb=1I1,b=D

Thus if A has a right inverse then Ax = b will be consistent for each
b € R™ and consequently the column vectors of A will span R™.
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27.

28.

29.

30.

(b) No set of less than m vectors can span R™. Thus if n < m, then the
column vectors of A cannot span R™ and consequently A cannot have
a right inverse. If n > m then a right inverse is possible.

Let B be an n x m matrix. Since
DB =1,
if and only if
BTDT =1 =1,
it foll;)ws that D is a left inverse for B if and only if D? is a right inverse
for B*.

If the column vectors of B are linearly independent, then the row vectors
of BT are linearly independent. Thus BT has rank m and consequently the
column space of BT is R™. By Exercise 26, BT has a right inverse and
consequently B must have a left inverse.

Let B be an n x m matrix. If B has a left inverse, then BT has a right
inverse. It follows from Exercise 25 that the column vectors of BT span R™.
Thus the rank of BT is m. The rank of B must also be m and consequently
the column vectors of B must be linearly independent.

Let u(1,:),u(2,:),...,u(k,:) be the nonzero row vectors of U. If
ciu(l,:) + cou(2,:) 4 - -+ cpu(k,:) = 07
then we claim
cio=cy=---=¢,=0
This is true since the leading nonzero entry in u(%, :) is the only nonzero entry
in its column. Let us refer to the column containing the leading nonzero entry
of u(i,:) as j(i). Thus if
yr =ciu(l,:) + cou(2,:) + - - -+ cpu(k,:) = 07
then
Ozyj(i):ci, ’L:L,k

and it follows that the nonzero row vectors of U are linearly independent.

MATLAB EXERCISES

1.

2.

(a) The column vectors of U will be linearly independent if and only if the
rank of U is 4.
(d) The matrices S and T should be inverses.
(a) Since
r = dim of row space < m
and
r = dim of column space < n
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(d)

3. (a)

(b)

MATLAB Ezercises 57

it follows that
r < min(m,n)
All the rows of A are multiples of y” and all of the columns of A are
multiples of x. Thus the rank of A is 1.
Since X and Y7 were generated randomly, both should have rank 2 and

consequently we would expect that their product should also have rank
2.

The column space of C' is a subspace of the column space of B. Thus
A and B must have the same column space and hence the same rank.
Therefore we would expect the rank of A to be 4.

The first four columns of A should be linearly independent and hence
should form a basis for the column space of A. The first four columns
of the reduced row echelon form of A should be the same as the first
four columns of the 8 x 8 identity matrix. Since the rank is 4, the last
four rows should consist entirely of 0’s.

If U is the reduced row echelon form of B, then U = M B where M is
a product of elementary matrices. If B is an n X n matrix of rank n,
then U = I and M = B~!. In this case it follows that the reduced row
echelon form of (B BX) will be

B™YB BX)=(I X)
If B is m x n of rank n and n < m, then its reduced row echelon form

is given by
o= ()

It follows that the reduced row echelon form of (B BX) will be

MB(I X)_[(I)](I X)_[(I) g]

The vectors C'y and b + cu are equal since
Cy=(A+uvl)y=Ay +cu=b+cu
The vectors Cz and (1 + d)u are equal since
Cz=(A+uvl)z = Az +du=u+du
It follows that
Cx=C(y—ez)=b+cu—e(l+du=>b
The rank one update method will fail if d = —1. In this case
Cz=(14+du=0

Since z is nonzero, the matrix C' must be singular.
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CHAPTER TEST A

1.

NS oe

The statement is true. If S is a subspace of a vector space V, then it is
nonempty and it is closed under the operations of V. To show that S, with
the operations of addition and scalar multiplication from V', forms a vector
space we must show that the eight vector space axioms are satisfied. Since
S is closed under scalar multiplication, it follows from Theorem 3.1.1 that
if x is any vector in .S, then 0 = 0x is a vector in S and —1x is the additive
inverse of x. So axioms A3 and A4 are satisfied. The remaining six axioms
hold for all vectors in V' and hence hold for all vectors in S. Thus S is a
vector space.

. The statement is false. The elements of R® are 3 x 1 matrices. Vectors that

are in R? cannot be in vectors in R? since they are only 2 x 1 matrices.

. The statement is false. A two dimensional subspace of R* corresponds to

a plane through the origin in 3-space. If S and T are two different two
dimensional subspaces of R3 then both correspond to planes through the
origin and their intersection must correspond to a line through the origin.
Thus the intersection cannot consist of just the zero vector.

The statement is false in general. See the solution to Exercise 19 of Section 2.
The statement is true. See the solution to Exercise 18 of Section 2.

The statement is true. See Theorem 3.4.3.

The statement is false in general. If x;1, X2, ..., x, span a vector space V of
dimension k£ < n, then they will be linearly dependent since there are more
vectors than the dimension of the vector space. For example,

o (2w () o= 1)

are vectors that span R?, but are not linearly independent. Since the di-
mension of R? is 2, any set of more than 2 vectors in R? must be linearly
dependent.

. The statement is true. If

Span(x1,X2, ..., X)) = Span(X1, Xz, . . ., Xx—1)
then x; must be in Span(x1,X2,...,Xk—1). So X can be written as a linear
combination of x1,Xs,...,X;—1 and hence there is a dependency relation

among the vectors. Specifically if
Xk = C1X1 + CoXo + -+ + Cp—1Xk—1
then we have the dependency relation

C1X] +CoXo + -+ Cp_1Xp—1 — 1x, =0

. The statement is true. The rank of A is the dimension of the row space of A.

The rank of AT is the dimension of the row space of A”. The independent
rows of AT correspond to the independent columns of A. So the rank of
AT equals the dimension of the column space of A. But the row space and
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column space of A have the same dimension (Theorem 3.6.5). So A and AT
must have the same rank.

10. If m # n then the statement is false since
dimN(A)=n—r and dim N(ATY =m —r

where 7 is the rank of A.

CHAPTER TEST B

1. The vectors are linearly dependent since

OX1+OX2+1X3:OX1+OX2+10:0

2. (a) S consists of all vectors of the form
)
X =
a
—a —b
(3) = e[

are arbitrary vectors in S7 and c is any scalar then

cx = [—ca] €5

ca

—a —b —a—>b
X+y= a + b = a-+b €5
Since 57 is nonempty and closed under the operations of scalar multi-

plication and vector addition, it follow that S; is a subspace of R2.
(b) Ss is not a subspace of R? since it is not closed under addition. The

vecto S
X = a,ld y -
O 1

are both in Sy, however,
X+y= !
Y= 1

so if

and

is not in Ss.

3. (a)
1 3 1 3 4]0 1 3 0 2 3]0
001 1 1]0 . 0 01 1 110
00 2 2 2|0 000 0O O0]O0
0 03 3 3|0 000 0O O0]O0
The free variables are zo, x4, and x5. If we set zo = a, 4 = b, and

r5 = ¢, then

r1 = —3a—2b—3c and r3=—-b—c
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Thus N(A) consists of all vectors of the form

—3a —2b— 3¢ -3 —2 -3
a 1 0 0
X = —-b—c =a O +b| -1 +c| —1
b 0 1 0
c 0 0 1
The vectors
-3 -2 -3
1 0 0
X1 = 0 y X9 = -1 y X3 = -1
0 1 0
0 0 1

form a basis for N(A).
(b) The lead 1’s occur in the first and third columns of the echelon form.
Therefore

1
a; = 0 ) az =
0

W N = =

0
form a basis for the column space of A.

4. The columns of the matrix that correspond to the lead variables are linearly
independent and span the column space of the matrix. So the dimension
of the column space is equal to the number of lead variables in any row
echelon form of the matrix. If there are r lead variables then there are n —1r
free variables. By the Rank-Nullity Theorem the dimension of the nullspace
is n — r. So the dimension of the nullspace is equal to the number of free
variables in any echelon form of the matrix.

5. (a) One dimensional subspaces correspond to lines through the origin in
3-space. If the first subspace U; is the span of a vector u; and the
second subspace Us is the span of a vector us and the vectors u; and
uy are linearly independent, then the two lines will only intersect at the
origin and consequently we will have U; N U; = {0}.

(b) Two dimensional subspaces correspond to planes through the origin in
3-space. Any two distinct planes through the origin will intersect in a
line. So V4 NV, must contain infinitely many vectors.

6. (a) If
“(12) ()

are arbitrary symmetric matrices and « is any scalar, then

[ aa ab _(a+d b+e
aA_[ab ac] and A+B_[b+e c+f]

are both symmetric. Therefore S is closed under the operations of scalar
multiplication and vector addition and hence S is a subspace of R?*2,
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(b) The vectors

10 0 1 0 0
a=(oa) m-(1a) - (01)

are linearly independent and they span S. Therefore they form a basis
for S.

. (a) If Ais 6 x 4 with rank 4, then by the Rank-Nullity Theorem dim N(A) =
0 and consequently N(A) = {0}.

(b) The column vectors of A are linearly independent since the rank of A is
4, however, they do not span RS since you need 6 linearly independent
vectors to spanR®.

(c) By the Consistency Theorem if b is in the column space of A then the
system is consistent. The condition that the column vectors of A are
linearly independent implies that there cannot be more than 1 solution.
Therefore there must be exactly 1 solution.

. (a) The dimension of R? is 3, so any collection of more than 3 vectors must
be linearly dependent.

(b) Since dim R? = 3, it takes 3 linearly independent vectors to span R3.
No 2 vectors can span, so x; and x5 do not span R3.

(¢) The matrix

1 11
X:(Xl,Xg,Xg): 2 3 5
2 3 5

only has 2 linearly independent row vectors, so the dimension of the
rowspace and dimension of the column space both must be equal to
2. Therefore x;, x2, x3 are linearly dependent and only span a 2-
dimensional subspace of R3. The vectors to not form a basis for R?
since they are linearly dependent.

(d) If we set A = (x1,X2,X4), then

1 11
det(A) = | 2 1 0|=1
2 11

w w
W N =
Il
o O =

Therefore x;, X2, X3 are linearly independent. Since dim R?® = 3, the
three vectors will span and form a basis for R3.

CIf

c1y1 + c2ys +c3yz =0
then
Clel + CQAXQ + CgAXg =A0=0
Multiplying through by A=! we get
c1X1 + coXo + C3X3 = 0

Since X1, X2, X3 are linearly independent, it follows that ¢; = ¢co = ¢3 = 0.
Therefore y;, ¥, y3 are linearly independent.
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10. (a) The rank of A equals the dimension of the column space of A which is
3. By the Rank-Nullity Theorem, dim N(A) =5 —3 = 2.
(b) Since aj, ag, az are linearly independent, the first three columns of the
reduced row echelon form U will be

u; =€;, Uz =€z, Uz =e€3

The remaining columns of U satisfy the same dependency relations that
the column vectors of A satisfy. Therefore

w = 111+3112+113:el+382+83
u; = 2111—113:281—83

and it follows that

10 0 1 2
0 1 0 3 O
0 0 1 1 -1
U= 0 0 0 0 O
0 0 0 0 O
0 0 0 0 O

11. (a) If U = (uy,uz), then the transition matrix corresponding to a change
of basis from [er, e2] to [uy, ug] is

(7 =2
N

(b) Let V = (v1,va). If x = Vd = Uc then ¢ = U7'Vd and hence the
transition matrix corresponding to a change of basis from [vi, va] to
[ug, ug] is

L, (T —2Y (5 4) _( 31 10
UV—[—3 1) 12 9) 7 |-13 -3
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2. 21 =7cos0, xo = rsind where r = (22 + 23)'/2 and 0 is the angle between
x and ej.

L(x) = (rcosfcosa — rsinfsina,rcosfsina 4 rsinf cosa)”

= (rcos(f + ), rsin(f + )’

The linear transformation L has the effect of rotating a vector by an « in
the counterclockwise direction.

3. If a # 1 then
L(ax) = ax + a # ax + aa = aL(x)
The addition property also fails
Lix+y) =x+y+a
L(x)+ L(y) = x+y+2a

we(2) (1)< (1)

To determine L(x) we must first express x as a linear combination

4. Let

X = c1Uuy + coug

To do this we must solve the system Uc = x for c¢. The solution is ¢ = (4, 3)7
and it follows that

L(x) = L(4u; 4 3uy) = 4L(uy) 4 3L(ug) = 4 [‘2] +3 [2] = [1;]

63
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8. (a)
L(aA) = C(aA) + (aA)C = a(CA+ AC) = aL(A)
and

L(A+ B)

C(A+B)+(A+B)C =CA+CB+ AC + BC
= (CA+ AC)+ (CB+ BC) = L(A) + L(B)

Therefore L is a linear operator.

(b) L(aA + BB) = C%*(aA + BB) = aC?A + BC?B = aL(A) + BL(B)
Therefore L is a linear operator.

(¢) If C' # O then L is not a linear operator. For example,

L(2I) = (21)?C = 4C # 2C = 2L(I)
10. If f,g € C[0, 1] then

Liaf + 8g) = / “(f () + Bg(t))dt

/f dt+6/

= aL(f) + BL(9)

Thus L is a linear transformation from C[0, 1] to C[0, 1].
12. If L is a linear operator from V into W use mathematical induction to prove

L(ayvy + agve + -+ -+ apvy) = a1 L(vy) + asL(va) + -+ + a L(vy,).
Proof: In the case n =1
L(alvl) = O[lL(Vl)

Let us assume the result is true for any linear combination of k vectors and
apply L to a linear combination of k + 1 vectors.

L(civi + -+ apvi + app1Viey1) = L({oavi + - -+ apvi] + [@p1Viti])
= L{ayvi+ - -+ apve) + L(og41VE+1)

= a1 L(vy) + -+ apL(vg) + agr1L(Vies1)

The result follows then by mathematical induction.
13. If v is any element of V' then
V =Q1V] + oV + -+ a,Vy
Since Ly(v;) = La(v;) for i =1,...,n, it follows that
Ll (V) = O[lLl (Vl) —+ O[2L1 (VQ) + -4 O[nLl (Vn)
alLQ(Vl) + O[QLQ(VQ) —+ -4 O[nLQ(Vn)
Ly(a1vi + -+ anvp)
= La(v)
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15.

16.

17.
18.
19.

20.

21.
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Let L be a linear transformation from R! to R'. If L(1) = a then
L(x) = L(x1) = 2L(1) = za = ax

The proof is by induction on n. In the case n = 1, L' is a linear operator
since L' = L. We will show that if L™ is a linear operator on V then L™*!
is also a linear operator on V. This follows since

L™ (av) = L(L™(av)) = L(aL™(v)) = aL(L™(v)) = aL™ " (v)
and
L™ (v +vy) = L(L™(vi +v2))
(L™ (v1) + L™ (v2))
(L™(v1)) + L(L™(v2))
= L™ (vy) + L™ (vy)

L
L

If vi,vo € V, then
L(OZVl + 6V2) = L2 (Ll (O[Vl + 6V2))
= La(aLi(v) + BL1(v2))
= aly(Li(v1)) + BL2(L1(v2))
= alL(vy) + BL(v2)
Therefore L is a linear transformation.
(b) ker(L) = Span(es), L(R?) = Span(ey, e3)
(c) L(S) = Span((1,1,1)")
(b) If p(z) = az? + bz + ¢ is in ker(L), then
L(p) = (az® + bz + ¢) — (2ax + b) = ax® + (b — 2a)x + (c — b)
must equal the zero polynomial z(z) = 022 4+ 0x + 0. Equating coefficients
we see that a = b = ¢ = 0 and hence ker(L) = {0}. The range of L is all of
Ps. To see this note that if p(z) = az? 4 bx + ¢ is any vector in P3 and we
define q(z) = az? + (b + 2a)xz + ¢ + b + 2a then
L(q(x)) = (az®+ (b+2a)z +c+b+2a) — (2ax+b+2a) = az® + bz +c = p(x)

If 0y denotes the zero vector in V' and Oy is the zero vector in W then
L(0y) = Oy . Since Oy is in T, it follows that Oy is in L=(T) and hence
L=Y(T) is nonempty. If v is in L=(T), then L(v) € T. It follows that
L(av) = aL(v) is in T and hence av € L=YT). If vy, v € L™Y(T), then
L(vy), L(ve) are in T and hence

L(Vl + V2) = L(Vl) + L(VQ)
is also an element of L(T). Thus vy + vo € L™(T) and therefore L=!(T') is
a subspace of V.
Suppose L is one-to-one and v € ker(L).

L(V) = OW and L(Ov) = OW
Since L is one-to-one, it follows that v = Oy . Therefore ker(L) = {0y }.
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Conversely, suppose ker(L) = {0y} and L(vy) = L(v3). Then
L(vy —va) = L(v1) — L(va) = O
Therefore vi — va € ker(L) and hence
vi — vy = Oy
Vi = vy
So L is one-to-one.

22. To show that L maps R> onto R we must show that for any vector y € R?
there exists a vector x € R3 such that L(x) = y. This is equivalent to
showing that the linear system

1 = U
T+ X2 = Y2
1 + 2 + T3 = Y3

is consistent. This system is consistent since the coefficient matrix is non-
singular.
24. (a) L(R?) = {Ax|x € R?*}
= {xlal + roa2 | T1,T2 real }
= the column space of A
(b) If A is nonsingular, then A has rank 2 and it follows that its column
space must be R% By part (a), L(R?) = R?.
25. (a) If p=ax? 4+ bz + c € Ps, then
D(p) =2ax +b

Thus
D(P3) = Span(1,z) = P,
The operator is not one-to-one, for if py(x) = ax? + bz + ¢1 and pa(z) =
ax? + bz + c3 where ¢ # 1, then D(p1) = D(p2).
(b) The subspace S consists of all polynomials of the form az? + bx. If
p1 = a17? + by, p2 = azx? + bex and D(p;) = D(p2), then

2&13: + bl = 2&23: + b2

and it follows that a; = as, by = by. Thus p; = po and hence D is
one-to-one. D does not map S onto Ps since D(S) = Ps.

SECTION 2

7. (a) Z(e1) = Oy, + Oy, + 1y3
Z(e2) =0y, + 1y, — 1y,
I(e3) = ly; — Ly, + Oy3

0
0
1



11. (a) YP =

(b) PY =

(c) PR=

(d) RP =

(e)

YPR

(f)

RPY

o O =

|
=

0

S-Sk

o O

-1

o S-S
o

0 0
0 1
1 0

S o s
o = O

—_

o [an] — §|,_. §|H o

-1
0
0

Section 2

0 1 0
0 0 1
100

1 1
00 s w0
0 1]1=1o0 0 1
1 _1 9
-1 0 V2 V2
— 1 1 0o —L
V2 V2 2
_ 1 1
0 = 0 7
1
7z 0 -1 0
0 0 1 1 0 0
0o L 1
0 1 0 V2 V2
0o —-4Li1 L
-1 0 O 2 V2
1 1
0 0 1 B U
1 1
0 1 0 -5 0
-1 0 0 0 0 1
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12. (a) If Y is the yaw matrix and we expand det(Y") along its third row we get

det(Y) = cos? u + sin?u = 1

Similarly, if we expand the determinant pitch matrix P along its second
and expand the determinant of the roll matrix R along its first row we

get

det(P) = cos’v +sin®v =1
det(R) = cos®>w +sin®w = 1



68 Chapter 4

14.

16.

17.

18.

19.

20.

(b) If Y is a yaw matrix with yaw angle u then

cosu —sinu 0 cos(—u) sin(—u) 0
YT = | sinu  cosu 0 | = | —sin(—u) cos(—u) 0
0 0 1 0 0 1

so Y7 is the matrix representing a yaw transformation with angle —u.
It is easily verified that Y7Y = I and hence that Y ! = Y7,

(¢) By the same reasoning used in part (b) you can show that for the pitch
matrix P and roll matrix R their inverses are their transposes. So if
@ = Y PR then @ is nonsingular and

Q'=(YPR'=R'P Y =R'PTYT
o (5 ) @ ()

If L(x) = 0 for some x # 0 and A is the standard matrix representation of
L, then Ax = 0. It follows from Theorem 1.4.2 that A is singular.

The proof is by induction on m. In the case that m = 1, A' = A represents
L' = L. If now A is the matrix representing L* and if x is the coordinate
vector of v, then A¥x is the coordinate vector of L*(v). Since

LM (v) = L(T*(v))
it follows that
AAFx = AFHIx
is the coordinate vector of LF1(v).

) —2 4

(b) [ 3 2 -2 ]

If x = [v]g, then Ax = [L1(v)]r and B(Ax) = [L2(L1(v))]g. Thus, for all

velV

(BA)v]g = [L2 0 L1(V)]a

Hence BA is the matrix representing Ly o Ly with respect to £ and G.

(a) Since A is the matrix representing L with respect to E and F, it follows
that L(v) = Oy if and only if A[v]g = 0. Thus v € ker(L) if and only
if [v]g € N(A).

(b) Since A is the matrix representing L with respect to F and F, then it
follows that w = L(v) if and only if [w]p = A[v]g. Thus, w € L(V) if
and only if [w]p is in the column space of A.

SECTION 3

7.

If A is similar to B then there exists a nonsingular matrix S; such that
A=57 'BS,. Since B is similar to C there exists a nonsingular matrix Sy
such that B = S;'C'S,. It follows that

A=S7'BS, =5718,1CS,8,
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If we set S = S»5, then S is nonsingular and S—! = S;'S,*. Thus A =
S~™1CS and hence A is similar to C.

8. (a) If A= SAS™!, then AS = AS. If s; is the ith column of S then As; is
the ith column of AS and \;s; is the ith column of AS. Thus
As; = \isq, i=1,...,n
(b) The proof is by induction on k. In the case k = 1 we have by part (a):
Ax = a1As1 + -+ anAs, = ag st + -+ ap sy
If the result holds in the case k =m
AT = g A\'s1 + - FanAlt's,
then
Aty = AP Asy + -+ ap AT Asy,
= al)\THsl 4ot an)\fﬂsn
Therefore by mathematical induction the result holds for all natural
numbers k.

(c) If [\;] < 1then \¥ — 0ask — oo. It follows from part (b) that A*x — 0
as k — oo.

9. If A= ST then
ST'AS =857'STS =TS =B
Therefore B is similar to A.
10. If A and B are similar, then there exists a nonsingular matrix S such that
A=5BS™!
If we set
T=DBS"!
then
A=ST and B=TS
11. If B = S~'AS, then
det(B) = det(S™'AS)
= det(S™")det(A)det(S)
= det(A)

since

1
~ det(S)

det(S™1)

12. (a) If B=S"1AS, then

BT = (s7tAs)T
STAT(Sfl)T
_ STAT(ST)71

Therefore BT is similar to AT.
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(b) If B = S71AS, then one can prove using mathematical induction that
BF =8 1AFS

for any positive integer k. Therefore that B¥ and A* are similar for any
positive integer k.

13. If A is similar to B and A is nonsingular, then
A=S8BS™"
and hence
B=S"1458
Since B is a product of nonsingular matrices it is nonsingular and
B! =(871AS)"t =57tAa7lg
Therefore B~ and A~! are similar.

14. If A and B are similar, then there exists a nonsingular matrix S such that
B =SAS™L.
(a) A— Al and B — AI are similar since

S(A—-AXNS™' =8AS™ —\SIS™' =B - AI

(b) Since A — AI and B — AI are similar, it follows from Exercise 11 that
their determinants are equal.

15. (a) Let C = AB and F = BA. The diagonal entries of C' and F are given

by
n n
Cii = E @ixbri, ek = E briik
k=1 i—1

Hence it follows that

n n

tr(AB) = Z Cii = Z Z Qikbri = Z Z briair = Z exk = tr(BA)
i—1 k=1

i=1 k=1 k=1i=1
(b) If B is similar to A, then B = S~'AS. It follows from part (a) that
tr(B) = tr(S™1(AS)) = tr((AS)S™!) = tr(A)

MATLAB EXERCISES

2. (a) To determine the matrix representation of L with respect to E set

B=U"tAU

(b) To determine the matrix representation of L with respect to F set
C=V"'AV

(¢) If B and C are both similar to A then they must be similar to each other.
Indeed the transition matrix S from F to F is given by S = U~V and

C=S"'BS
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CHAPTER TEST A

1.

The statement is false in general. If L : R™ — R™ has matrix representation
A and the rank of A is less than n, then it is possible to find vectors x; and
xo such that L(x1) = L(x2) and x1 # x2. For example if

() e ()

and L : R? — R? is defined by L(x) = Ax, then

L(x1) = Ax; = [ 18 ] = Axy = L(x2)

. The statement is true. If v is any vector in V' and c is any scalar, then

(L1 + Lo)(ev) = Li(ev) + La(ev)

= cly(v) + cLa(Vv)

= c(L1(v) + L2(v))

= ¢(L1 + La)(v)
If vi and vy are any vectors in V, then

(L1 + Lo)(vi+v2) = Li(vi +v2) + La(vy + va)
= Li(v1) + L1(v2) + La(v1) + La(v2)

(L1(v1) + L2(v1)) + (L1(v2) + La(v2))
= (L1 + L2)(v1) + (L1 + L2)(v2)

. The statement is true. If x is in the kernel of L, then L(x) = 0. Thus if v is

any vector in V', then

Liv+x)=L(v)+L(x)=L(v)+ 0= L(v)

. The statement is false in general. To see that Ly # Ls, look at the effect of

both operators on e;.

SR

Ll(el) = [ 3 ] and L2(81> = [ é ]

2

. The statement is false. The set of vectors in the homogeneous coordinate

system does not form a subspace of R? since it is not closed under addition.
If x; and x5 are vectors in the homogeneous system and y = x; + x2, then
y is not a vector in the homogeneous coordinate system since y3 = 2.

. The statement is true. If A is the standard matrix representation of L, then

L*(x) = L(L(x)) = L(Ax) = A(Ax) = A%*x

for any x in R?. Clearly L? is a linear transformation since it can be repre-
sented by the matrix A2.

. The statement is true. If x is any vector in R" then it can be represented in

terms of the vectors of F

X = C1X4CoXg + -+ Xy,
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10.

Chapter 4

If L1 and Lo are both represented by the same matrix A with respect to E,
then
Ll (X) = d1X+d2X2 —+ -4 dnxn = LQ(X)

where d = Ac. Since L;(x) = La(x) for all x € R™, it follows that L = L.

. The statement is true. See Theorem 4.3.1.
. The statement is true. If A is similar to B and B is similar to C, then there

exist nonsingular matrices X and Y such that

A=X"'BX and B=Y 'cy

If we set Z =Y X, then Z is nonsingular and
A=X""'BX=X"'v'cyX=2z"10Z

Thus A is similar to C.

The statement is false. Similar matrices have the same trace, but the converse
is not true. For example, the matrices

1 1 1 0
b (0] w1 (10

have trace equal to 2, but the matrices not similar. In fact the only matrix
that is similar to the identity matrix is I itself. (If S any nonsingular matrix,
then S~1IS =1.)

CHAPTER TEST B

1.

. (a) ker(L) = Span((1,1,1)7)
1

(a) L is a linear operator since

L(cx) = [ Cxlc—; cr2 ] —¢c [xlz‘l“z ] CL(x)
1 1
and
L(X+y)_[($1+yxl)i($2+y2)] _ [x1+x2]+[yl+y2]
1 Y1 T U1

— L(x) +L(y)

(b) L is not a letter operator. If, for example we take x = (1,1)” then

v = () 2]

and 2L(x) =

. To determine the value of L(vs) we must first express vs as a linear com-

bination of v and vs. Thus we must find constants ¢; and c¢» such that
vy = ¢1V1 + cava. In we set V = (v, va) and solve the system Ve = vs we
see that ¢ = (3,2)T. Tt follows then that
0
17

L(Vg) = L(3V1 + 2V2) = 3L(V1) + 2L(V2) = [

(b) L(S) = Span((~1,1,0)")
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xro O 1
L(x) = T1 =x1 | 1] +a2 |0
xr1 + T2 1 1

it follows that the range of L is the span of the vectors

0 1
Y1 = 1 ) Yo = 0
1 1

. Let e; and ey be the standard basis vectors for R2. To determine the matrix
representation of L we set

1 1
alzL(el): [1] y aQZL(eg): [—1]
3 2

1 1

1 -1

3 2
then L(x) = Ax for all x € R2.
. To determine the matrix representation we set

_ V3
a; = L(ep) = [ 2 ] and as = L(ey) = [

. Since

If we set

A:

1

2

"’ﬁ ol
| S——

The matrix representation of the operator is

A: (al,aQ) = [

|
rol= w|a

w|ﬂ N [=
w
| ——

A=

1 05
0 1 2 ]
0 0 1

. The standard matrix representation for a 45° counterclockwise rotation op-

erator is L L
A | cos T —sing _ NCERG)
sin 7 cos % \/Li
The matrix representation with respect to the basis [ug, us] is
o 5) (7% ~w) (3 5 -
-1 - V2 V2 V2 V2
B=U AU‘[—l 3][L L][12]_[ 10 ﬁ]
V2 V2 V2 V2

. (a) U = (ug,uz) and V = (vq,va) then the transition matrix S from
[Vl,VQ] to [ul, UQ] is

sonv= (350 (8 )= ()
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(b) By Theorem 4.3.1 the matrix representation of L with respect to [v1, va]
is

a1 (-4 -7 2 1 12 7)) (222 -131
b=5"A5= [ 7 12] [3 2] [—7 —4] = [ 383 226]
10. (a) If A and B are similar then B = S~1AS for some nonsingular matrix
S. It follows then that
det(B) = det(S™'AS) = det(S™1)det(A)det(S)

1
= 55 det(A) det(S) = det(A)

(b) If B = S~1AS then
STHA—A)S =S"'AS —AST'IS =B -\

Therefore A — AI and B — Al ate similar and it follows from part (a)
that their determinants must be equal.
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SECTION 1
14 i
1. (c) cosf = ok 0 ~ 10.65
46 .
(d) cosf = BT 0 ~ 62.19

3. ) p=44", x—p=(-1,1)T
pl(x—p)=-4+4=0
(d) p=(-2,-4,2)T, x—p=(4,-1,2)T

pl(x—p)=-8+4+4=0
4. If x and y are linearly independent and 6 is the angle between the vectors,
then |cosf| < 1 and hence
[x"y| = |||/ Iyl | cos 8] <6

8. (b) —3(x—4)+6(y—2)+2(:+5) =0
11. (a) xTx=22+22>0
(b) xTy = 2191 + T2ys = Y171 + Y212 = y''x

75
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(¢) x"(y+2) =21(yr + 21) + z2(y2 + 22)
= (m1y1 + 22y2) + (T122 + T220)
= xTy—|—xTz
12. The inequality can be proved using the Cauchy-Schwarz inequality as follows:
[utvl* = (u+v) (utv)
= ulu+viu+ulv+vly
)2 + 2u”v + |[v]|?
— [l + 2] V]| cos6 + [v]2
)12 + 2[[ul] v + [Iv]?
(Ihull + [Iv])?

IN

Taking square roots, we get
[utv<[ul+]v]

Equality will hold if and only if cos§ = 1. This will happen if one of the
vectors is a multiple of the other. Geometrically one can think of |Jul| and
|[v|| as representing the lengths of two sides of a triangle. The length of the
third side of the triangle will be |[u+ v||. Clearly the length of the third side
must be less than the sum of the lengths of the first two sides. In the case
of equality the triangle degenerates to a line segment.

13. No. For example, if x; = e1, X5 = €2, X3 = 2e1, then x; L x9, X9 1 x3, but
x1 is not orthogonal to x3.

14. (a) By the Pythagorean Theorem

o + h? = [|ay[|?

where « is the scalar projection of a; onto as. It follows that

2 (af ap)?
l|az|?
and
B2 — HalH2 (af a)
l|az|?
Hence
h?|lazl” = [lai? [la=* — (ai a2)?

(b) If a; = (all, CLQl)T and ag = (CL12, CLQQ)T, then by part (a)

h?|lag]|? = (af) + a3;)(als + a3s) — (a11012 + az1022)
= (a%ch%Q — 2a11a92a12091 + a%laﬂ)
= (a11a22 - &21&12)2

Therefore

Area of P = hllaz| = |ai1a22 — a21a12| = |det(A)|
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16.

17.
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(a) It @ is the angle between x and y, then
xTy 20 1
cosf = =—== 6=
[yl 8-5 2
(b) The distance between the vectors is given by

[x—yll=02+22+ (—6)2+32=7

il
3

(a) Let

T,\2

x"y (x"y)
y'y y'y
In terms of these scalars we have p = ay and p”x = 3. Furthermore

and 0=

o =

p'p=a’y'y=0
and hence
p'z=p'x—p'p=F-3=0
b) If ||p|| = 6 and ||z|| = 8, then we can apply the Pythagorean law to
y ythag
determine the length of x = p + z. It follows that
Ix[I* = lIplI* + ||z* = 36 + 64 = 100

and hence ||x| = 10.
The matrix @ is unchanged and the nonzero entries of our new search vector
X are Trg = @, Tr = ‘/76, T19 = @. Rounded to three decimal places the
search vector is

x = (0,0, 0, 0, 0, 0.816, 0.408, 0, 0, 0.408)”
The search results are given by the vector
y = QTx = (0, 0.161, 0.401 0.234, 0.612, 0.694, 0, 0.504)7

The largest entry of y is yg = 0.694. This implies that Module 6 is the one
that best meets our search criteria.

SECTION 2

1.

(b) The reduced row echelon form of A is

1 0 =2
0 1 1

The set {(2, —1, 1)T} is a basis for N(A) and {(1, 0, —2)7, (0, 1, 1)T}
is a basis for R(AT). The reduced row echelon form of AT is

10
0 1
0 0

N(AT) = {(0, 0)T} and {(1, 0)T, (0, 1)T} is a basis for R(A) = R.
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10.

(¢) The reduced row echelon form of A is

10

0
0
0

o O =

N(A) = {(0, 0)T} and {(1, 0)T, (0, 1)T} is a basis for R(AT). The
reduced row echelon form of AT is

) )
1

7

We can obtain a basis for R(A) by transposing the rows of U and we
can obtain a basis for N(AT) by solving Ux = 0. It follows that

U:
0 1

TS

5 5
0 1 -2 -
E 4 and T, 7
5 11

are bases for R(A) and N(AT), respectively.

(b) S corresponds to a line ¢ in 3-space that passes through the origin and
the point (1, —1, 1). S* corresponds to a plane in 3-space that passes
through the origin and is normal to the line 4.

(a) A vector z will be in S+ if and only if z is orthogonal to both x and y.
Since xT and y? are the row vectors of A, it follows that S+ = N(A).

No. (3, 1, 2)T and (2, 1, 1)T are not orthogonal.

. No. Since N(AT) and R(A) are orthogonal complements

N(AT) N R(4) = {0}

The vector a; cannot be in N(AT) since it is a nonzero element of R(A).
Also, note that the jth coordinate of ATa; is

aja; = [a;]|* > 0

. If y € S+ then since each x; € S it follows that y 1L x; for i = 1,..., k.

Conversely if y | x; fore=1,...,k and x = a1x1 + @oXo + + -+ + QpXj 18
any element of S, then

k k
yix=y" [Z aixi] = Z iy x; =0
i=1 i=1

Thus y € S*.

Corollary 5.2.5. If A is an m x n matrix and b € R", then either there is
a vector x € R™ such that Ax = b or there is a vector y € R™ such that
ATy =0 and y'b # 0.

Proof: If Ax = b has no solution then b ¢ R(A). Since R(A) = N(AT)* it
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follows that b ¢ N(AT)L. But this means that there is a vector y in N (A7)
that is not orthogonal to b. Thus ATy = 0 and y”'b # 0.
If x is not a solution to Ax = 0 then x ¢ N(A). Since N(A) = R(AT)* it
follows that x ¢ R(AT)L. Thus there exists a vector y in R(AT) that is not
orthogonal to x, i.e., xy # 0.
Part (a) follows since R® = N(A) @ R(AT).
Part (b) follows since R™ = N(AT) @ R(A).
(a) Ax € R(A) for all vectors x in R™. If x € N(ATA) then

ATAx =0

and hence Ax € N(AT).
(b) If x € N(A), then
ATAx = A"0=0
and hence x € N(ATA). Thus N(A) is a subspace of N(ATA).
Conversely, if x € N(ATA), then by part (a), Ax € R(A)NN(AT).
Since R(A) N N(AT) = {0}, it follows that x € N(A). Thus N(ATA) is
a subspace of N(A). It follows then that N(ATA) = N(A).

(c) A and ATA have the same nullspace and consequently must have the
same nullity. Since both matrices have n columns, it follows from the
Rank-Nullity Theorem that they must also have the same rank.

(d) If A has linearly independent columns then A has rank n. By part (c),
ATA also has rank n and consequently is nonsingular.

(a) If x € N(B), then

Cx=ABx=A0=0
Thus x € N(C) and it follows that N(B) is a subspace of N(C).

(b) If x € N(C)1, then xTy = 0 for all y € N(C). Since N(B) C N(CO)
it follows that x is orthogonal to each element of N(B) and hence x €
N(B)*. Therefore

R(CT) = N(C)* is a subspace of N(B)t = R(BT)
Let x € UNV. We can write
x=0+x (0eU, xeV)
x=x+0 (xeUl, 0eV)
By the uniqueness of the direct sum representation x = 0.
It was shown in the text that

R(4) = {Ay |y € R(AT)}
If y € R(AT), then we can write
Yy = iXy + aXg + -+ Xy

Thus
Ay = a1 AX| + agAxo + - - - + . A%,

and it follows that the vectors Axy,..., Ax, span R(A). Since R(A) has
dimension r, {Axy, ..., Ax,} is a basis for R(A).
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17. (a) A is symmetric since
AT = (xy" +yx")" = (xy")" + (yx")"
= ()T + (xD)Ty? —=yxT +xyT = A
(b) For any vector z in R"
Az = xyTz +yxTz = e1x + coy
where ¢; = yTz and ¢y = xTz. If z is in N(A) then
0=Az = 1X+ ¢y

and since x and y are linearly independent we have y’z = ¢; = 0 and

x”z = ¢y = 0. So z is orthogonal to both x and y. Since x and y span

S it follows that z € S*.
Conversely, if z is in S+ then z is orthogonal to both x and y. It
follows that

Az = x4+ oy =0

since ¢; = y'z = 0 and ¢y = xTz = 0. Therefore z is in N(A) and hence
N(A) =S+

(c) Clearly dimS = 2 and by Theorem 5.2.2, dim S + dim S+ = n. Using
our result from part (a) we have

dim N(A) = dim S+ =n —2

So A has nullity n — 2. It follows from the Rank-Nullity Theorem that
the rank of A must be 2.

SECTION 3

. 6 -1 Ty 20
Lot [ 0 waane [ 2]

The solution to the normal equations A7 Ax = A”b is

- (27)

2.

—

Exercise 1b.)
1
a) p= ?(—45, 12, 71)T

—_— o~

1
b) r= ?(115, 23, 69)7
)

—~
o

13 0

. (-1 2 1 23 -

Ar—[11_2 = =10
6 0

Therefore r is in N(AT).
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1 -1 1 0
1 0 0 1
A=y o1 P s
1 2 4 9
4 2 6 13
ATA=12 6 8|, ATb=]21
6 8 18 39

The solution to ATAx = ATb is (0.6, 1.7, 1.2)T. Therefore the best
least squares fit by a quadratic polynomial is given by

p(z) = 0.6+ 1.7z + 1.22°

. To find the best fit by a linear function we must find the least squares
solution to the linear system

1 X1 yl
1 i) co Y2
@)
1 Tn Un
If we form the normal equations the augmented matrix for the system will
be
n n
i=1 i=1
n n n
i=1 i=1 i=1
If 7 = 0 then

in =nz =0
i=1
and hence the coefficient matrix for the system is diagonal. The solution is
easily obtained.
n
Zyi
_ =l

€o

and
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8. To show that the least squares line passes through the center of mass, we
introduce a new variable z =z —T. If we set z; = x; — T for i = 1,...,n,
then Z = 0. Using the result from Exercise 7 the equation of the best least
squares fit by a linear function in the new zy-coordinate system is

72T

VST T
If we translate this back to xy-coordinates we end up with the equation
y—y=cfzr—7)
where

(xi = T)yi

-

s
Il
-

Cc1 =

(z; —T)°

I

1=1

9. (a) If b € R(A) then b = Ax for some x € R". It follows that
Pb = PAx = A(ATA)71ATAx = Ax=b

(b) If b € R(A)* then since R(A)+ = N(AT) it follows that ATb = 0 and
hence
Pb = A(ATA)*ATb =0

(¢) The following figures give a geometric illustration of parts (a) and (b).
In the first figure b lies in the plane corresponding to R(A). Since it is
already in the plane, projecting it onto the plane will have no effect. In
the second figure b lies on the line through the origin that is normal to
the plane. When it is projected onto the plane it projects right down to
the origin.

R(4)

If b€ R(A), then Pb =b.
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R(A)

If b e R(A)*, then Pb = 0.

10. (a) By the Consistency Theorem Ax = b is consistent if and only if b is in
R(A). We are given that b is in N(A”). So if the system is consistent
then b would be in R(A)NN(AT) = {0}. Since b # 0, the system must
be inconsistent.

(b) If A has rank 3 then AT A also has rank 3 (see Exercise 13 in Section 2).
The normal equations are always consistent and in this case there will be
2 free variables. So the least squares problem will have infinitely many
solutions.

11. (a) P?2= A(ATA)TATA(ATA)T1AT = A(ATA)71AT = P

(b) Prove: Pk =P for k=1,2,....
Proof: The proof is by mathematical induction. In the case k = 1 we
have P* = P. If P™ = P for some m then

Pt = pp"=PP=pP*=P
(c) PT =[A(ATA)TAT]T
= (AT)T[(ATA) T AT
— A[(ATA)T]flAT

= A(ATA)71AT
= P
12. If
A I x) (b
o0 AT r] |0
then
Ax+r=>b
ATy =

We have then that
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ATr = ATb - ATAx =0
Therefore
ATAx = AT

So x is a solution to the normal equations and hence is the least squares
solution to Ax = b.

13. If x is a solution to the least squares problem, then X is a solution to the
normal equations

ATAx = ATb
It follows that a vector y € R™ will be a solution if and only if
y=X+z
for some z € N(ATA). (See Exercise 20, Chapter 3, Section 6). Since
N(ATA) = N(A)

we conclude that y is a least squares solution if and only if

y=X+z
for some z € N(A).
SECTION 4
xTy 12 411 7"
2. b)) p=——y==y=1]-,=,-,0
© [ 122 ]T
X—pP=|—-7=,=,=
p 353’3’
4 2 2
-p)Ip=—=+=4+>4+0=0
(x—p)'p 9+9+9+

(d) x=pl2=v2, [Pz = V2, x> =2

Ix = pI* + [Ip* = 4 = [|x]*

1 1 1
3. (a) <X,Y>:$1y1w1+$2y2w2+$3y3w3:1'—5'14-1'1'54-1'3'1:0

(i)

and (A, A) = 0 if and only if each a;; = 0.

(11) <A, B> = Z Z aijbij = Z Z bijaij = <B, A>

i=1 j=1 i=1 j=1
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(iii)

(A +pB,C)

qu

n
Z g +6bw Cij

1j5=1

= az Z aijcij + ﬂz Z bijcij

a(4,
Cla,

[

C)+B(B,C)
b] determined by

6. Show that the inner product on

g = / f(@)g(x) de

satisfies the last two conditions of the definition of an inner product.

Solution:

b
/ f(@)g(x) dz = / 9(2)f(z) dz = (g, f)
(iil) (af + fg,h) = / (af(z) + Bg(x))h(x) da

b b
— o [ f@he)do+5 | glohlz)da

= o(f,h)+ (g, h)

<x2 x3> = /1 22alde = l
) O 6

1
H1H2:/1~1dx:1

0

1
9 3

2 2

= — d = —
Iof? = | Jatde =3

1 2
3 1
[l = [ (1-30) dr=g
0 2 4
Thus 1] = 1, p] = *Z, 1 - p|| = 3, and
11— Pl + Ipl® =1 = 1

9. The vectors cosmaz and sinna are orthogonal since

. L[ .
(cosmz,sinnz) = — cos mx sinnx dx
™) _x
L[ . .
=5 [sin(n 4+ m)x + sin(n — m)z] dx
T

=0
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They are unit vectors since

1 ™
(cosmzx, cosmz) = — / cos® max dx
™ —T
1 us
= — [1 4 cos 2mzx] dz
27 J_ .
=1
(sinnzx,sinnz) = — / sinnx sin na dx
1 us
= — (1 — cos2nz) dx
27 J_ .
=1

Since the cosmaz and sin nax are orthogonal, the distance between the vectors
can be determined using the Pythagorean law.

| cos ma — sinnz|| = (|| cosmz||* + | sinn:cHQ)% =2

5
1 1
10. <x,x2>:inx?: —1—§+0+§+1: 0
i=1

& 1/2
V26
11. — 22| = i —x2)? =1
(©) flz == [;(x 7) ] 1
12. (i) By the definition of an inner product we have (v,v) > 0 with equality
if and only if v = 0. Thus ||v|| = y/(v,v) > 0 and ||v|| = 0 if and only
ifv=0.
(ii) av] = {av,av) = a2(v,v) = o] |v]
13. (i) Clearly

n
>l 20
1=1

If

n

> fa =0

=1

then all of the z;’s must be 0.

(i) [lax|s =Y oz = |al Y _|zil = |af [Ix]1
=1 =1

n n n
(i) Ix+yll =D e+ vl < Y Jzil + D _lwil = lIxlls + Iyl
i=1 i=1 i=1
14. (i) [|%]cc = max |x;] > 0. If max |x;| = 0 then all of the z;’s must be zero.
1<i<n 1<i<n
(i) flox]loc = max Jaz:| = o] max [z:] = o] [x]u

(i) [} + ylloo = max|a; + ;| < max ;| + max|yi| = [x]oc + ¥l
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If (x,y) = 0, then
Ix=y[* = (x—y,x—y)
= <X5 X> - 2<Xa Y> + <Ya Y>
Ix]12 + llyl?

Therefore

I =yl = (lx]* + [ly[*)*/?
Alternatively, one can prove this result by noting that if x is orthogonal to
y then x is also orthogonal to —y and hence by the Pythagorean Law

I = yl1* = llx + (=) = IxII* + | = ¥I* = lIx[I* + lly[I

" 1/2
Ix -yl =((x—y,x—y)/?= [Z(x —~ yl-)Q]

i=1
Fori=1,...,n
23] < (@f + a3+ +ap)? =[x
Thus
[%[loo = max [z < [|x]|2
1<i<n

[x[l2 = [[z1€1 + z2€2]|2

< lzied]lz + [lz2e2]2

= |21] [le1]l2 + 22| [le2]2

= |z1] + |22

= x|l
e; and ey are both examples.

[=vll=I(=Dvl=]=1]v] = vl
lu+v|?=(u+v,ut+v)

= [l +2(u,v) + |v[]?
> ull® =2[[ul [[v]] + [Iv]]®

(Ihall = [IvI})?
[t vi* = [lul® + 20w, v) + ||v]?
la=v|* = [l = 2(u,v) + [Iv]

[u+vi* +lu—v[* = 2lu?+2[vI* = 2(u]l* + [v]*)

If the vectors u and v are used to form a parallelogram in the plane, then
the diagonals will be u+ v and u — v. The equation shows that the sum of
the squares of the lengths of the diagonals is twice the sum of the squares
of the lengths of the two sides.

The result will not be valid for most choices of u and v. For example, if
u =e; and v = ey, then
lutvii+lu—-v|]=2"+22=8
2ul2 + 2|v|? = 2+2=4
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26. (a) The equation
Il =1f(@)] + (0]

does not define a norm on Cfa,b]. For example, the function f(x) =

2? — x in C[0, 1] has the property

I = 17O + 1) =0

however, f is not the zero function.
(b) The expression

b
e / ()] de

defines a norm on Cfa,b]. To see this we must show that the three

conditions in the definition of norm are satisfied.

(i) f: |f(x)| dz > 0. Equality can occur if and only if f is the zero func-
tion. Indeed, if f(z¢) # 0 for some z in [a, b], then the continuity
of f(x) implies that |f(z)| > 0 for all « in some interval containing

xo and consequently f: |f ()] dz > 0.

(i)
b b
laf] = / lof(z)|dz = |a / (@) dz = [o]]f]
(iif)
b
If+gl = / (@) + g(x)| de

b
< / (£ @) + l9(x)]) de

b b
- / (@) da + / l9(a)] do
171+ llgl

(¢) The expression

[/l = max |f(z)]

a<z<b
defines a norm on C'a, b]. To see this we must verify that three conditions
are satisfied.
(i) Clearly rgai(b| f(z)] > 0. Equality can occur only if f is the zero
a<x<

... function.
ii

lof I = max |af (@) =[] max |f(z)] = laf[|f]
(iii)

If+gll = agljgblf(x)ﬂw(x)l

max (| f()] + [g(x)])

a<z<b

IN



27. (a) If x € R", then

|24

and hence

A

Section 5

max, |f(z)] + max, lg(z)]
A1+ Nlgll
max |z =[xl 0

n
[l = ) sl < nllx]loo
=1

(b) [xl2 =

=1

n

B

=1

1/2
12
max. |z;]) ]

= (n( max |z;[*)"? = Vnlx«

1<j<n

89

If x is a vector whose entries are all equal to 1 then for this vector equality
will hold in parts (a) and (b) since

[[%[loe = 1,

x[ly = 7,

Ix[l2 = vn

28. Each norm produces a different unit “circle”.

(a) X (b)

29. (a) (Ax,y) = (Ax)Ty =x"ATy = (x,ATy)
(b) (ATAx, x) = (x, ATAx) = xT ATAx = (Ax)T Ax = (Ax, Ax) = || Ax|?

SECTION 5

1 1 16
T = — —_— _— =
2. (a) u1u1_18+18+18 1
4 4 1
wuy=—+-+-=1
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11
u3TU3*§+§+0*1
V2 V2 2v2
e R R

11
u1u3:6_6+0:0

2 2
T

4. (a) xTx; =cos? 0 +sin?f =1

xTxy = (—sinh)? + cos? 0 =1
xTxy = —cosfsinf + sinf cosf = 0
(c) &2+ c3 = (y1cosb + yasinf)? + (—y1 sin 6 + y cos 6)?

Y2 cos? 0 + 2y1y2 sin A cos 6 + 332 sin? 0
+ 92 sin? 6 — 2y, 2 sin 6 cos O + y3 cos? §

= yi +u5
5. Ifc; =ulu, = % and co = ul'uy, then by Theorem 5.5.2

u = ciuj + cau2

It follows from Parseval’s formula that

1
L=Julf =ci+c=7+c
Hence
V3
[uua| = |eof = -
. 7 By Parseval’s formula
ci +¢ +c5 = |[x|* =25

It follows from Theorem 5.5.2 that

1= (up,x) =4 and ¢z = (ug,x) =0

Plugging these values into Parseval’s formula we get
16+ 0+ c3 =25

and hence c3 = £3.
8. Since {sinz, cosz} is an orthonormal set it follows that

(f.g)=3-14+2 (-1)=1
1—cos2x]

9. a sin? [
1
4

1 1
cos 2x—50032x+1
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1[1+cos4x] 1 9 +1
1 > 2cos T 1

1
—cos4x— cos2x + —— 3\/_ !
2 8 V2

sinfzcoszdr=7-0=0

:\

=‘=\

sinfzcos3zrdr=m-0=0

i 1 ™

2xdx = =—=

/ sin® z cos 2 dx = 7(— 2) 5
(iil) /

:\

" 1
(iv) / s1n4xcos4xdx:7r~§ :g

10. The key to seeing why FgsPg can be partitioned into block form

—T

Fy D,Fy
Fy —DyFy
is to note that
wik = e P o =k

and there are repeating patterns in the powers of wg. Since

wg =-1 and S" |
it follows that
J+4 J 8n+j _
wg' = —wg and wg =wy

Using these results let us examine the odd and even columns of Fg. Let us

denote the jth column vector of the m x m Fourier matrix by f}m). The odd
columns of the 8 x 8 Fourier matrix are of the form

wd 1 1

% I

gln wgln wzn
£® wg" - wg" - wy" - fT(lﬁ?l
2n+1 — wgn o 1 o 1 o f,gi)l

wéon w%” wy

wéQn wgln wzn

w§4n wgn wzn
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forn =0,1,2,3. The even columns are of the form

0
Ws 1 1
2n+1
w
8 wawd" wswy
2(2n+1)
“ Bt Rt
3(2n+1) 4
3, ,6n 3, .3n (4)
£® “s - Wy - WgWy - Dafy
2n+2 7 4(2n+1) - - - (4)
wg 1 1 —Duf, ",
2
wg(2"+1) —wgwg" —wgwy
2, 4dn 2, 2n
wg(2n+1) —WgWwg —Wwgwy
7(2n+1) —wiwg" —wiwi"
wg
forn=0,1,2,3.

11. If @ is orthogonal then
@NQNH=QQ"=0Q™ =1
Therefore Q7 is orthogonal.

12. Let 6 denote the angle between x and y and let §; denote the angle between
@x and Qy. It follows that

cos 0 — @x)T'Qy  xT'QTQy  xTy
L=

lexlllQyl [yl [/l

and hence the angles are the same.

=cosf

13. (a) Use mathematical induction to prove
@M1 =@NHm=@M",  m=12,...
Proof: The case m = 1 follows from Theorem 5.5.5. If for some positive
integer k
@) =@NF =(@""
then
@O =M@ =Q"(@")" = Q" Q)" = (@"h)T
and
@) =Q" @M =Q QY = Q' Q) = (@)
(b) Prove: [|Q™x|| = ||x|| for m=1,2,....
Proof: In the case m =1

1Qx]* = (@x)"Qx =x"QTQx = x"x = ||x||”

and hence

Qx| = [Ix|
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If |Q*y|| = |ly|| for any y € R™, then in particular, if x is an arbitrary
vector in R™ and we define y = Qx, then

Q¥ x|l = |Q* (@) = Q%yl = llyll = Qx| = [l

HT = (I —2uu")T = [T —2(u")Tu” =T - 2uu’ = H
HTH = H?

= (I —2uu”)?

= I —4uu” + 4uu’uu”

= I —4uu” + 4uu”

=1
Since QTQ = I, it follows that

[det(Q)]? = det(QT) det(Q) = det(I) = 1

Thus det(Q) = £1.

(a) Let @1 and Q2 be orthogonal n X n matrices and let @ = Q1Q2. It
follows that

QTQ = (Q1Q2)"Q1Q2=QTQTQ1Qs =T

Therefore @ is orthogonal.
(b) Yes. Let P; and P» be permutation matrices. The columns of P; are the
same as the columns of I, but in a different order. Postmultiplication of
P, by Ps reorders the columns of P;. Thus P P; is a matrix formed by
reordering the columns of I and hence is a permutation matrix.
There are n! permutations of any set with n distinct elements. Therefore
there are n! possible permutations of the row vectors of the n x n identity
matrix and hence the number of n X n permutation matrices is n!.
A permutation P is an orthogonal matrix so P7 = P~! and if P is a
symmetric permutation matrix then P = PT = P~! and hence

pP=plp=p'P=1
So for a symmetric permutation matrix we have

P =PHr=1"=1 and P*T=pp*=pr=p

I=UU" = (uj,uy,...,u,)

T T T
= uju; +ugu; + -+ uyu,,

The proof is by induction on n. If n = 1, then @ must be either (1) or (—1).
Assume the result holds for all & x k upper triangular orthogonal matrices
and let @ be a (k+1)x (k+1) matrix that is upper triangular and orthogonal.
Since @ is upper triangular its first column must be a multiple of e;. But @
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is also orthogonal, so q; is a unit vector. Thus q; = +e;. Furthermore, for
j=2,...,n

qj=elq; =+q]q; =0
Thus @ must be of the form

Q[il 0O 0 -+ 0 ]
0 p, P3s * Prn

The matrix P = (py,P3;---,Pry1) i8S @ k x k matrix that is both upper
triangular and orthogonal. By the induction hypothesis P must be a diagonal
matrix with diagonal entries equal to +1. Thus ) must also be a diagonal
matrix with £1’s on the diagonal.

21. (a) The columns of A form an orthonormal set since

1 1 1 1
T = —_-—— — — —_ —_ =
ajay = —g-gtgt =0
a;ja; = 1+1+1+1*1
Ty ety Ty
aa*l—l-l—l-1 1*1
292 Ty Ty Ty Ty

22. (b)

(i) Ax = Pb=(2,2,0,0)T

.. 3377\7

(11) AX—Pb— [5,5,5,5]
)

Ax = Pb=(1,1,2,2)T
23. (a) One can find a basis for N(AT) in the usual way by computing the
reduced row echelon form of AT

(ii

1 11 1
2 2 2 2 H[l 1 0 o]
1 11 1 o 0 1 1

2 2 2 2

Setting the free variables equal to one and solving for the lead variables,
we end up with basis vectors x; = (—1,1,0,0)7, x = (0,0, —1,1)7. Since
these vectors are already orthogonal we need only normalize to obtain an
orthonormal basis for N (AT).
1 T 1
U1_\/§( 1,1,0,0) uQ—\/5
24. (a) Let U; be a matrix whose columns form an orthonormal basis for R(A)
and let Us be a matrix whose columns form an orthonormal basis for
N(AT). If we set U = (Uy,Us), then since R(A) and N(AT) are or-
thogonal complements in R™, it follows that U is an orthogonal matrix.
The unique projection matrix P onto R(A) is given P = U, U] and the
projection matrix onto N(AT) is given by UsUJ". Since U is orthogonal

(0,0,—1,1)7
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it follows that
I=vU" =0,U] + 0,US = P+ ULUY
Thus the projection matrix onto N(AT) is given by
UUf =1—P

The proof here is essentially the same as in part (a). Let V1 be a matrix
whose columns form an orthonormal basis for R(AT) and let V5 be a
matrix whose columns form an orthonormal basis for N(A). If we set
V = (V1, V2), then since R(AT) and N(A) are orthogonal complements
in R™, it follows that V is an orthogonal matrix. The unique projection
matrix Q onto R(AT) is given Q = V1 V{' and the projection matrix
onto N(A) is given by VaVil . Since V is orthogonal it follows that

I=VVT =iV + VY =Q +VaVy
Thus the projection matrix onto N(A) is given by
VBV =1-Q

If U is a matrix whose columns form an orthonormal basis for .S, then
the projection matrix P corresponding to S is given by P = UUT. It
follow that

P =wuhHwuh =vwruyvr =vivt =p
PT = wuh)T =WwhHTUT =UUT =P

. The (i,7) entry of ATA will be al'a;. This will be 0 if i # j. Thus ATA
is a diagonal matrix with diagonal elements ala;, ala,,...,ala,. The ith
entry of ATb is al'b. Thus if x is the solution to the normal equations, its
ith entry will be

alb bTal-

a, ala;

—1
1
=0

. (a) <1,2x—1>:/0 1-2r—Ddz =2 -z
0

1
=1

(b) |\1H2:<1,1>:/0 | lde =2

W= o

1
22 —1]|* = / (22 —1)%dx =
0

Therefore )

V3
(c) The best least squares approximation to /z from S is given by
Ux) =11+ V322 — 1)

([T =1 and |22 — 1] =
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29.

30.

31.

where

1
¢ = <1,x1/2>:/ 12t/ %dx =
0

[SVRI )

e = (V3(2z —1),2"/?) = /01 V3 (22 — 1) 2dy 2V3

15
Thus
2 2v/3
lz) = = -1+ i(\/g@x -1))
3 15
4 1
= g(x + g)
We saw in Example 3 that {1/1/2, cosz, cos 2z, . . ., cosna} is an orthonormal

set. In Section 4, Exercise 9 we saw that the functions cos kx and sin jx were
orthogonal unit vectors in C[—m, ]. Furthermore

< r . > 1 /7T . d 0

—,sinjr ) = — —sinjr do =

2 TR L mt

Therefore {1/v/2,cosx,cos2x, ..., cosnz,sinz,sin2z,. .. sinnz} is an or-
thonormal set of vectors.

The coeflicients of the best approximation are given by

1 [7 2 (7
ap = (1, |z|) = = 1 |zlde = — xdx =
T 7r
—7 0

2 (7 4
a; = (cosz, |z|) = — reosxdr =——
™ Jo ™

2 ™
as = —/ zcos2xdr =0
0

™
To compute the coefficients of the sin terms we must integrate z sinx and
xsin2x from —m to m. Since both of these are odd functions the integrals
will be 0. Therefore by = bs = 0. The best trigonometric approximation of
degree 2 or less is given by

()77'( 4
px—2 7Tcosx

If u = c1x1 + coxo + - -+ + Xy, is an element of S; and v = cp1Xp41 +
Ck42Xk+t2 + -+ - + Xy 1s an element of So, then
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32. (a) By Theorem 5.5.2,

n

x = Z(X,Xﬁxi

1=1
k n
= Z<Xa X’i>x’i + Z <Xa X’L>X’L
1=1 i=k+1
= P; + Py

(b) It follows from Exercise 31 that So C Si-. On the other hand if x € St
then by part (a) x = p; + p,. Since x € S, (x,x;) =0 fori=1,....k.
Thus p; = 0 and x = p, € S. Therefore Sz = S*.

33. Let
1

w,=——-x; for i=1,...,n
[[l]

By Theorem 5.5.8 the best least squares approximation to x from S is given
by

SECTION 6

9. T11:HX1H:5
1 [4221]T
= —X71 = _ =, =, —
q: 1 1 5555555

_ ~T _ _ ~T _
T12—q1X2—2 and T13—q1X3—1

1) 2 4 43T 13 74\7"
Xy = X2 —T12q1 = ———,—g,g , X3 = X3 —T13q; = g,g,———

5 5 55
ra2 =[x =2
1w [1 2 2 é]T
q2_T22 - 55 55 555

r23 = XgTQ2 =1

X:(;2) = Xg(;l) —T23Qy = (Oa 15 _15 O)T

ras = x| = v2

T
I (2 [ 1 1 ]
q = —X = O, = T T —» O
5 gy ? V2 V2

10. Given a basis {z1,...,2,}, one can construct an orthonormal basis using

either the classical Gram—Schmidt process or the modified process. When
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11.

carried out in exact arithmetic both methods will produce the same or-
thonormal set {q;,...,q,}

Proof: The proof is by induction on n. In the case n = 1, the vector q; is
computed in the same way for both methods.

q; = —x1 where 711 =||x|1
T11

Assume qq, ..., q; are the same for both methods. In the classical Gram—
Schmidt process one computes q,_; as follows: Set

Tik+1 = (Xp41,9;),  i=1,....k
Pr = "1,k+197 +72,k+14s + - + Tk k1,
Tkl = [ Xk+1 — Pyl
1
Qr+1 = ———(Xp41 — Pk)
Tk+1,k+1
Thus
1
Qi1 = ——(Xk1 — T1k+19) — T2k+1G2 = — Tk k4+10d)
Tk+1,k+1

In the modified version, at step 1 the vector ry y+1q; is subtracted from
Xk+1-
xM = xpn —
k41 — Xk+1 — T1k+1d1

At the next step 72 41492 is subtracted from x,(clll.

@ o
k+1 = Xg41 T 7264192

= Xkl — TLE+H1G1 — T2,6+142
In general after k steps we have

(k)
Xpr1 = Xk+1 —T1k+147 — T2,k+142 = ° — Tk k+14k

= Xk+1 — Py

In the last step we set

k
Pt ern = X = %e1 — Pyl
and set
1 k 1
iy = ——X) = ————(xp11 — Py
Tk+1,k+1 Tk+1,k+1

Thus q,, is the same as in the classical Gram-Schmidt process.

If the Gram-Schmidt process is applied to a set {vi,vo,vs} and vs is in
Span(vy, va), then the process will break down at the third step. If u;, us
have been constructed so that they form an orthonormal basis for Sy =
Span(vy, va), then the projection p, of vs onto Sy is v3 (since vs is already
in S3). Thus v3 — p, will be the zero vector and hence we cannot normalize
to obtain a unit vector us.



12.

13.

14.

Section 6 99

(a) Since
P =c1q; + 2z + - +¢nq,
is the projection of b onto R(A) and q,qs, . - ., q,, form an orthonormal
basis for R(A), it follows that
cj:qJTb i=1....n
and hence
c=Q™b
(b) p=cia; + 20y + -+ cnq, = Qe= QQ"b
(c) Both A(ATA)~1AT and QQT are projection matrices that project vec-
tors onto R(A). Since the projection matrix is unique for a given sub-
space it follows that
QQT _ A(ATA)flAT

(a) If {vi,..., vy} is an orthonormal basis for V' then by Theorem 3.4.4 it
can be extended to form a basis {v1,..., Vi, Ugt1, Uk42, . .., Wy, } for U.
If we apply the Gram-Schmidt process to this basis, then since vy, ..., vg
are already orthonormal vectors, they will remain unchanged and we
with end up with an orthonormal basis {v1,..., Vi, Vi1, .., Vi }.

(b) If u is any vector in U, we can write

(3) u=c1vi+- 4+ Vg + Ckr1Vir1 + - F Vi = V+ W
where
v=civi+--tepvp €V and W = Cpt1Vit1 - FCmVim) €W
Therefore, U = V 4+ W. The representation (3) is unique. Indeed if
U=V+WwW=X+Yy
where v, x are in V and w,y are in W, then
V-X=y—W

and hence v—x € VNW. Since V and W are orthogonal subspaces we
have V N W = {0} and hence v = x. By the same reasoning w = y. It
follows then that U =V @ W.

Let m = dimU, k = dimV,and W = UNV. If dimW = r > 0 and

{v1,...,v,} is a basis for W, then by Exercise 13(a) we can extend this
basis to an orthonormal basis {v1,...,v,, V,y1,...,vi} for V. Let
‘/1 - Spa'n(VT+la tey Vk)

By Exercise 13(b) we have V.= W @ V;. We claim that U +V = U @ V4.

Since Vi is a subspace of V' it follows that U + V; is a subspace of U + V.

On the other hand, if x is in U 4+ V then
x=ut+v=u+(w+vy)=(ut+w)+wv;

where u e U, ve V, we W, and v; € V;. Since u+ w is in U it follows
that x is in U + V4 and hence U + V = U + V;. To show that we have a
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direct sum we must show that U NV; = {0}. If z € U N V; then z is also
in the larger subspace W = U NV. So z is in both V; and W. However, by
construction Vj is orthogonal to W, so the intersection of the two subspaces
must be {0}. Therefore U N V; = {0}. It follows then that

U+V=UaV
and hence
dm(U+V) = dm(U V) =dimU + dimV;
=m+(k—-r)=m+k—r
= dimU +dimV — dim(U NV)

SECTION 7
3. Let & = cos¥.
(a) 2T, ()T, (x) = 2 cos mb cos nb
= cos(m +n)f + cos(m — n)o
= Tin(@) + Tn(x)
(b) T (T (z)) = Trn(cosnb) = cos(mnb) = T (x)

5. pn(z) = ana™ + q(x) where degree g(x) < n. By Theorem 5.7.1, (g, p,) = 0.
It follows then that

Ipall® = (ana™ + q(x), p(x))
= Qn <xnapn> + <Qapn>
= an<$napn>

1
6. (b) Un1(2) = - Th(x)
1dT,, /dx
T ndo/! de
sin nfé
sin 6

i 1)6 0sinnd
7. () Un(w) — ol 1 (z) = sin(n+1)0  cosfsinn

sin 6 sin 6
sin nd cos 0 + cosnf sin @ — cos @ sinnd

sin 6
= cosnb
= Tu(x)
_ sin(n +1)0 +sin(n — 1)0

(b) Un(z) + Un-a() =
2 sinnb cos O

- sin 6
= 2z2U,_1(x)
Un(z) = 22Up_1(z) — Up_2(x)
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8. (U,,Upn) = /7 Up (2)Upn (2)(1 — )/ 2da

= /7T sin[(n 4+ 1)0] sin[(m + 1)0]d0 (z = cos0)
0

=0 if m#n
9. (i)n:O,y:l,y’:O,y”:O
1—a2)y” =22y +0-1-1=0

(11) nzlay:Pl(x):xay/:Ly”:O
(1—22)-0-22-1+1-22=0

1
(iii) ”:2,y:P2($):g [$2_§]’y’:3x,y”:3
1
(1—x2)~3—2x~3x+6g [x2—§] =0

10. (a) Prove: H! (x) =2nH,_1(z), n=0,1,2,....
Proof: The proof is by mathematical induction. In the case n =0

Hi(z) =0=2nH_(x)
Assume
H(z) = 2kHy_1(x)
for all £ <n.
H,1(x) =22H,(x) — 2nH, _1(x)
Differentiating both sides we get
H) . (x) = 2H, +2zH, — 2nH,,_,
= 2H, + 2z[2nH, 1] — 2n[2(n — 1)H,,_2]
2H,, + 2n[2cHn_1 — 2(n — 1)Hy_o)]
2H, + 2nH,
— 2(n+1)H,
(b) Prove: H!!(x) — 2z H (x) 4+ 2nH,(z) =0, n =0,1,....
Proof: It follows from part (a) that
Hi(2) = 2nH, 1(x)
H!'(z) = 2nH]_(z) =4n(n — 1)H, 2(x)

Therefore
H!'(x) — 2zH] (z) + 2nH,(z)
= 4dn(n —1)H,_o(x) — denH,_1(x) + 2nH,(x)
= 2n[H,(x) —2zH,_1(z) +2(n — 1)H,_2(x)]
0
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12. If f(x) is a polynomial of degree less than n and P(z) is the Lagrange
interpolating polynomial that agrees with f(z) at x1,...,2,, then degree
P(z) <n—1.If we set

h(x) = P(z) - f(a)

then the degree of & is also < n —1 and

h(z;) = P(z;) — f(z;)) =0 i=1,...,n

Therefore h must be the zero polynomial and hence

15. (a)

(b)

16. (a)

(b)

P(x) = f(x)

The quadrature formula approximates the integral of f(z) by a sum
which is equal to the exact value of the integral of Lagrange polynomial
that interpolates f at the given points. In the case where f is a polyno-
mial of degree less than n, the Lagrange polynomial will be equal to f,
so the quadrature formula will yield the exact answer.

If we take the constant function f(z) = 1 and apply the quadrature
formula we get

1 fa)dn = Avf@r) + Aafa) ++ Auf (o)

1
/ lde = Ay 14+ A3 1+---+ A, 1

—1
2 =A1+A+-+A4,

If 5 > 1 then the Legendre polynomial P; is orthogonal to Py = 1. Thus
we have

(4) lle(x)dxzlle(x)Po(x)dx: (PLR) =0 (>1)

The n-point Gauss-Legendre quadrature formula will yield the exact
value of the integral of f(x) whenever f(x) is a polynomial of degree
less than 2n. So in particular for f(x) = P;(z) we have

1
—1
It follows from (4) and (5) that

Pj(x1)A1 + Pj(x2)As + - -+ Pj(zn)An =0 for 1<j<2n

Aj+Ag+--+ A, =
Pl(xl)Al + Pl({EQ)AQ 4+ 4 Pl(.In)An

P 1(z1)A1 + Ppoa(x2)As+ -+ Ppq(zn)A, = 0
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17. (a) If ||Q,]| =1 for each j, then in the recursion relation we will have
e = (Qr, Qk) 1 (k> 1)
(Qr-1, Qr—1)
and hence the recursion relation for the orthonormal sequence simplifies
to

p1Qr+1(%) = (2 — Pry1Qr(v) — axQr—1(x) (kK >0)

where )_; is taken to be the zero polynomial.
(b) For k =0,...,n— 1 we can rewrite the recursion relation in part (a) in
the form

arQr—1(x) + Brt1Qr(x) + a1 Qi1 () = 2Qr(x)

Let X\ be any root of @,, and let us plug it into each of the n-equations.
Note that the first equation (k = 0) will be

B1Qo(N) + a1Q1(N) = AQo(N)

since (Q_1 is the zero polynomial. For (2 < k < n — 2) intermediate
equations are all of the form

arQr—1(A) + Bep1Qr(N) + art1Qr+1(A) = AQr(N)
The last equation (k =n — 1) will be
O‘nlen72()\) + 671an1()\) = )\anl()\)

since @, (A) = 0. We now have a system of n equations in the variable
A. If we rewrite it in matrix form we get

B1 a1 QO()\) QO()‘)
ar B a2 Ql()‘) Ql()‘)
SRR : = :
Qp—2 67171 Qp—1 Qn72()\) Qn72()\)

Op—1 671 anl()\) anl()\)

MATLAB EXERCISES

1. (b) By the Cauchy-Schwarz Inequality

T
<yl < [xlllyll

Therefore
T
] = Xyl
[yl
3. (c¢) From the graph it should be clear that you get a better fit at the bottom

of the atmosphere.
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5.

(a)

A is the product of two random matrices. One would expect that both
of the random matrices will have full rank, that is, rank 2. Since the row
vectors of A are linear combinations of the row vectors of the second
random matrix, one would also expect that A would have rank 2. If the
rank of A is 2, then the nullity of A should be 5 — 2 = 3.

Since the column vectors of @ form an orthonormal basis for R(A)
and the column vectors of W form an orthonormal basis for N(AT) =
R(A)*, the column vectors of S = (Q W) form an orthonormal basis
for R and hence S is an orthogonal matrix. Each column vector of W
is in N(AT). thus it follows that

AW =0
and
WTA=ATW)T =0T
Since S is an orthogonal matrix, we have

=857 =(@Q W) [I%TT] —QQT + WwWwT

Thus
QRT =1-wwT
and it follows that
QOTA=A-WWIA=A-WO=A

If b € R(A), then b = Ax for some x € R°. It follows from part (c)
that

QQ"b = QQ"(4x) = (QQ A)x = Ax =b
Alternatively, one could also argue that since b € N(AT)L and the
columns of W form an orthonormal basis for N(A7T)

W'b=0
and hence it follows that
QA =T -WwWwWhb=>b
If q is the projection of ¢ onto R(A) and r = ¢ — q, then
c=q-+r

and r is the projection of ¢ onto N(AT).

Since the projection of a vector onto a subspace is unique, w must
equal r.

To compute the projection matrix U, set

U=YxY'

Since y is already in R(A”), the projection matrix U should have no
effect on y. Thus Uy = y. The vector s = b — y is the projection of b
onto R(A)* = N(A). Thus s € N(A) and As = 0.
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(h) The vectors s and Vb should be equal since they are both projections
of b onto N(A).

CHAPTER TEST A

1.

10.

The statement is false. The statement is true for nonorthogonal vectors,
however, if x | y, then the projection of x onto y and the projection of x
onto x are both equal to 0.

. The statement is false. If x and y are unit vectors and 6 is the angle between

the two vectors, then the condition |x”y| = 1 implies that cos # = +1. Thus
y =x or y = —x. So the vectors x and y are linearly dependent.

. The statement is false. For example, consider the one-dimensional subspaces

U = Span(e1), V = Span(es), W = Span(e; + e3)

Since e; L e3 and es L (e1 + e2), it follows that U L V and V 1L W.
However e; is not orthogonal to e; + e2, so U and W are not orthogonal
subspaces.

. The statement is false. If y is in the column space of and ATy = 0, then y

is also in N(AT). But R(A) (N N(AT) = {0}. So y must be the zero vector.

. The statement is true. The matrices A and ATA have the same rank. (See

Exercise 13 of Section 2.) Similarly, A7 and AAT have the same rank. By
Theorem 3.6.6 the matrices A and AT have the same rank. It follows then
that

rank(ATA) = rank(A) = rank(AT) = rank(AAT)

. The statement is false. Although the least squares problem will not have

a unique solution the projection of a vector onto any subspace is always
unique. See Theorem 5.3.1 or Theorem 5.5.8.

. The statement is true. If A is m x n and N(A) = {0}, then A has rank n

and it follows from Theorem 5.3.2 that the least squares problem will have
a unique solution.

. The statement is true. In general an n x n matrix @ is orthogonal if and

only if Q7Q = I. If Q1 and Q2 are both n x n orthogonal matrices, then
(Q1Q2)" (Q1Q2) = Q1 QT Q1Q2 = Q3 1Q2 = Q3 Q2 =1

Therefore @1Q)2 is an orthogonal matrix.

. The statement is true. The matrix UTU is a k x k and its (i,7) entry is

uiTuj. Since uj, us, ..., u; are orthonormal vectors, ul-Tuj =1ifi =75 and

it is equal to 0 otherwise.

The statement is false. The statement is only true in the case k£ = n. In the
case k < n if we extend the given set of vectors to an orthonormal basis
{uy,ug,...,u,} for R™ and set

V:(Uk+1,...,un), W:(U V)
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then W is an orthogonal matrix and
I=ww” =vv” +vv”
So UUT is actually equal to I — VVT. As an example let

U=

WIN W Wl
W W= W

The column vectors u; and us form an orthonormal set and

1 2 5 4 _2
3 3 12 2 9 9 9
T_ |2 1 3 3 3| _ 3 5 2
UU_§§[21_2]—§§§
2 _2 3 3 3 _2 2 8
3 3 9 9 9
Thus UUT # I. Note that if we set
2
3
us = %
_1
3
then {u;, us, u3} is an orthonormal basis for R® and
5 4 _2 4 _ 4 2
9 9 9 9 9 9
UUT +uguf = | & 3 24| -4 4 2|
_2 2 8 2 _2 1
9 9 9 9 9 9
CHAPTER TEST B
xTy 3 212 \*
1. = — = — = ————O
(a)p yTyy gy ( 3’33’ )
T
52 4
b)x—-p=(=,-,-,2
) x-p= (3552
10 2 8
T
_ -1 2:.%,0=0
(x—p)'p 9+9+9+

() IXIP=1+1+4+4=10
4 1 4 25 4 16
2 2
—pllF=-4+=4=-40)4+[=+=-4+—+4)=14+9=10
Ip|I*+[x—p|| (9+9+9+ >+(9 t5tot ) +
2. (a) By the Cauchy-Schwarz inequality

| {(vi,v2) | < [[vallllve]l
(b) It
| {(vi,v2) | = [[vall[lvz]

then equality holds in the Cauchy-Schwarz inequality and this can only
happen if the two vectors are linearly dependent.
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[vi+val® = (vi+va,vi+va)

(v, v1) 4+ 2(v1,va) + (va,va)

[val[? + 2[[vi|[[[vall + [[v2]|*  (Cauchy — Schwarz)
= (Ivall + [[val)?

4. (a) IfA has rank 4 then A7 must also have rank 4. The matrix AT has 7
columns, so by the Rank-Nullity theorem its rank and nullity must
add up to 7. Since the rank is 4, the nullity must be 3 and hence
dim N(AT) = 3. The orthogonal complement of N(AT) is R(A).

(b) If x is in R(A) and ATx = 0 then x is also in N(AT). Since R(A) and
N(AT) are orthogonal subspaces their intersection is {0}. Therefore
x =0 and |x| = 0.

(c) dim N(AT A) = dim N(A) = 1 by the Rank-Nullity Theorem. Therefore
the normal equations will involve 1 free variables and hence the least
squares problem will have infinitely many solutions.

IN

5. If 0, is the angle between x and y and 65 is the angle between @x and Qy

then - - -
(@) Qy xQ'Qy xy
cos by =

lexl eyl Ixllyl /iyl

The angles 6; and f2 must both be in the interval [0, 7]. Since their cosines
are equal, the angles must be equal.

6. (a) If we let X = (x1,x2) then S = R(X) and hence
St =R(X)t =N(XT)
To find a basis for S+ we solve XTx = 0. The matrix
X7 _ [ 1 0 2 ]

= cos by

0 1 -2
is already in reduced row echelon form with one free variable x3. If we
set x3 = a, then 1 = —2a and z2 = 2a. Thus S+ consists of all vectors

of the form (—2a,2a, )’ and {(—2,2,1)T} is a basis for S=.

(b) S is the span of two linearly independent vectors and hence S can be
represented geometrically by a plane through the origin in 3-space. S+
corresponds to the line through the original that is normal to the plane
representing S.

(c) To find the projection matrix we must find an orthonormal basis for
S+. Since dim S+ = 1 we need only normalize our single basis vector
to obtain an orthonormal basis. If we set u = $(—2,2,1)7 then the
projection matrix is

Ol Ol Ol

Ol Ol ©OIN

—_——
|
N DN
—
~—
|
[N}
[N}
—
—
Il
|
O Ol Ol
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7. To find the best least squares fit we must find a least squares solution to the

system
C1 — Cy = 1
c1+co = 3
c1 + 202 =3

If A is the coefficient matrix for this system and b is the right hand side,
then the solution c to the least squares problem is the solution to the normal
equations AT Ac = ATb.

1 -1
1 1 1 3 2
e[
-1 1 2 1 9 2 6
1 1 1 ! 7
Ty _ _
Ab_[—112] s _[8]
3
The augmented matrix for the normal equations is
3 2|7
2 618
The solution to this system is ¢ = (12, 2) and hence the best linear fit is
flx) =2+ 2z

. (a) It follows from Theorem 5.5.3 that

(X,y) =23+ (=2)-14+1-(—4) =0

(so x and y are orthogonal).
(b) By Parseval’s formula

I = 22+ (~2)? +12 =9

and therefore ||x|| = 3.

. (a) If x is any vector in N (A7) then x is in R(A)+ and hence the projection

of x onto R(A) will be 0, i.e., Px = 0. The column vectors of Q) are
all in N(AT) since Q projects vectors onto N(AT) and q; = Qe; for
1 <5 < 7.1t follows then that

PQ = (Pqy, Pqy, Pqs, Pq,, Pqs, Pqs, Pq;) = (0,0,0,0,0,0,0) = O

(b) Let {uy, uz, us, uy} is an orthonormal basis for R(A) and let {us, ug, us}
be an orthonormal basis for N(AT). If we set U; = (uy, ug, uz, uy)
and Us = (us,ug,uy) then P = U U{ and Q = UyUJ. The matrix
U = (U, Us) is orthogonal and hence U~! = U7 Tt follows then that

Ui

1o = (i ) [UT] — DT+ Uf =P +Q
2
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10. (a) rs=qfas = —1, 1733 =qjas =3, py = —q; + 3q, = (—2,1,-2,1)7
az — Py = (_35 _35 35 3)Ta T33 = Ha3 - pQH =6

qs = %(_35 _35 35 3)T = (_%a _%a %a %)T
(b)

N[ D=
N[= N= N[

c=Q"b=| -

=

2

N[= N= N[

| [1]
1

= |6
L 6
6

To solve the least squares problem we must solve the upper triangular
system Rx = c. The augmented matrix for this system is

2 -2 —-1]1
0 4 316
0 0 6|6

and the solution x = (Z,2,1)7 is easily obtained using back substitu-
tion.

N[= N= N[

11. (a) (cosz,sinz) =L [T coszsinzdr =0

(b) Since cosz and sinz are orthogonal we have by the Pythagorean Law
that

| cosx + sinz||* = || cosz|® + | sinz|?

1 [m 1 [T
= —/ cos’x dx + —/ sin?z dz
T ) . T ) .

= l/ lde =2
™) _x

Therefore H cosT + sian =2

12. (a) {ur(e),ua(e)) = 1, 5 Eade =0
(ur (), u1(x flédx—l
(uz(), uz(2)) = 1, 3a2de =1
(b) Let

Cl1 = ), ui\xr :L 1$1/ $2/ xzi
L= (), u (@) ﬁ/1< Sy de =

co = (h(x),us(x \/_/ 1/3+x2/3)xd‘r*¥
The best linear approximation to h(x) is

f(x) = 01U1($) + 02u2(x) = g + gx
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SECTION 1

2. If A is triangular then A — a;;I will be a triangular matrix with a zero entry
in the (7,7) position. Since the determinant of a triangular matrix is the
product of its diagonal elements it follows that

Thus the eigenvalues of A are ajy, ass, - .., Gyp-
3. A is singular if and only if det(A) = 0. The scalar 0 is an eigenvalue if and
only if
det(A —0I) =det(4) =0
Thus A is singular if and only if one of its eigenvalues is 0.

4. If A is a nonsingular matrix and A is an eigenvalue of A, then there exists a
nonzero vector x such that

Ax = Mx
A7 Ax = MA7x
It follows from Exercise 3 that A # 0. Therefore
1
Alx = 31X (x £0)

and hence 1/ is an eigenvalue of A~1.

110
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. The proof is by induction. In the case where m =1, A! = ) is an eigenvalue

of A with eigenvector x. Suppose A is an eigenvalue of A* and x is an
eigenvector belonging to A*.

Aty = A(AFx) = A(V'x) = AP Ax = A Fix

Thus A\**1 is an eigenvalue of A**! and x is an eigenvector belonging to
A+ Tt follows by induction that if A an eigenvalue of A then A™ is an
eigenvalue of A™, form =1,2,...

. If A is idempotent and A is an eigenvalue of A with eigenvector x, then

Ax = Mx
A%x = Mx = Nx
and
A’x = Ax = Mx
Therefore
AN =XNx=0
Since x # 0 it follows that
M —A=0

A=0 or A=1

. If X\ is an eigenvalue of A, then A¥ is an eigenvalue of A* (Exercise 5). If

Ak = O, then all of its eigenvalues are 0. Thus A* = 0 and hence A = 0.

. det(A—AI) = det((A—AI)T) = det(AT —\I). Thus A and AT have the same

characteristic polynomials and consequently must have the same eigenvalues.
The eigenspaces however will not be the same. For example

(11 s (10
(0 w10

both have eigenvalues

A =X=1
The eigenspace of A corresponding to A = 1 is spanned by (1, 0)7 while
the eigenspace of AT is spanned by (0, 1)7. Exercise 27 shows how the
eigenvectors of A and AT are related.
det(A — M) = A% — (2cos @)X\ + 1. The discriminant will be negative unless
0 is a multiple of 7. The matrix A has the effect of rotating a real vector x

about the origin by an angle of §. Thus Ax will be a scalar multiple of x if
and only if 6 is a multiple of .

Since tr(A) equals the sum of the eigenvalues the result follows by solving

for )\j'
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a;p — A a
13. | =22 = (a11 + az2)A + (ar11a22 — az1a12)
az21 az — A
= A2 — (tr A)X + det(A)
14. If x is an eigenvector of A belonging to A, then any nonzero multiple of

15.
16.

17.

18.

19.

x is also an eigenvector of A belonging to A. By Exercise 5 we know that
AMx = A"x, so A™x must be an eigenvector of A belonging to A.
Alternatively we could have proved the result by noting that
AMx = \"x #0
and
A(ATx) = AT x = A™(Ax) = A™(\x) = \(A™x)
If A — XoI has rank k then N(A — A\gI) will have dimension n — k.

The subspace spanned by x and Ax will have dimension 1 if and only if x
and Ax are linearly dependent and x # 0. If x # 0 then the vectors x and
Ax will be linearly dependent if and only if Ax = Ax for some scalar A.

(a) If @ = a+ bi and 8 = ¢+ di, then
a+fB=(a+c)+(b+d)i=(a+c)—(b+d)i

and B
a+fB=(a—bi)+(c—di)=(a+c)— (b+d)i
Therefore a+ 3 =a + (.
Next we show that the conjugate of the product of two numbers is the
product of the conjugates.
af = (ac — bd) + (ad + be)i = (ac — bd) — (ad + be)i
af = (a — bi)(c — di) = (ac — bd) — (ad + be)i

Therefore aff = @p. L
(b) If A € R™*™ and B € R"™*", then the (¢, j) entry of AB is given by

ai1bij + aipba; + - -+ ainbp; = CL_ME-FCL_&E-F e +m@
The expression on the right is the (i, j) entry of A B. Therefore
AB=AB
(a) If X is an eigenvalue of an orthogonal matrix @ and x is a unit eigen-
vector belonging to A then
(Al = AL = (2] = [|@x]] = [[x]| =1

(b) Since the eigenvalues of @ all have absolute value equal to 1, it follows
that
[det(Q)] = [Aid2 -+ An| =1

If @ is an orthogonal matrix with eigenvalue A = 1 and x is an eigenvector
belonging to A = 1, then @x = x and since Q7 = Q! we have

QTx=QTQx=Ix=x

Therefore x is an eigenvector of @7 belonging to the eigenvector A = 1.
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20. (a) Each eigenvalue has absolute value 1 and the product of the eigenvalues

21.

22,

23.

24.

25.

(b)

(c)

is equal to 1. So if the eigenvalues are real and are ordered so that
A1 > Aa > As, then the only possible triples of eigenvalues are: (1,1,1)
and (1,-1,-1).

The complex eigenvalues must be of the form Ay = cosf + isinf and
A3 = cosf — isin 6. It follows then that

A2z = Ai(cos @ +isinf)(cos § — isinf) = Ai(cos? § + sin? @) = \;

Therefore
)\1 = )\1)\2)\3 = det(A) =1

If the eigenvalues of @ are all real then by part (a) at least one of the
eigenvalues must equal 1. If the eigenvalues are not all real then () must
have one pair of complex conjugate eigenvalues and one real eigenvalue.
By part (b) the real eigenvalue must be equal to 1. Therefore if @ is
a 3 x 3 orthogonal matrix with det(Q) = 1, then A = 1 must be an
eigenvalue.

If x = c1x1 + coxo + - - - + ¢-X, is an element of S, then

Ax = (01)\1))(1 + (CQ)\Q)XQ + -+ (Cr)\T)XT

Thus Ax is also an element of S.

Since x # 0 and S is nonsingular it follows that Sx # 0. If B = S~1AS,
then AS = SB and it follows that

A(Sx) = (AS)x = SBx = S(Ax) = A\(Sx)

Therefore Sx is an eigenvector of A belonging to A.

If x is an eigenvector of A belonging to the eigenvalue A and x is also an
eigenvector of B corresponding to the eigenvalue p, then

(0A + BB)x = aAx + Bx = a x + fux = (o)X + fu)x

Therefore x is an eigenvector of «A 4+ BB belonging to aX + Bp.

If A # 0 and x is an eigenvector belonging to A, then

Ax = Mx
1
x = XAX
Since Ax is in R(A) it follows that %Ax isin R(A).
If
A= )\11,1111,{1 + )\21,121,1%1 + -+ )\nunug
then fori=1,...,n

T T T
Au; = Mwug u; + Aeugus u, + - -+ A uunu,

Since uJTul- =0 unless j =4, it follows that

T
Aul- = )\iuiul- u; = )\iui
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26.

27.

28.

29.

30.

and hence ); is an eigenvalue of A with eigenvector u,;. The matrix A is sym-
metric since each c;uul is symmetric and any sum of symmetric matrices
is symmetric.

If the columns of A each add up to a fixed constant § then the row vectors of
A—6I all add up to (0,0,...,0). Thus the row vectors of A— 41 are linearly
dependent and hence A — 1 is singular. Therefore ¢ is an eigenvalue of A.

Since y is an eigenvector of A7 belonging to ), it follows that
xTATy = \xTy
The expression x7ATy can also be written in the form (Ax)Ty. Since x is
an eigenvector of A belonging to A1, it follows that
xTATy = (Ax)Ty = \ixTy
Therefore
()\1 — )\Q)XTy =0
and since A1 # Az, the vectors x and y must be orthogonal.
(a) If X is a nonzero eigenvalue of AB with eigenvector x, then let y = Bx.
Since
Ay =ABx=Xx#0
it follows that y # 0 and
BAy = BA(Bx) = B(ABx) = BAx = \y

Thus A is also an eigenvalue of BA with eigenvector y.
(b) If A =0 is an eigenvalue of AB, then AB must be singular. Since

det(BA) = det(B) det(A) = det(A) det(B) = det(AB) =0
it follows that BA is also singular. Therefore A = 0 is an eigenvalue of

BA.

If AB—- BA = I, then BA = AB — [. If the eigenvalues of AB are
A1, A2y ..oy A, then it follows from Exercise 8 that the eigenvalues of BA
are A\ — 1, Aoa — 1,..., A\, — 1. This contradicts the result proved in Exer-
cise 28 that AB and BA have the same eigenvalues.

(a) If \; is a root of p(\), then
M= ap 1 AT+ ar\ +ag
Thus if x = (A5 7200000, )T, then
Cx =AML A2 07T = Ax

and hence \; is an eigenvalue of C' with eigenvector x.
(b) If A1,..., A, are the roots of p(A), then

P = (D" A=) (A= An)

If A1, ..., A\, are all distinct then by part (a) they are the eigenvalues of
C'. Since the characteristic polynomial of C' has lead coefficient (—1)"
and roots A1, ..., Ay, it must equal p(\).
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31. Let
Am Am—1 s ai aq
1 —A 0 0
Dm()‘) =
0 0 e 1 —A

It can be proved by induction on m that
det(Dy, (V) = (=1)™(amA™ + @1 A"+ + a1\ + ap)
If det(C' — AI) is expanded by cofactors along the first column one obtains
det(C — A1) = (an_1 — \)(=N)""! —det(D,_»)
(=D A" —ap A" = (=1)" 2 (ay_2A" 2+ - F a1 X+ ag)
= (=D"[(A" = an_1 A" = (an_oA""2 4+ -+ a1 A + ag)]
(=D [A" = ap i A" — @y oA T2 — o — ag X — ag)

= p(\)

SECTION 2
3. (a) If

A

Y(t) = cr1eMtxy + coeMtxy + -+ cpe™ix,

then
YO = Y(O) = C1X2 + CoXo + - - -+ CpXp,

(b) It follows from part (a) that

YO = Xc
If x1,...,x, are linearly independent then X is nonsingular and we can
solve for ¢
Cc = X71Y0

7. It follows from the initial condition that
21(0) = a0 =2
x5(0) = aso =2
and hence
ay =as =2/c

Substituting for 1 and z9 in the system

2 = 21 + a2
xhy = 1 — 2o
yields
—a10%sinot = —2a; sinot + as sinot

—ag0?sinot =  aysinot — 2assinot
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Replacing a1 and as by 2/0 we get
o2 =1
Using either 0 = —1, a3 = a3 = =2 or 0 = 1, a; = a2 = 2 we obtain the
solution
x1(t) = 2sint
x2(t) = 2sint
9. miyy = kiyr — ka(y2 — y1) — mag

mayy = k2(y2 — y1) — mag

11. If
y(n) — aoy + aly/ + o o + anly(nil)

and we set
=9 w=v=v,m=yvp=y" U=y, =y"

then the nth order equation can be written as a system of first order equa-
tions of the form Y’ = AY where

0 s 0o ... 0

0 0 y3 - 0
A= :

0 0 0 Yn

ag al az Ap—1

SECTION 3

1. The factorization X DX ! is not unique. However the diagonal elements of
D must be eigenvalues of A and if A; is the ith diagonal element of D, then
x; must be an eigenvector belonging to \;
(a) det(A—AI) = A\? —1 and hence the eigenvalues are \; = 1 and Ay = —1.
x; = (1, 1)T and x2 = (=1, 1)7 are eigenvectors belonging to A\; and
A2, respectively. Setting

1 -1 1 0
X_[1 1] and D_[O_l]
we have

e (4] (32 (4 1)

(b) The eigenvalues are \; = 2, Ao = 1. If we take x; = (-2, 1)7 and
xg = (=3, 2)7, then

o= () (V) (7))
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(c) A1 =0, \a = —2. If we take x; = (4, 1)T and x5 = (2, 1)7, then

- 4[4 2 0 0 1/2 -1

A=XDX _[1 1 0 -2 -1/2 2
(d) The eigenvalues are the diagonal entries of A. The eigenvectors corre-
sponding to A\; = 2 are all multiples of (1, 0, 0)7. The eigenvectors

belonging to Ay = 1 are all multiples of (2, —1, 0) and the eigenvectors
corresponding to A3 = —1 are multiples (1, —3, 3)7.

2 1 2 0 0 1 2 2
A=XDX'=|0 -1 -3 0 1 0 0 -1 -1
0o 0 3 0 0 -1 o o £

(e) )\1:1,)\2:2, )\3:—2
x;1=(3, 1, 2)T, xo = (0, 3, )T, x3=(0, -1, 1)T

3.0 0 1 0 0 3 0 0
A=XDX'=|1 3 -1 0 2 0 -+ 11
2 1 1 0 0 —2 -2 -1 3
) M =2 2=X=0x=(1,2 3T, x=(1,0 DT x3=(-2, 1, 0)
1 1 =2 2 T G
A=XDX'=|2 0o 1 0 -2 -3 2
3 1 0 0 -1 -1 1

2. If A= XDX !, then A® = XDS X1,

(a) D = [(1) Y ]6_

AS = XDSX—l = XX~1=7]
iy ao— [ 2 3 2 0)°( -2 -3 253 378
1 2 0 1 1 27| -126 —190
@12 0 0)°( 1/2 -1) ( —64 256
R O T 0 -2 -1/2 2 ) = | -32 128
1 2 1 2 0 03Y°(1 2 5/3
(d) A°=1]10 -1 -3 0 1 0 0 -1 -1
0 0 3 0 0 -1 0 0 1/3
64 126 105
=]o 1 o0
0 0 1
3.0 0 10 0)° I 0 o0
) A= 1 3 -1 0 -1
2 1 1 0 —2 -5 13
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1 0 0
= | -21 64 o0
—42 0 64
-2 2 0 03)° U
() A°=]2 0 1 0 0 0 -3 -3
0 0 0 0 -1 -1
[32 64 —32 ]
= | 64 128 —64
96 192 —96

3. If A= XDX ! is nonsingular, then A~! = XD~ 1 X!
(a) A= XD X1 = XDX 1= A

N N o )

9 _ 1 9 _
b) At = 2 -3 Lo 2 -3 _
12 0 1 12
1 2 1 2 0 0) '(1 2
(dA*t=]10 -1 -3 0 1 0 0 -1
0 0 3 0 0 -1 0 0
o1
=]lo 1 2
0 0 -1
3 .0 0 10 oY) " 1
() At=11 3 -1 0 2 0 -1
2 1 1 0 0 -2 -5 -
1 0 0
| 21 o103
- 4 4 4
3 1 _3
4 4 4

4. (a) The eigenvalues of A are A\; =1 and Ay =0
A=XDX!
Since D? = D it follows that

A2 =XD?’X"'=XDX '=4A

11 -1 9 0 0 1 -1 0
b)A=|0 1 -1 0 4 0 0o 1 1
0 0 1 0 0 1 0 0 1

=W A= O
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1 1 -1 3 0 0 1 -1 0
B=XDY?x1' =0 1 -1 0 2 0 0 1 1
0 0 1 0 0 1 0 0 1

3 -1 1

=10 2 1

0 0 1

5. If X diagonalizes A, then
X 'AX =D

where D is a diagonal matrix. It follows that
D=DT = XTAT(x )T =y 1ATY

Therefore Y diagonalizes AT .

6. If A= XDX ! where D is a diagonal matrix whose diagonal elements are
all either 1 or —1, then D~! = D and

A'=XD'X'=XxDXx'=4

7. If x is an eigenvector belonging to the eigenvalue a, then
0 1 0 1 0
0 0 1 x| =10
0 0 b—a T3 0

.TEQZZEg:O

and it follows that

Thus the eigenspace corresponding to Ay = A2 = a has dimension 1 and is
spanned by (1, 0, 0)7. The matrix is defective since a is a double eigenvalue
and its eigenspace only has dimension 1.

8. (a) The characteristic polynomial of the matrix factors as follows.
PN = A2 - A)(a =)

Thus the only way that the matrix can have a multiple eigenvalue is
if @ = 0 or « = 2. In the case @« = 0, we have that A = 0 is an
eigenvalue of multiplicity 2 and the corresponding eigenspace is spanned
by the vectors x; = (—1,1,0)T and x5 = e3. Since A = 0 has two
linearly independent eigenvectors, the matrix is not defective. Similarly
in the case a = 2 the matrix will not be defective since the eigenvalue
A = 2 possesses two linearly independent eigenvectors x; = (1, 1,0)%
and X9 = €3.

9. If A — A has rank 1, then
dimN(A—-AM)=4—-1=3

Since A has multiplicity 3 the matrix is not defective.
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10.

11.

12.

13.

(a) The proof is by induction. In the case m = 1,

Ax = i O[l'AXi = i ai)\ixi
i=1

=1

If .
AFx = Z Oéz')\fxi

then -

Aftlx = A(A%x) = A(i ATX;) = z": N Ax; = z": A Tx;
i=1 i=1 i=1
(b) If Ay =1, then
A"x = a1x1 + zn: Qi)' X;
Since 0 < \; < 1fori=2,...,n, it ;cfliows that A" — 0 as m — oo.

Hence

lim A™x = a1x1
m—0o0

If A is an n X n matrix and A is an eigenvalue of multiplicity n then A is
diagonalizable if and only if

dimN(A - X)) =n
or equivalently
rank(A — ) =0
The only way the rank can be 0 is if
A-X =0
A=A

If A is nilpotent, then 0 is an eigenvalue of multiplicity n. It follows from
Exercise 11 that A is diagonalizable if and only if A = O.

Let A be a diagonalizable n x n matrix. Let A1, Ag, ..., Ay be the nonzero
eigenvalues of A. The remaining eigenvalues are all 0.
Mgl =App2 ==X, =0
If x; is an eigenvector belonging to \;, then
AXi:)\iXi ’L:L,k
Ax; =0 i=k+1,....n
Since A is diagonalizable we can choose eigenvectors X1, ..., x, which form

a basis for R". Given any vector x € R" we can write
X = C1X1 + X + -+ -+ Xy,
It follows that
Ax = ci \1X1 + codoXo + - - - F C AL Xk
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15.

16.

17.

18.
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Thus x1,...,X; span the column space of A and since they are linearly
independent they form a basis for the column space.

The matrix [ 8 (1) ] has rank 1 even though all of its eigenvalues are 0.
(a) Fori=1,...,k
bi = Bel- = XilAXei = XilAXi = )\Xflxl- = )\ei

Thus the first k£ columns of B will have A’s on the diagonal and 0’s in
the off diagonal positions.

(b) Clearly A is an eigenvalue of B whose multiplicity is at least k. Since A
and B are similar they have the same characteristic polynomial. Thus
A is an eigenvalue of A with multiplicity at least k.

(a) If x and y are nonzero vectors in R" and A = xy”, then A has rank 1.
Thus

dimN(A)=n—1
It follows from Exercise 15 that A = 0 is an eigenvalue with multiplicity
greater than or equal ton — 1.

(b) By part (a)
M=X==X_1=0

The sum of the eigenvalues is the trace of A which equals x”y. Thus

n
Ap = Z)\i =trd= xTy = yTX
i=1
Furthermore
Ax = XyTx = \,X
so x is an eigenvector belonging to A,.

(¢) Since dim N(A) = n—1, it follows that A = 0 has n—1 linearly indepen-
dent eigenvectors x1,Xa,...,X,_1. If A, # 0 and x,, is an eigenvector
belonging to \,, then x,, will be independent of x4, ..., x,_1 and hence
A will have n linearly independent eigenvectors.

If A is diagonalizable, then
A=XDX!
where D is a diagonal matrix. If B is similar to A, then there exists a
nonsingular matrix S such that B = S~1AS. It follows that
B = S HXDx 1S

= (7' X)D(stx)!
Therefore B is diagonalizable with diagonalizing matrix S=1X.
If A=XD; X ! and B=XDyX !, where D; and D; are diagonal matri-
ces, then

AB = (XD X YY) (XD, X 1)
= XD D X!
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= XD,D; X!
= (XD X HY)XD X
= BA
19. If r; is an eigenvector belonging A; = t;; then we claim that

23.

24.

25.

26.

Tjl,j =Tjt25 =+ =rn; =0

The eigenvector r; is a nontrivial solution to (I' — ¢;;I)x = 0. The aug-
mented matrix for this system is (' —¢;;I | 0). The equations corresponding
to the last n — j rows of the augmented matrix do not involve the variables
21,%2,...,2;. These last n — j rows form a homogeneous system that is in
strict triangular form with respect to the unknowns x;41, 42, ..., zn. The
solution to this strictly triangular system is

xj+1:xj+2:"':xn:0

Thus the last n — j entries of the eigenvector r; are all equal to 0. If we set
R = (r1,r9,...,r,) then R is upper triangular and R diagonalizes T'.

If A is stochastic then the entries of each of its column vectors will all add
up to 1, so the entries of each of the row vectors of A” will all add up to 1
and consequently A”e = e. Therefore A\ = 1 is an eigenvalue of AT Since A
and AT have the same eigenvalues, it follows that A = 1 is an eigenvalue of

A.

Since the rows of a doubly stochastic matrix A all add up to 1 it follows that
e is an eigenvector of A belonging to the eigenvalue A = 1. If A = 1 is the
dominant eigenvalue then for any starting probability vector xg, the Markov
chain will converge to a steady-state vector x = ce. Since the steady-state
vector must be a probability vector we have

l=x1+224+ -4+, =Cc+c+---+c=nc

and hence ¢ = %

Let

eTxk

wi = Mxy and ap =
n

It follows from equation (5) in the textbook that

peeTxk =pwi + (1 — p)age

Xpyr1 = Axp = pMxy, +
(a) Since A% = O, it follows that

eA—I—i-A—[ 2 1]

(¢c) Since

Ak

o O =
— O
|
-
N——
-
Il
—_
n
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it follows that

e 0 1-—e
eA=10 e 0
0 O e

26—% 26—2

(b)
(d) The matrix A is defective, so e* must be computed using the definition
of the matrix exponential. Since
1 0 1
A% = 0 0 0] and A’=0
-1 0 -1

it follows that

t2
e = T+tA+ EAQ

1+t + 502 t t+ 5t
= t 1 t
142 142
—t—1t -t 1-t—3t

The solution to the initial value problem is

1+t
Y = MY, = 1

—1—-1

If A is an eigenvalue of A and x is an eigenvector belonging to A then
1 1
eAx = [I+A+—A2+—A3+---]x

2! 3!

— A 1A2 1A3

= X+ X—l—a X—l—g X+
1.9 1.5

:X—F)\X—l-i)\ X—l—g)\ X+

1 2 1 3
_ [1+)\+5)\ o) +~-~]x

A

= e'x
If A is diagonalizable with linearly independent eigenvectors x1, . . ., x,, then,
by Exercise 29, X1, ..., X, are eigenvectors of e?*. Furthermore, if X, ..., Xy

are eigenvectors corresponding to the eigenvalue A of A and the eigenvalue
e* of e, then these eigenvalues must have multiplicity at least k (see Ex-

ercise 15). Thus if A, ..., \, are the eigenvalues of A, then e, ..., e are

the eigenvalues of e?. Since the eigenvalues of e are all nonzero, e is
g g )

nonsingular.

(a) Let A be a diagonalizable matrix with characteristic polynomial

PA) = a1 A"+ a4 ap A F an g
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and let D be a diagonal matrix whose diagonal entries A1, ..., A, are
the eigenvalues of A. The matrix

p(D) = a1 D™ 4 asD" "t + -+ apD + an i1l

is diagonal since it is a sum of diagonal matrices. Furthermore the jth
diagonal entry of p(D) is

a1} + a2)\?71 + ot andj +ang =p(A;) =0

Therefore p(D) = O.
(b) If A= XDX"!, then

p(A) = ey A" + a A"+ ap A+ ang ]
= g XD"X '+ apXD" ' X 4 4 a0, XDX T 4 a, o XIX !
= X(a1 D" 4 axD" ' + -+ a,D + ap ) X!
= Xp(D)X!
=0
(¢) In part (b) we showed that
p(A) = a1 A" + as A"+t ap A+ an I =0

If apy1 # 0, then we can solve for I.

I=c A" + A" P+ 4, A

where ¢; = — 4 for 5 =1,...,n. Thus if we set
An+1
Q(A) = ;A" A" ey 1At
then
I = Aq(A)
and it follows that A is nonsingular and
A7 =q(4)
SECTION 4
1—2|—i
—i 1
2. (a) zilz = [— ——] =0
: V2 V2) 1o
5
1—2|—i
1—7 143
H
Z]Z) = [ ] =1
2 2 1—34

1
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_t
- [ —i 1 ] V2
Zy 720 = | —= ——
vz V2 oL
2
5. There will not be a unique unitary diagonalizing matrix for a given Hermitian

matrix A, however, the column vectors of any unitary diagonalizing matrix
must be unit eigenvectors of A.

=1

(a) A1 = 3 has a unit eigenvector [

A2 = 1 has a unit eigenvector [

(b) A1 = 6 has a unit eigenvector

A2 = 1 has a unit eigenvector

1
(¢) A1 = 3 has a unit eigenvector [——

A2 = 2 has a unit eigenvector (0

=
—_
~—

T
1
A3 =1 has a unit eigenvector [— L O]
1
i
0

L0
Q=— i 0
V2 0 2
(d) A1 =5h it i tor [0, - ; ]T
= as a unit eigenvector s T =y T T =
1 g \/5 2
2 1 1

A2 = 3 has a unit eigenvector

A3 = 0 has a unit eigenvector | —
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()

The eigenvalue \; = —1 has unit eigenvector \%(—1, 0, 1)T.

The eigenvalues Ay = A3 = 1 have unit eigenvectors \%(1, 0, 1)T" and

(0, 1, 0)T. The three vectors form an orthonormal set. Thus

S S T
V2 V2

= 0 0 1
SR

V2 V2
is an orthogonal diagonalizing matrix.
111 ] g
VERRVERRVE
A2 = A3 = 0. The eigenspace corresponding to A = 0 has dimension 2.
It consists of all vectors x such that

A1 = 3 has a unit eigenvector q; = [

$1+$2+{E3:O

In this case we must choose a basis for the eigenspace consisting of

orthogonal unit vectors. If we take q, = \%(—1, 0, )T and q3 =

(=1, 2, —1)T then

. V2 V3 -1
o-2lv o o
lye v

A1 = 6 has unit eigenvector %6(—2, —1, DT, XAy = A3 = 0. The vectors
x1 = (1, 0, 2)T and xo = (—1, 2, 0)T form a basis for the eigenspace
corresponding to A = 0. The Gram-Schmidt process can be used to
construct an orthonormal basis.

]| = V5

1 1
q = %Xl = %(L 0, 2)T

1 1
T T
X =——q,=—-(1, 0, 2
Py ( 2(11)(11 \/gch 5( )
4 2y 7
Xg — P = [—— 2, —]

re2 = ||x2 — pyfl =

T11

q2: \/%
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Thus
1 -2  _2
VRV RV ;
5 _1
=1  U&m %
2 1 1
VR RV :

6. If A is Hermitian, then A” = A. Comparing the diagonal entries of A” and
A we see that
i = Qg for i:l,...,n
Thus if A is Hermitian, then its diagonal entries must be real.
7. (a)

—7 ~ =r\T
o Y - (F) -4
(b)
(aA+BC)H = AT BC" = (@A+BC)T =ad +5C =aAl 1jcH
(¢) In general
AB=AB
(See Exercise 17 of Section 1.) Using this we have
(ABYE = (AB)' =(AB)' =B A' = BHAH
8. (i) (z,2z) = zz = ¥|z]|? > 0 with equality if and only if z = 0

(i) (w,z) =zHw =2"wW =Wz = wlz = (z,w)
(iii) (az+ Bw,u) = ul (az + Bw)
= oul’z 4+ puflw

= afz,u) + f{w,u)

(z,ax + fy) = (ax+ Py, z)

10. Forj=1,...,n
<Zauj> = <CL1111 +e +anunauj> =ai <u15uj> +otan <un,Uj> =aj
Using the result from Exercise 9 we have
<Z5W> = <Zab1u1 + - +bnun>
= E<Zau1>+"'+a<zaun>
=biay+-- +boay
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11. The matrix A can be factored into a product A = QDQ where

V2 0 0 4 0 0
0 i —i and D=0 2 0

01 1 0 0 O

Q=

Sl

Let

E =

O O N
O&O
o O O

Note that EZE = D. If we set

2 00
B=EQH =10 —i 1
0 00

then
BB = (EQ™)"(EQY) = QEPEQY = QDQ" = A

12. (a) UHU =T =UUH
(¢) If x is an eigenvector belonging to A then

[[x[| = U]l = [IAx][ = [A] ][]

Therefore || must equal 1.

14. Let U be a matrix that is both unitary and Hermitian. If A is an eigenvalue
of U and z is an eigenvector belonging to A, then

Uz=U"Uz=1z=12

and
U’z =UUz) = U(\z) = \(Uz) = \?z
Therefore
z = Nz
1-X)z =0

Since z # 0 it follows that \? = 1.

15. (a) A and T are similar and hence have the same eigenvalues. Since T is
triangular, its eigenvalues are t11 and tos.
(b) It follows from the Schur decomposition of A that

AU =UT

where U is unitary. Comparing the first columns of each side of this
equation we see that

Au1 = Utl = t11u1

Hence u; is an eigenvector belonging to ¢1;.



16.

17.

18.

19.

20.
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(¢) Comparing the second column of AU = UT, we see that
Au2 = Ut2

= t12u1 +t22uz

# tooun

since t1oug # 0.

If A has Schur decomposition UTU* and the diagonal entries of T' are all
distinct then by Exercise 19 in Section 3 there is an upper triangular matrix
R that diagonalizes T'. Thus we can factor T into a product RDR™! where
D is a diagonal matrix. It follows that

A=UTU" = U(RDR YU = (UR)D(R™'U™)

and hence the matrix X = UR diagonalizes A.
M7 = (A —iB)T = AT —iBT
-M=-A-1iB
Therefore M = —M if and only if A” = —A and B” = B.

If A is skew Hermitian, then A = —A. Let A be any eigenvalue of A and
let z be a unit eigenvector belonging to A. It follows that

24z = etz = \||z||? = \
and hence
X =M = (2"42)" = 2"A" 7 = 21 Az = -\

This implies that A is purely imaginary.

If A is normal then there exists a unitary matrix U that diagonalizes A. If D
is the diagonal matrix whose diagonal entries are the eigenvalues of A then
A =UDUH . The column vectors of U are orthonormal eigenvectors of A.
(a) Since A = (UDUH)! = UDHUH and the matrix D is diagonal, we
have that U diagonalizes A", Therefore A" has a complete orthonormal
set of eigenvectors and hence it is a normal matrix.
(b) I+A=1+UDUH =UIU" + +UDU* = +U(I + D)U*.
The matrix I + D is diagonal, so U diagonalizes I + A. Therefore [ + A
has a complete orthonormal set of eigenvectors and hence it is a normal
matrix.
(c) A2 =UD?U*".
The matrix D? is diagonal, so U diagonalizes A2. Therefore A? has
a complete orthonormal set of eigenvectors and hence it is a normal
matrix.
B = SAS~! — [ ari V12021 ]
V12021 a22
Since B is symmetric it has real eigenvalues and an orthonormal set of
eigenvectors. The matrix A is similar to B, so it has the same eigenvalues.
Indeed, A is similar to the diagonal matrix D whose diagonal entries are the
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eigenvalues of B. Therefore A is diagonalizable and hence it has two linearly
independent eigenvectors.

1 1—c —-1—-c
21. (a) A7t=| 1 2 1

0 1 1
0 1 0
ATICA=| 1 c+1 1
0 1 -1

(b) Let B= A"'CA. Since B and C are similar they have the same eigen-
values. The eigenvalues of C' are the roots of p(x). Thus the roots of
p(z) are the eigenvalues of B. We saw in part (a) that B is symmetric.
Thus all of the eigenvalues of B are real.

22. If A is Hermitian, then there is a unitary U that diagonalizes A. Thus

A = UDUH
ui!
A1 o
)\2 Uy
= (u1,ug,...,uy,)
A
uy
u;
= (Aug, Agug, ..., A\yuy,)
uy!
= Alulufl + )\QuQuf + - )\nunuf
24. (a) Since the eigenvectors uy, . .., u, form an orthonormal basis for C", the
coordinates of x with respect to this basis are ¢; = ulfx; fori = 1,...,n.

It follows then that

X = cijuy +coug + -+ cpuy
Ax = cjAu; + cpAuy + - -+ ¢, Au,
= A\ciug + Agcousg + - - -+ A\ cpuy,
xTAx = MaxPuy 4+ AacoxPus + -+ MenxPu,
= \cC1C1 + AacaCa + -+ ApCpCn
= Mler 24 Aalea? + -+ Aaen?
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By Parseval’s formula

xfx = [|x||* = [[¢||”
Thus
xHAx
px) = xHx
 MalP 4 XaleaP 44 Aen?

llel?
(b) It follows from part (a) that

n n
)\minZ|Ci|2 )\maxZ|Ci|2
i=1 i=1

< p(x) <
llel? llel?

)\min

IN

p(x) < Amax

SECTION 5

1. If A has singular value decomposition ULV 7, then A7 has singular value
decomposition VXTUT. The matrices ¥ and 7 will have the same nonzero
diagonal elements. Thus A and AT have the same nonzero singular values.

3. If A is a matrix with singular value decomposition UXV ", then the rank of
A is the number of nonzero singular values it possesses, the 2-norm is equal
to its largest singular value, and the closest matrix of rank 1 is oju;v7.

(a) The rank of A is 1 and [|A|2 = v/10. The closest matrix of rank 1 is A

itself.
¢) The rank of A is 2 and ||Al||o = 4. The closest matrix of rank 1 is given
(c) g
by
2 2
2 2
4111V1 = 0 0
0 0
(d) The rank of A is 3 and || A||2 = 3. The closest matrix of rank 1 is given
by
0 0 0
0 3 3
3111V1 = z z
0 5 3
0 0 0
T T
5. (b) Basis for R(A): u; = [%,%,%,%] ; U = (%;_%a_%a%]

Basis for N(AT): uz = (



132

Chapter 6

10.

11.

. If Ais symmetric then ATA = A2. Thus the eigenvalues of ATA are A2, A3, ..., \2.

The singular values of A are the positive square roots of the eigenvalues of

ATA.

. The vectors v,41, ..., v, are all eigenvectors belonging to A = 0. Hence these

vectors are all in N(A) and since dim N(A) = n — r, they form a basis for
N(A). The vectors vy, ..., v, are all vectors in N(A4)+ = R(AT). Since dim
R(AT) = r, it follows that vy, ..., v, form an orthonormal basis for R(AT).

. If A'is an n x n matrix with singular value decomposition A = ULV, then

ATA=ve*vT  and  AAT =UR?UT
If we set X = VU7 then X is nonsingular and
X1 ATAXx =vvTvetvTvuT = us?uT = AAT
Therefore AT A and AA”T are similar.

. If o is a singular value of A, then ¢? is an eigenvalue of ATA. Let x be an

eigenvector of ATA belonging to o2. It follows that
ATAx = o%x
xTATAx = o%xTx
[ Ax[|3 = o*[|x[|3

_ [1Ax]l

BEYE

ATAx = ATAATD
= vxTuTusvTyve+tuTh
= VI'yy+tuTh
For any vector y € R™
ETEZ+Y = (Ulyla 0'292, ey Unyn)T — ETy
Thus
ATAx = VITEE*(UTD) =VETUTb = ATb

P =AAT =UsVTYVErUT = UsstUT
The matrix X3T is an m x m diagonal matrix whose diagonal entries are all
0’s and 1’s. Thus we have

(EEH)T =3x8t and (ZX)2 =%t
and it follows that

P2 = U(xshUt =Uuxtyut = P
PT = UyEshHTu? =ustsuT = P
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SECTION 6
1 1/2 -1
1. (c) [1/2 2 3/2]
-1 3/2 1
2. )\1:4,)\2—2 ) )
V22
L
V2 V2
If we set )
() =< (")
then
@:ywa[j] — (@ )QTAQ [j]

It follows that
OTAQ — 4 0
Lo 2
and the equation of the conic can be written in the form
4@ +2y)? = 8
@) @)

2+4

The positive x’ axis will be in the first quadrant in the direction of

=1

B [ 11 ] ’
ql - \/55 \/5
The positive y' axis will be in the second quadrant in the direction of
B [ 11 ] ’
q2 - \/55 \/5

The graph will be exactly the same as Figure 6.6.3 except for the labeling

of the axes.
3. b) A= [ i ;L ] . The eigenvalues are A\; = 7, A\ = —1 with orthonormal
eigenvectors
11" 11" ,
[ ﬁ, E ] and [— ﬁ, 7 ] respectively.
Let

1 1 -1 ) rf=
il ) e (0) e ()
The equation simplifies to

T(2')? = (y)* = -28
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W)? _@)?

28 4
which is in standard form with respect to the z’y’ axis system.

(C)A_[‘g g]

The eigenvalues are A\; = 6, A\s = —4 with orthonormal eigenvectors

[1 3 ]T and [ 3 1]T espectivel
—_— — n —_——, — , T ively.
VI0' V10 VIO V10 pecivey

“mls ) o (V)= ()

The equation simplifies to

Let

6(x")? —4(y)* =24
(=) ) _
1 e 1

. Using a suitable rotation of axes, the equation translates to

)\1(.%/)2 + )\Q(y/)Q =1

Since A\; and Ag differ in sign, the graph will be an hyperbola.

. The equation can be transformed into the form

M)’ + XA y) =a

If either Ay and A is 0, then the graph is a pair of lines. Thus the conic

section will be nondegenerate if and only if the eigenvalues of A are nonzero.

The eigenvalues of A will be nonzero if and only if A is nonsingular.

(¢) The eigenvalues are Ay = 5, Ao = 2. Therefore the matrix is positive
definite.

(f) The eigenvalues are Ay = 8, Ay = 2, A3 = 2. Since all of the eigenvalues
are positive, the matrix is positive definite.

. (d) The Hessian of f is at (1,1) is

[+ %)

Its eigenvalues are A\; = 9, Ay = 3. Since both are positive, the matrix
is positive definite and hence (1, 1) is a local minimum.
(e) The Hessian of f at (1, 0, 0) is

6 0 0
0 2 1
01 0

Its eigenvalues are A\; = 6, Ao = 1 +1/2, A3 = 1 — /2. Since they differ
in sign, (1, 0, 0) is a saddle point.
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If A is symmetric positive definite, then all of its eigenvalues are positive. It
follows that

det(A) =X A, >0
The converse is not true. For example if I is the 2 x 2 identity matrix and
we set A = —1 then det(A4) = (—1) - (—1) = 1, however, A is not positive
definite.

. If A is symmetric positive definite, then all of the eigenvalues A1, Ao, ..., A, of

A are positive. Since 0 is not an eigenvalue, A is nonsingular. The eigenvalues
of A7t are 1/\1, 1/Xa,...,1/A\,. Thus A~! has positive eigenvalues and
hence is positive definite.

ATA is positive semidefinite since
xTATAx = || Ax[]? > 0
If A is singular then there exists a nonzero vector x such that
Ax =0
It follows that
xTATAx = xTATo =0
and hence ATA is not positive definite.

Let X be an orthogonal diagonalizing matrix for A. If x4,...,x, are the
column vectors of X then by the remarks following Corollary 6.4.5 we can
write

Ax = M (xTx1)x1 + Ao (xTx0)x0 + - -+ A (X %)%,
Thus
xTAx = A\ (xTx1)? + Ao (xTx2)2 + - + M (xT'x,)2
If A is positive definite, then
elde; >0 for i=1,....n
but
el-TAel- = el-Tal- = Qj;
Let x be any nonzero vector in R™ and let y = Sx. Since S is nonsingular,

y is nonzero and
xTSTASx = yTAy > 0
Therefore STAS is positive definite.

If A is symmetric, then by Corollary 6.4.5 there is an orthogonal matrix U
that diagonalizes A.
A=UDU"

Since A is positive definite, the diagonal elements of D are all positive. If we
set
Q=UD'?
then the columns of ) are mutually orthogonal and
A = (UD1/2)((D1/2)TUT)
= QQ"
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SECTION 7

3. (a)
1 0 0 0 2 —1 0 0
PR I R 0 2 -1 0
- 2 4
0 -2 1 0 0 0 4
0 0 -3 1 o 0o o 2

(b) Since the diagonal entries of U are all positive it follows that A can be
reduced to upper triangular form using only row operation III and the
pivot elements are all positive. Therefore A must be positive definite.

6. A is symmetric positive definite
(x,y) =x"Ay

(i) (x,x) =xTAx >0 (x#0)
since A is positive definite.
(ii) (x,y) =x"Ay = x"ATy = (Ax)"y = y"Ax = (y,x)
(iii) (ax + By, z) = (ax + By)TAz
= axTAz + pyTAz
= ax,z)+ By, z)
7. If L1D1U1 = LQDQUQ, then

Dy 'Ly LDy = U Uyt

The left hand side represents a lower triangular matrix and the right hand
side represents an upper triangular matrix. Therefore both matrices must be
diagonal. Since the matrix U; can be transformed into the identity matrix
using only row operation IIT it follows that the diagonal entries of U; ' must
all be 1. Thus
DUt =1

and hence

Ly'Ly = DoD;!
Therefore Ly 'L, is a diagonal matrix and since its diagonal entries must
also be 1’s we have

UUrt =1=1L5"Ly = Doyt
or equivalently
Uy = Us, Ly = Ly, Dy =D,

8. If A is a positive definite symmetric matrix then A can be factored into
a product A = QDQ" where @ is orthogonal and D is a diagonal matrix
whose diagonal elements are all positive. Let F be a diagonal matrix with
eii =+/di; for i =1,...,n. Since ETE = E? = D it follows that

A=QE"EQ" = (EQ")"(EQ") = B'B
where B = EQ™.
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. If B is an m x n matrix of rank n and x # 0, then Bx # 0. It follows that

xT'BTBx = ||Bx||? > 0
Therefore B”B is positive definite.

If A is symmetric, then its eigenvalues A1, Ao, ..., A, are all real and there
is an orthogonal matrix @) that diagonalizes A. It follows that

A=QDQT and 4 =QePQT

A

The matrix e* is symmetric since

(eA)T _ Q(SD)TQT _ QeDQT _ €A
The eigenvalues of e are the diagonal entries of e”
Az A

A n
IUJ1:€15,UJ2:€ ceey fnp =€

Since e/ is symmetric and its eigenvalues are all positive, it follows that e

is positive definite.
Since B is symmetric
B? =B'B
Since B is also nonsingular, it follows from Theorem 6.7.1 that B? is positive
definite.

(a) A is positive definite since A is symmetric and its eigenvalues A\; = %,
Ao = % are both positive. If x € R?, then
xTAx = 22 — zy29 + 22 = x'Bx
(b) If x # 0, then
x'Bx = xTAx > 0

since A is positive definite. Therefore B is also positive definite. How-

ever,
s (1 =2
ey 7

is not positive definite. Indeed if x = (1,1)7, then

x'B*x =0

(a) If Ais an symmetric negative definite matrix, then its eigenvalues are all
negative. Since the determinant of A is the product of the eigenvalues,
it follows that det(A) will be positive if n is even and negative if n is
odd.

(b) Let A denote the leading principal submatrix of A of order k and let
x1 be a nonzero vector in R*. If we set

x—[)f)l] xeR"

xlTAkxl =xTAx <0

Therefore the leading principal submatrices are all negative definite.

then
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(¢) The result in part (c) follows as an immediate consequence of the results
from parts (a) and (b).
14. (a) Since Lk+1L£+1 = Ak41, we have

[Lk 0][L{ Xk] Ay Yk]
xF ay o” o Yi Br
[ LpLT Lyxy, ] Ay, Vi ]
xp Ly Xpxe+of Yi o B
Thus
Lpxi =y
and hence

—1
Xk = Lk Yk
Once x;, has been computed one can solve for ay.

T 2
X, X + a5 = Bk

ar = (B —xpxi)'/?

(b) Cholesky Factorization Algorithm
Set Ll = (\/m)
Fork=1,...,n—1
(1) Let y, be the vector consisting of the first k entries of a1
and let fi be the (k + 1)st entry of ag41.
(2) Solve the lower triangular system Lpxj = yi for xi.

(3) Set ap = (Bk — X{Xk)l/Q
(4) Set
Ly O
Lyt = [ X%‘ an ]

End (For Loop)
L=1L,

The Cholesky decomposition of A is LLT.

SECTION 8
7. (b)

o oo
— O O O
o= O O
oo = O
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1 0 0 0 O
0o 0 1 0 0
P=10 1 0 0 0
0 0 0 1 0
0 0 0 0 1
8. It follows from Theorem 6.8.2 that the other two eigenvalues must be

o

A2 = 2exp [% =—-1+4iV3
and i

A3 = 2exp [% =—-1-4V3

o (52 (3)- (%) (3) -

(b)

Since B is a positive matrix it has a positive eigenvalue r; satisfy-
ing the three conditions in Perron’s Theorem. Similarly C' has a pos-
itive eigenvalue ry satisfying the conditions of Perron’s Theorem. Let
r = max(ry,r2). By part (a), r is an eigenvalue of A and condition
(iii) of Perron’s Theorem implies its multiplicity can be at most 2. (It
would have multiplicity 2 in the case that r1 = ro.) If 71 has a positive
eigenvector x and ry has a positive eigenvector y then r will have an
eigenvector that is either of the form

[X] or of the form [0]
0 y

The eigenvalues of A are the eigenvalues of B and C. If B = C, then
r=ry =ry (from part (b))

is an eigenvalue of multiplicity 2. If x is a positive eigenvector of B
belonging to r then let
[X)
7z =
X
It follows that
Ay — B O x) (Bx) [(rx] _
Z=lo B x| " {Bx)  |mx]) "

Thus z is a positive eigenvector belonging to 7.

10. There are only two possible partitions of the index set {1, 2}. If I; = {1}

11.

and I, = {2} then A will be reducible provided a1z = 0. If I; = {2} and
I, = {1} then A will be reducible provided ag; = 0. Thus A is reducible if
and only if aj2a9; = 0.

If A is an irreducible nonnegative 2 X 2 matrix then it follows from Exercise

10 that aj2a21 > 0. The characteristic polynomial of A

p(\) = A? — (a11 + a12) A + (a11a22 — ajaaz;)



140 Chapter 6

has roots

(a11 + ag2) + /(a11 + az2)? — 4(ar11a22 — aj2az1)
2

The discriminant can be simplified to

(a11 — azo)* + dayzas;.

Thus both roots are real. The larger root r; is obtained using the + sign.

(a11 + az2) + /(a11 — a22)? + 4aisas

2
a1 + ag + |ain — ags]
2
= max(all, CLQQ)

>0

Finally r; has a positive eigenvector

o ai2
X =
T — a1l

The case where A has two eigenvalues of equal modulus can only occur when
aipr =aze =0

In this case A1 = y/az1a12 and A2 = —,/az1a12.
12. The eigenvalues of A* are A} = 1,A5,..., AL, Clearly [M| < 1 for j =
2,...,n. However, A* is a positive matrix and therefore by Perron’s theorem
A =1 is the dominant eigenvalue and it is a simple root of the characteristic
equation for A¥. Therefore [A\5| < 1 for j =2,...,n and hence |A;] <1 for
71=2,...,n.
13. (a) It follows from Exercise 12 that Ay = 1 is the dominant eigenvector of
A. By Perron’s theorem it has a positive eigenvector x;.
(b) Each y; in the chain is a probability vector and hence the coordinates
of each vector are nonnegative numbers adding up to 1. Therefore

ly;li=1 ji=1,2,...

(c) It
Yo = c1X1 + C2Xg + - -+ CnXp
then
YE = 1X1 + 02)\§X2 + -+ cn)\ﬁxn
and since ||yx|| = 1 for each k and

02A§X2+~~~+cn)\ﬁxn—>0 k — oo

it follow that ¢; # 0.
(d) Since
YE = c1X1 + CQASXQ + -+ cn)\ﬁxn
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and |\;| <1 for j =2,...,n it follows that
klim Vi = C1X1

c1x1 is the steady-state vector.

(e) Each yy is a probability vector and hence the limit vector ¢;x; must
also be a probability vector. Since x; is positive it follows that ¢; > 0.
Thus we have

lerxifloe =1

and hence
1
lI%1loo

14. In general if the matrix is nonnegative then there is no guarantee that it
has a dominant eigenvalue with a positive eigenvector. So the results from
parts (c) and (d) of Exercise 13 would not hold in this case. On the other
hand if A* is a positive matrix for some k, then by Exercise 12, A\; = 1 is
the dominant eigenvalue of A and it has a positive eigenvector x;. Therefore
the results from Exercise 13 will be valid in this case.

C1

MATLAB EXERCISES

1. Initially x = e, the standard basis vector, and

Ax = gel = gx
is in the same direction as x. So x; = e; is an eigenvector of A belonging to
the eigenvalue \; = %. When the initial vector is rotated so that x = es the
image will be
Ax = §e2 = §x
4 4
S0 X2 = eg is an eigenvector of A belonging to the eigenvalue Ay = %. The
second diagonal matrix has the same first eigenvalue-eigenvector pair and
the second eigenvector is again xo = e, however, this time the eigenvalue is
negative since x and Axy are in opposite directions. In general for any 2 x 2
diagonal matrix D, the eigenvalues will be d1; and ds2 and the corresponding
eigenvectors will be e; and es.
2. For the identity matrix the eigenvalues are the diagonal entries so A\; =
A2 = 1. In this case not only are e; and es eigenvectors, but any vector
X = r1€e; + roey is an eigenvector.
3. In this case x and Ax are equal when x makes an angle of 45° with the
x axis. So A\ = 1 is an eigenvalue with eigenvector

[ T . 7T]T [1 I]T
X; = | cos —,sin — =|— —F
! 4774 V2 V2
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11.

12.

13.

The vectors x and Ax are unit vectors in opposite directions when x makes
an angle of 135° with the x axis. So A2 = —1 is an eigenvalue and the
corresponding eigenvector is

[cos37T ; 37r]T [ 1 1 ]T
X = —,sin — =|-——,—
? 4 4 V2 V2

. In this case x and Ax are never parallel so A cannot have any real eigenval-

ues. Therefore the two eigenvalues of A must be complex numbers.

. For the ninth matrix the vectors x and Ax are never parallel so A must have

complex eigenvalues.

. The tenth matrix is singular, so one of its eigenvalues is 0. To find the

eigenvector using the eigshow utility you most rotate x until Ax coincides
with the zero vector. The other eigenvalue of this matrix is Ao = 1.5. Since
the eigenvalues are distinct their corresponding eigenvectors must be linearly
independent. The next two matrices both have multiple eigenvalues and
both are defective. Thus for either matrix any pair of eigenvectors would be
linearly dependent.

. The characteristic polynomial of a 2 x 2 matrix is a quadratic polynomial

and its graph will be a parabola. The eigenvalues will be equal when the
graph of the parabola corresponding to the characteristic polynomial has its
vertex on the x axis. For a random 2 x 2 matrix the probability that this
will happen should be 0.

(a) A —1T is a rank one matrix. Therefore the dimension of the eigenspace
corresponding to A = 1 is 9, the nullity of A — I. Thus A\ = 1 has
multiplicity at least 9. Since the trace is 20, the remaining eigenvalue
A10 = 11. For symmetric matrices, eigenvalue computations should be
quite accurate. Thus one would expect to get nearly full machine accu-
racy in the computed eigenvalues of A.

(b) The roots of a tenth degree polynomial are quite sensitive, i.e., any small
roundoff errors in either the data or in the computations are liable to
lead to significant errors in the computed roots. In particular if p(A) has
multiple roots, the computed eigenvalues are liable to be complex.

(a) When t = 4, the eigenvalues change from real to complex. The matrix
C corresponding to t = 4 has eigenvalues A\; = Ay = 2. The matrix X of
eigenvectors is singular. Thus C' does not have two linearly independent
eigenvectors and hence must be defective.

(b) The eigenvalues of A correspond to the two points where the graph
crosses the x-axis. For each ¢ the graph of the characteristic polynomial
will be a parabola. The vertices of these parabolas rise as t increases.
When t = 4 the vertex will be tangent to the z-axis at * = 2. This
corresponds to a double eigenvalue. When ¢ > 4 the vertex will be
above the z-axis. In this case there are no real roots and hence the
eigenvalues must be complex.

If the rank of B is 2, then its nullity is 4 — 2 = 2. Thus 0 is an eigenvalue of
B and its eigenspace has dimension 2.
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15.

16.

17.

18.

19.

20.
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The reduced row echelon form of C has three lead 1’s. Therefore the rank
of C'is 3 and its nullity is 1. Since C* = O, all of the eigenvalues of C' must
be 0. Thus A = 0 is an eigenvalue of multiplicity 4 and its eigenspace only
has dimension 1. Hence C' is defective.

In theory A and B should have the same eigenvalues. However for a defec-
tive matrix it is difficult to compute the eigenvalues accurately. Thus even
though B would be defective if computed in exact arithmetic, the matrix
computed using floating point arithmetic may have distinct eigenvalues and
the computed matrix X of eigenvectors may turn out to be nonsingular. If,
however, rcond is very small, this would indicate that the column vectors of
X are nearly dependent and hence that B may be defective.

(a) Both A—T and A+ I have rank 3, so the eigenspaces corresponding to
A1 = 1 and Ay = —1 should both have dimension 1.
(b) Since A1+ A2 = 0 and the sum of all four eigenvalues is 0, it follows that

A3+ =0
Since A1 A2 = —1 and the product of all four eigenvalues is 1, it follows
that

A3y = —1

Solving these two equations, we get A3 = 1 and Ay = —1. Thus 1 and —1
are both double eigenvalues. Since their eigenspaces each have dimension
1, the matrix A must be defective.

(d) The computed eigenvectors are linearly independent, but the computed
matrix of eigenvectors does not diagonalize A.

Since
9

2
1@)_mnm

it follows that x(2) = 0.03. This proportion should remain constant in fu-
ture generations. The proportion of genes for color-blindness in the male
population should approach 0.03 as the number of generations increases.
Thus in the long run 3% of the male population should be color-blind. Since
x(2)? = 0.0009, one would expect that 0.09% of the female population will
be color-blind in future generations.

(a) By construction S has integer entries and det(S) = 1. It follows that
S~ = adj S will also have integer entries.

(a) By construction the matrix A is Hermitian. Therefore its eigenvalues
should be real and the matrix X of eigenvectors should be unitary.

(b) The matrix B should be normal. Thus in exact arithmetic B¥ B and
BB should be equal.

(a) If A=USVT then
AV =USVTV =US

(b)
AV = (AVl, AVQ) and US = (slul, 52112)
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Since AV = US their corresponding column vectors must be equal. Thus we
have

AVl = S1U1 and AV2 = S2U2

(¢) V and U are orthogonal matrices so vy, vy are orthonormal vectors in
R™ and ujp, ug are orthonormal vectors in R™. The images Av; and Avs
are orthogonal since

(AVl)TAVQ = 515211,{112 =0

(d)  ||Avi|| = [[s1us]| = s1 and [|Avz| = [[sauz]| = s2

21. If s1, s9 are the singular values of A, vy, vy are the right singular vectors

and uj, ug, are the corresponding left singular vectors, then the vectors Ax
and Ay will be orthogonal when x = v; and y = vo. When this happens

Ax = Avy = sjug and Ay = Avy = soun

Thus the image Ax is a vector in the direction of u; with length s; and the
image Ay is a vector in the direction of us with length so.

If you rotate the axes a full 360° the image vectors will trace out an ellipse.
The major axis of the ellipse will be the line corresponding to the span of u;
and the diameter of the ellipse along its major axis will be 2s; The minor
axis of the ellipse will be the line corresponding to the span of u; and the
diameter of the ellipse along its minor axis will be 2s,.

22. The stationary points of the Hessian are (—%,0) and (—Zt, 4). If the station-

ary values are substituted into the Hessian, then in each case we can compute
the eigenvalues using the MATLAB’s eig command. If we use the double com-
mand to view the eigenvalues in numeric format, the displayed values should
be 7.6041 and —2.1041 for the first stationary point and —7.6041, 2.1041 for
the second stationary point. Thus both stationary points are saddle points.

23. (a) The matrix C' is symmetric and hence cannot be defective. The matrix

X of eigenvectors should be an orthogonal matrix. The rank of C' — 71
is 1 and hence its nullity is 5. Therefore the dimension of the eigenspace
corresponding to A =7 is 5.

(b) The matrix C is clearly symmetric and all of its eigenvalues are positive.
Therefore C' must be positive definite.

(¢) In theory R and W should be equal. To see how close the computed
matrices actually are, use MATLAB to compute the difference R — W.

24. In the k x k case, U and L will both be bidiagonal. All of the superdiagonal

entries of U will be —1 and the diagonal entries will be

_ 3 4 k+1
U1l = &, U22 = 9 U3z = 3,---,Ukk— T
L will have 1’s on the main diagonal and the subdiagonal entries will be
2 3 k—1
log = 3 l32 = 3 laz = VIR k-1 = T
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Since A can be reduced to upper triangular form U using only row operation

IIT and the diagonal entries of U are all positive, it follows that A must be

positive definite.

25. (a) If you subtract 1 from the (6,6) entry of P, the resulting matrix will be
singular.

(¢) The matrix P is symmetric. The leading principal submatrices of P
are all Pascal matrices. If all have determinant equal to 1, then all
have positive determinants. Therefore P should be positive definite.
The Cholesky factor R is a unit upper triangular matrix. Therefore

det(P) = det(RT) det(R) = 1

(d) If one sets rgg = 0, then R becomes singular. It follows that @) must
also be singular since

det(Q) = det(RT) det(R) = 0

Since R is upper triangular, when one sets rgg = 0 it will only affect
the (8,8) entry of the product RTR. Since R has 1’s on the diagonal,
changing rgg from 1 to 0 will have the effect of decreasing the (8,8)
entry of RTR by 1.

CHAPTER TEST A

1. The statement is true. If A were singular then we would have

det(A —0I) = det(4) =0

so A = 0 would have to be an eigenvalue. Therefore if all of the eigenvalues
are nonzero, then A cannot be singular.

One could also show that the statement is true by noting that if the eigen-
values of A are all nonzero then

det(A) = )\1)\2 c )\n 75 0

and therefore A must be nonsingular.

2. The statement is false in general. A and A’ have the same eigenvalues but
generally do not have the same eigenvectors. For example if

1 1 1
A_[O 1] and el—[o]

then Ae; = e; so e; is an eigenvector of A. However e; is not an eigenvector
of AT since ATe; is not a multiple of e;.

3. The statement is false in general. The 2 x 2 identity matrix has eigenvalues
A1 = Ao = 1, but it is not defective.

4. The statement is false. If A is a 4 x 4 matrix of rank 3, then the nullity of
Ais 1. Since A = 0 is an eigenvalue of multiplicity 3 and the eigenspace has
dimension 1, the matrix must be defective.
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10.

. The statement is false. If A is a 4 x 4 matrix of rank 1, then the nullity of

A is 3. Since A = 0 is an eigenvalue of multiplicity 3 and the dimension of
the eigenspace is also 3, the matrix is diagonalizable.

. The statement is false in general. The matrix

- (53)

has rank 1 even though all of its eigenvalues are 0.

. The statement is true. If A has singular value decomposition UXV ', then

since U and V' are orthogonal matrices, it follows that A and 3 have the
same rank. The rank of the diagonal matrix ¥ is equal to the number of
nonzero singular values.

The statement is true. A and T are similar so they have the same eigenvalues.
Since T is upper triangular its eigenvalues are its diagonal entries.

. The statement is true. If A is symmetric positive definite then its eigenvalues

are all positive and its determinant is positive. So A must be nonsingular.
The inverse of a symmetric matrix is symmetric and the eigenvalues of A~!
are the reciprocals of the eigenvalues of A. It follows from Theorem 6.6.2
that A~' must be positive definite.

The statement is false in general. For example let

(2 (]

Although det(A) > 0, the matrix is not positive definite since x” Ax = —2.

CHAPTER TEST B

1.

(a) The eigenvalues of A are \y =1, Ao = —1, and A3 =0,
(b) Each eigenspace has dimension 1. The vectors that form bases for the
eigenspaces are x; = (1,1,1)7, %o = (0,1,2)7,x3 = (0,1, 1)7

(c)
1 00y (1 00 1 0 0
XDX'=111 1 0 -1 0 0 -1 1
0 0 0 -1 2 -1

1 21
A" = XD'X '=XDX'=A4
Since A has real entries Ay = 3 — 2¢ must be an eigenvalue and since A
is singular the third eigenvalue is A3 = 0. We can find the last eigenvalue
if we make use of the result that the trace of A is equal to the sum of its
eigenvalues. Thus we have

tr(A):4:(3—|—2i)—|—(3—2i)+0+)\4:6+)\4

A

and hence A\, = —2.
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3. (a) det(A) = AAg- - A, If A is nonsingular then det(A) # 0 and hence all
of the eigenvalues of A must be nonzero.
(b) If A is an eigenvalue of A then there exists a nonzero vector x such that
Ax = \x. Multiplying both sides of this equation by A=! we get

A'Ax = A7 (x)
x = M x
1

Zx = A x

A

and hence 1 is an eigenvalue of A~

4. The scalar a is a triple eigenvalue of A. The vector space N(A —al) consists
of all vectors whose third entry is 0. The vectors e; and es form a basis for
this eigenspace and hence the dimension of the eigenspace is 2. Since the
dimension of the eigenspace is less than the multiplicity of the eigenvalue,

the matrix must be defective.
4 2 2 4 2 2
09 91 —=10 9 9

5. (a)
4 2 2
2 10 10| —
0 9 13 0 0 4

2 10 14
Since we were able to reduce A to upper triangular form U using only
row operation IIT and the diagonal entries of U are all positive, it follows
that A is positive definite.

(b)
40 0y (1 11
U=DL" = 090] 011]
00 4) Lo o0 1
1 00y (4 00 1 L1
ALDLT[;10 [090 0 1 1
! 00 4)Lo o0 1
()
1 00Y(200 2 0 0
Liy=°LD:=|1 1 0ofl]o 3 o0f=[1 30
111 00 2 1 3 2
2.0 0y (2 11
A=LLF=|1 3 0 0 3 3
1 32)10o o0 2

6. The first partials of F' are
fo=32%y +22—2 and fy:x3+2y—1
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At (1,0) we have f(1,0) = 0 and f,(1,0) = 0. So (1, 0) is a stationary point.
The second partials of f are

fow =62y +2,  foy = fyu =37%  fuy =2
At the point (1,0) the Hessian is

2 3
(Nt
The eigenvalues of H are \; = 5 and A9 = —1. Since the eigenvalues differ

in sign it follows that H is indefinite and hence the stationary point (1,0) is
a saddle point.

. The eigenvalues of A are Ay = —1 and Ay = —2 and the corresponding

eigenvectors are x; = (1,1)7 and x5 = (2, 3)7. The matrix X = (x1,x2) di-
agonalizes A and ' = Xe!P X1 The solution to the initial value problem
is

Y(t) =Yy = XetP XY,
(1 2 et 0 3 -2 1
~ |11 3 0 2 -1 1 2

eft +2€72t
et 432

. (a) Since A is symmetric there is an orthogonal matrix that diagonalizes

A. So A cannot be defective and hence the eigenspace corresponding
to the triple eigenvalue A = 0 (that is, the nullspace of A) must have
dimension 3.

(b) Since A; is distinct from the other eigenvalues, the eigenvector x; will
be orthogonal to x5, x3, and x4.

(c) To construct an orthogonal matrix that diagonalizes A, set u; = mxl.
The vectors x2, X3, x4 form a basis for N(A). Use the Gram-Schmidt
process to transform this basis into an orthonormal basis {us, us,us}.
Since the vector uy is in N(A)L, it follows that U = (uy, ua, uz, uy) is
an orthogonal matrix and U diagonalizes A.

(d) Since A is symmetric it can be factored into a product A = QDQT
where @ is orthogonal and D is diagonal. It follows that e = QeP Q.
The matrix e is symmetric since

(eA)T _ Q(GD)TQT _ QeDQT _ €A
The eigenvalues of e are \y = eand Ay = A3 = Ay = 1. Since ¢

is symmetric and its eigenvalues are all positive, it follows that e? is
positive definite.

A

. (a) ufz=5—"7i and zu; =5+ 7i.

co =ullz ==1-5i.

(b)

Iz))? = |e1|? + |e2]® = (5= Ti)(5+7i) + (1 — 5i)(1 + 5i)

= 254+494+1+4+25



10. (a)

(b)

11. (a)

(b)

12. (a)
(b)
(c)

(d)

(e)
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= 100

Therefore ||z| = 10.

The matrix B is symmetric so it eigenvalues are all real. Furthermore,
if x # 0, then

xT'Bx = xTAT Ax = || Ax||> > 0
So B is positive semidefinite and hence its eigenvalues are all nonneg-
ative. Furthermore N(A) has dimension 2, so A = 0 is an eigenvalue
of multiplicity 2. In summary B is a symmetric positive semidefinite
matrix with a double eigenvalue A = 0.
The matrix B can be factored into a product QDQT where @ is an
orthogonal matrix and D is diagonal. It follows that C' = Qe”Q7. So
C is symmetric and its eigenvalues are the diagonal entries of e” which
are all positive. Therefore C' is a symmetric positive definite matrix.

If A has Schur decomposition UTUH, then U is unitary and 7" is upper
triangular. The matrices A and T are similar so they have the same
eigenvalues. Since T is upper triangular it follows that t11,t22, ..., thn
are the eigenvalues of both 7" and A.

If B is Hermitian with Schur decomposition W SWH | then W is unitary
and S is diagonal. The eigenvalues of B are the diagonal entries of S
and the column vectors of W are the corresponding eigenvectors.

Since A has 3 nonzero singular values, its rank is 3.

If U is the matrix on the left in the given factorization then its first 3
columns, uy, ug, us form an orthonormal basis for R(A).

The matrix on the right in the factorization is V7. The nullity of A is
1 and the vector v4 = (=1, 1, —2 )T forms a basis for N(A).

2727 272

2

5

) 20 20 20 20

5 20 20 20 20
B=ouvi =100 [ 2| (5 5 4 ) =]20 20 20 2

) 20 20 20 20

5 30 30 30 30

3

5

|B — Allr =102 + 102 = 10v/2.
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SECTION 1

The answers to all of the exercises in this section are included in the text.

SECTION 2

4. (a) (i) n(mr +mn + n) multiplications and (n — 1)m(n + r) additions.
(ii) (mn + nr 4+ mr) multiplications and (n — 1)(m + r) additions.
(iii) mn(r 4+ 2) multiplications and m(n — 1)(r + 1) additions.
(a) The matrix erel will have a 1 in the (k,4) position and 0’s in all other

5.
positions. Thus if B = I — aeie!, then
bki = —a and bsj = 55]’ (S,]) 7§ (k, ’L)
Therefore B = Ey;
T

(b) EjiEwi = (I — Peje])(I — aere])
= I —aepel — Be;el + afejel ey el
= I — (cey, + Bej)el
(¢) (I + aepel)Ey = I+ aepel)(I —aerel)

— 26 ol e, ol
=1 — a’epe; epe;
=1 —a?(eley)erel

=1 (since el'e; =0)

Therefore
E,;l-l =1+ aekeiT

6. det(A) = det(L) det(U) =1- det(U) = U11U22 * * *Unn

150
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7. Algorithm for solving LDLTx =b
Fork=1,...,n
k-1
Set yx =br — »_ lriyi
i=1
Set Zk = yk/d“
End (For Loop)
Fork=n—-1,...,1

Set L = Z) — Z éjkxj
J=k+1
End (For Loop)

8. (a) Algorithm for solving tridiagonal systems using diagonal pivots
Fork=1,....n—1

Set my = c/ak
k41 = Qg1 — Miby
dr41 := dpy1 — mpdy

End (For Loop)
Set xp, := dn/an
Fork=n—-1,n—-2,...,1

Set T = (dk - bkkarl)/ak
End (For Loop)

. 9 (b) To solve Ax = e;, one must first solve Ly = e; using forward substitu-
tion. From part (a) it follows that this requires [(n—j)(n—j41)]/2 mul-
tiplications and [(n —j — 1)(n — j)]/2 additions. One must then perform
back substitution to solve Ux = y. This requires n divisions, n(n—1)/2
multiplications and n(n—1)/2 additions. Thus altogether, given the LU
factorization of A, the number of operations to solve Ax = e; is

mn—jn—7+1)+n?+n
2

multiplications/divisions

and
n—j—1n—-75)+n*>—n
2

additions/subtractions

10. Given A~! and b, the multiplication A~'b requires n? scalar multiplications
and n(n — 1) scalar additions. The same number of operations is required
in order to solve LUx = b using Algorithm 7.2.2. Thus it is not really
worthwhile to calculate A~!, since this calculation requires three times the
amount of work it would take to determine L and U.

11. If
A(E1EyEs) = L

then
A= L(E\ExE3) = LU
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The elementary matrices £ L Ey L Es ! will each be upper triangular with
ones on the diagonal. Indeed,

a1z a1z 10 0
1 a12 0 1 0 ars
_ _ _ a3
E'=lo 1 ol E'=]01 o0 Bit=]0 1 &
22
0 0 1 0 0 1 0 0 1
where oY) = a9y — %2 If we let
22 227 ayre
a12 a13 a23
Uiz = ——, U13 = ——, U23 = —qy
a11 a11

HP)

then

5 4 7 2 4 0 4 0

6. ) | 2 -4 3|53 0 6]-3

2 8 6 4 2 8 6 4

2 0 0 2

—- 13 0 6 |-3

2 8 6 4
2561:2 xlzl
3+6.§C3:—3 ZC3:—1

2+8$2—6:4 $2:1
x=(1, 1, -1)7

(b) The pivot rows were 3, 2, 1 and the pivot columns were 2, 3, 1.
Therefore

0 0 1 0 01
P=101 0 and Q=110 0
100 0 1 0

Rearranging the rows and columns of the reduced matrix from part

(a), we get
8 6 2
U=10 6 3
00 2
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The matrix L is formed using the multipliers —%, %, %
1 0 0
= -+ 1 o0
1 2
2 3 1

(¢) The system can be solved in 3 steps.
(1) Solve Ly = Pc

—_
o
(an)
[N}

y1 =2
-1 1 0| -4 -3
2 Y2 =
1 2 =
5 3 1 5 y3 =06
(2) Solve Uz =y
8 6 2 2 z1=1
0 6 3 -3 29 = —2
0 0 2 6 23 =3

SECTION 4
3. Let x be a nonzero vector in R?
JAxle _ _fml  _ .
[Ixl[2 Vit ai o
Therefore n
HAHQ — max H XHQ <
x#0 [|x[|2
On the other hand ey
e
4], > T2 =
leill2

Therefore ||Alls = 1.

4. (a) D has singular value decomposition UX V7T where the diagonal en-
tries of ¥ are 01 =5, 00 =4, 03 =3, 04 =2 and

0 010 0 0 1 0

10 0 0 -1 0 0 0
U= 0 0 0 1|~ V= 0 0 0 -1

01 0 0 0 1 0



154

11.

Chapter 7

(b) [[Dllz =01=5

If D is diagonal then its singular values are the square roots of the
eigenvalues of DTD = D?. The eigenvalues of D? are d3,,d3,,...,d2,

and hence it follows that

[Dllz =01 = max |dii

. It follows from Theorem 7.4.2 that

[Dllx = [Dlfoc = max |dsl
1<i<n

and it follows from Exercise 5 that this is also the value of || D||z. Thus
for a diagonal matrix all 3 norms are equal.

. (a) If || - |[ar and || - ||y are compatible, then for any nonzero vector x,

[xllv = l1x]lv < [VIamllx[lv
Dividing by [|x||y we get
1< |M][a

(b) If || - ||as is subordinate to || - ||y, then

for all nonzero vectors x and it follows that

11x[lv _

Il = max =
Illar = o e

. (a) [|[X]leo = ||X||oo since the ith row sum is just |z;| for each 7.

(b) The l-norm of a matrix is equal to the maximum of the 1-norm of
its column vectors. Since X only has one column its 1-norm is equal
to the 1-norm of that column vector.

Let x be a nonzero vector in R"

n
[max, | Z aij ;|
Jj=1

[[ A% ]| oo

[l

max |21

n
max |z;| max | E aijl
1<j<n 1<i<m 4 1

J:

IN

max. |z

IN
E
i
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Therefore

[Ax]
Alloo = Z
[ 4lleo = e I < 1<1<m lasj

Let k be the index of the row of A for which Z la;;| is a maximum.
j=1

Define z; = sgnay; for j = 1,...,n and let x = (z1,...,2,)T. Note

that ||x|lec = 1 and ay;x; = |ag,| for j =1,...,n. Thus

[Afleo = [|Ax[|oc = max Z%% = Z |ax;|

Jj=1

Therefore
n
[A]loo = max | > |ay]
1<i<m —
J:

1/2

4l = [z;afj]m_ pobar

Oo—max a;j| = max aji| = 1
Al ZI il ZI jil = 1Al

1<i<n
|All =01=5 and
Al = 0% + 02 4.3 + o 4 0Dt =6
(a) Let k = min(m,n).
(6) HAHQ:O’lg(U%—Fo’g_}_+Uz)%:”AHF

(b) Equality will hold in (6) if 03 = -+ = 0% = 0. It follows then that
|All2 = ||A|| F if and only if the matrix A has rank 1.
Since

1
{x | Il =13 = {x| X =y, YER and y # 0}

A
Al — e )
Vo Iyl

1
max || A [—y] H
y#0 [l
= max ||Ax||
llx[I=1

17. If x is a unit eigenvector belonging to the eigenvalue A, then

Al = [[]Ax]| = [|[Ax|| < [|Allar[[x]] = [l Al a1
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18. If A is a stochastic matrix then ||A]|; = 1. It follows from Exercise 17
that if A is an eigenvalue of A then

Al <Al =1

19. (b) [ Axz < 1/ Ax] a0 < 22| Al lXlloc < 212 ]l ]l
(¢) Let x be any nonzero vector in R™. It follows from part (a) that

HAXHOO < I/QHAH
Il 1
and it follows from part (b) that
1 Ax]l2
e <" Ml
Consequently
Ax|| oo
4l = g L < 2,
x Xl oo
and
P L T
o x>
Thus

n 2 Allz < Al < 02| All2
20. Let A be a symmetric matrix with orthonormal eigenvectors uy, ..., u,.
If x € R™ then by Theorem 5.5.2
X =ciuy +cous + -+ cpuy
where ¢; = ulx,i=1,...,n.
(a) Ax = clAul + CQAUQ =+ -+ anun
= ciA\iug + c2Aaus + - -+ cp AUy

It follows from Parseval’s formula that

n

1Ax|I5 =D (hiei)?

i=1
(b) It follows from part (a) that

n 1/2 . 172
. ' : < < . 2
121%1')"' [Z cl] < ||Ax||2 < f??;iw ch

=1 =1

Using Parseval’s formula we see that

B

j=1

1/2

= [Ixll2

and hence for any nonzero vector x we have
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27.
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(c) If
[ Akl = max [Aq
1<i<n

and xj, is an eigenvector belonging to Ax, then

A
1A 12 = |\k| = max |\
lIxl2 1<i<n

and hence it follows from part (b) that

[Allz = max [A]
1<i<n

(100 99
A _[100 100]

Let A be the coefficient matrix of the first system and A’ be the coeffi-

cient matrix of the second system. If x is the solution to the first system
and x’ is the solution to the second system then

R
w ~ 3.03
(%[
while
14 = Ao
[ Al
The systems are ill-conditioned in the sense that a relative change of
0.014 in the coefficient matrix results in a relative change of 3.03 in the
solution.

cond(A) = [|Af| (| A7 ar = [[AAT [ar = (][ = 1.

~ (0.014

The given conditions allow us to determine the singular values of the
matrix. Indeed, o1 = ||Al|2 = 8 and since

L - condy(A) =2
03
it follows that o3 = 4. Finally
of + 03 +o3 = [|AlE
64+ 03+ 16 = 144

and hence oy = 8.

1 Irfle _ lIXx = %loo
(c) < < condy, (A)
condas (A) ||b|so B3[PS

]l oo

[Ib]oo

0.0006 = 4(0.012) < X=Xl < 90(0.012) = 0.24

X[

cond(AB) = [[AB| [(AB)~|| < [[A[ | B|| [ B7H|| [A~"[| = cond (A) cond(B)

It follows from Exercises 5 and 6 that

[Dlly = [IDll2 = | Dlloc = dmax
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33.

34.

and )
D"y =D 2 = D™ loo = 7
min
d
Therefore the condition number of D will be dmax no matter which of
the 3 norms is used. o
(a) For any vector x
@x]2 = [|x]|2
Thus if x is nonzero, then
jQxllz _
[Ix][2
and hence 1ox
Q|2
Q|| = max =1
Q12 o Il

(a)

The matrix @~ = Q7 is also orthogonal and hence by part (a) we
have

Q7 '2=1
Therefore
conds (Q) =1
il Delle g o IED:
condz(Q) [[bll2 ™ [Ix[l2 b2

Since condz(Q) = 1, it follows that

llellz _ [Irlle

[x[l2 bll2
If x is any vector in R", then Ax is a vector in R™ and

1QAx]|2 = [[Ax(l

Thus for any nonzero vector x

[QAx[]> _ [[Ax]ls

Ixll2 Il
and hence
A
QA2 = max 192X

x20  [|x]|2
_ [ Ax|l2
= max

x#0 [|x||2
= [ All2

For each nonzero vector x in R™ set y = Vx. Since V' is nonsingular
it follows that y is nonzero. Furthermore

{yly = Vx and x # 0} = {x|x # 0}
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since any nonzero y can be written as
y=Vx where x = V7Ty
It follows that if x # 0 and y = Vx, then
[AVxlla _ [[AVx2 _ [|Ayll2

el Vil Iyl
and hence
AV A
1AV ]l = max 12Vl _ 1A )
x20 [xll2 yz0 [yl

(¢) Tt follows from parts (a) and (b) that
[QAV ]2 = [Q(AV) ]2 = AV ]2 = [|All2

35. (a) If A has singular value decomposition UXV7 | then it follows from
the Cauchy-Schwarz inequality that

x" Ay| < [Ix[l2]| Ay |2 < [Ixll2]lyll2[|All2 = ovllx]2]ly ]2
Thus if x and y are nonzero vectors, then

T A
|x" Ay| <o
Ix[2llyll2

(b) If we set x; = uy and y; = vy, then

[xilz =lml2=1 and [yl =[lvill2=1

and

Ay, = Avi = o1uy
Thus

XlTAY1 = UlT(O'lul) =01
and hence
|x{ Ay, | — 0
[x1ll2lly1ll 2
Combining this with the result from part (a) we have
x" Ay|

max +———— =01
x#0,y#0 HXH2HY|\2

36. For each nonzero vector x in R™

[Ax[la _ [USVTx]ls _ [EVTx[2 _ [Syll2

Ixl2— lxllz  VTxlz  lyll
where y = VT x. Thus
Ax]e [y

min

min =
x20 xl2 y#0 [lyll2




160 Chapter 7

For any nonzero vector y € R"

n 1/2
[Zyllz _ Uiz S onliyllz _

[yll2 [ ]1/2 ~ oyl T

[Zyll2
l[yll2

Thus

min > o

On the other hand

[Zyllz _ [Zenll2 _
— - n
y#0 [lyll2 llenll2

Therefore
[Ax|l2 . [IZyll2
mi =

min = min
x#0 [[x[l2 y#0 [lyll2

37. For any nonzero vector x
[[Ax]|2
(x|
It follows from Exercise 33 that
[[Ax]]2

1|2

< | Allz = 01

n

Thus if x # 0, then
onllxll2 < [|Ax[|2 < ou[x]2

Clearly this inequality is also valid if x = 0.
38. (a) It follows from Exercise 34 that

1QAll2 = [[All2 and  [[AT'QTl2 = AT
1AQll2 = [[All2  and  [|QTAT |2 = A7}

Thus

condz(QA) = [[QA[2l|AT'Q" |2 = cond2(4)

conds(AQ) = [|AQ||2[|QTA™ |2 = conda(A)

(b) It follows from Exercise 34 that
[1Bll2 = [|All2
and
1B~ l2 = 1QTAT!Qll2 = A7z

Therefore

condy(B) = conda(A)
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39. If A is a symmetric n X n matrix, then there exists an orthogonal matrix
Q@ that diagonalizes A.
QTAQ =D
The diagonal elements of D are the eigenvalues of A. Since A is sym-
metric and nonsingular its eigenvalues are all nonzero real numbers. It
follows from Exercise 38 that

conda(A) = conda(D)

and it follows from Exercise 32 that

)\max
condy(D) = S
SECTION 5
7. (b)
1 1
V2 V2
G =
1 1
V2 V2
V2 3V2 | 3v2 -3
aaan = (N[ 22) ()
(c)
G = 0 1 0
5 -5 2 1 9
(GA|Gb) = | 0 13 2], x_[ 8]
0 0 1 —2 -2

12. (a) [Ix-y[* = (x-y)"(x ~y)
= x"x-x"y —y'x+yly
= 2xTx —2y"x
= 2(x—y)Tx
(b) It follows from part (a) that
T 2 T
2ux = HX_yH(X_Y) X = HX_YH

Thus
2uu’x = uixju=x—-y
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14.

15.

16.

and hence
Qx=(I-2uul)x=x—(x—y)=y
. (a) Qu=(I -2uu)u= u-2uw)ju= —u
The eigenvalue is A = —1.

(b) Qz=(I —2uu)z = z —2(u'z)u= z
Therefore z is an eigenvector belonging to the eigenvalue A = 1.
(¢) The eigenspace corresponding to A = 1 is

N(Q —I) = N(—2uu®) = N(uu?)

The matrix uu? has rank 1 and hence its nullity must be n — 1.
Thus the dimension of the eigenspace corresponding to A = 1 is
n — 1. Therefore the multiplicity of the eigenvalue must be at least
n—1. Since we know that —1 is an eigenvalue, it follows that A =1
must have multiplicity n — 1. Since the determinant is equal to the
product of the eigenvalues we have

det(Q) = —1- (1) = —1

If R is a plane rotation then expanding its determine by cofactors we
see that
det(R) = cos? 0 +sin® 0 = 1

By Exercise 13(c) an elementary orthogonal matrix has determinant

equal to —1, so it follows that a plane rotation cannot be an elementary

orthogonal matrix.

(a) Let Q = QTQ2 = R1R;"'. The matrix @ is orthogonal and upper
triangular. Since @ is upper triangular, Q! must also be upper
triangular. However

Q71 _ QT _ (R1R51>T

which is lower triangular. Therefore @) must be diagonal.
(b) Rl = (Q,{QQ)RQ = QRQ Since
|qii] = [|Qe| = [les]| =1
it follows that ¢; = £1 and hence the ith row of Ry is £1 times
the ith row of Rs.
Since x and y are nonzero vectors, there exist Householder matrices H,
and Hs such that

(m) (n)
1 2

Hix = [[x[le;”” and Hyy = [ly[e

where e{™ and e{" denote the first column vectors of the m x m and

n x n identity matrices. It follows that
HlAHQ = HlxyTHQ
= (Hix)(Hay)"

= x| llyle™ (™)



163

Section 6

Set
S = [|x|| [ly[e™ (el™)”

Y is an m X n matrix whose entries are all zero except for the (1,1)
entry which equals ||x|| ||y]|. We have then

H,AHy =%

Since H; and Hy are both orthogonal and symmetric it follows that A
has singular value decomposition H1XHs.

17. In constructing the Householder matrix we set
0 =ala—1x1) and v=(x1—a,x0,...,2,)7"
In both computations we can avoid loss of significant digits by choosing
« to have the opposite sign of z;.
18.
cosf—1 cosf—1
ULU — sin 6 . sin 6
0 1 sing 1 0 1
cosf—1 cosf—1
_ cos 6 sin 6 1 sin 6
sin 0 1 0 1
cosf —sinf
~ | sino cos 6
SECTION 6
3. (a) V1:AUO: _2] ul—gvl—[_2/3]
-1/3 1
V2:Au1: _1?3] 112——3V2: [1]
V3:AUQ: _2] U3—§V3—[_2/3]
B [ -1/3 B (1
V4—A113— _1/3] U4——3V4—[1]
6. (a and b). Let x; be an eigenvector of A belonging to A;.
1
371Xj = (A - )\I)Xj = ()\J - )\)Xj = ;Xj
J

Multiplying through by ;B we obtain
Bxj = p;x;

Thus p; is an eigenvalue of B and x; is an eigenvector belonging to ;.
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()

If Ak is the eigenvalue of A that is closest to A, then

] = e > = |
P e =N T Iy =AM

for j # k. Therefore . is the dominant eigenvalue of B. Thus when
the power method is applied to B, it will converge to an eigenvector
xi of k. By part (b), x; will also be an eigenvector belonging to
Ak-

Since Ax = Ax, the ith coordinate of each side must be equal. Thus

n
E Qi Tj = )\CCl
Jj=1

It follows from part (a) that

n
()\ - CL“).Il = Z Q55
j=1
J#i
Since |z1] = [|%|lec > 0 it follows that

n

n Q;i L5 n X5
A —aul =Y L2 <> ay —J’ <> ai]
T =1 T

j=1 j=1
J#i J#i YE)

Let B=X"1(A+E)X. Since X "' AX is a diagonal matrix whose
diagonal entries are the eigenvalues of A we have

N )\1+C“ lf’L:]

It follows from Exercise 7 that

A= bl < Iby
j=1
J#i
for some 7. Thus
A=A — el <D eyl
j=1
J#i
Since
[N =N = leis] < X=X —cail
it follows that

A=Al <) e
j=1
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(b) It follows from part (a) that

n
min [A—A;| < max [Z|CU|]
1<j<n 1<i<n

Jj=1

A

1Cllo
X oo 1B oo/l X Nl
— condeo (X)|| Bl

IN

9. The proof is by induction on k. In the case k =1
AP = (Q1R1)Q1 = Q1(R1Q1) = P1 A
Assuming P, A1 = AP, we will show that P,y 1A;10 = APpyq.
APerl - APQOJrl
= PpAn1Qmit
= PnQumi1Rimi1Qmi1
- Pm+1Am+2
10. (a) The proof is by induction on k. In the case k =1
PU; = Q1Q2RoRy = QAR = PL AU,
It follows from Exercise 9 that

P1A2U1 = APlUl

Thus
PyU; = P AU, = AP U,
If
Pri1Unmy1 = PnAms1Un = APU,,
then

Prt2Unt2 = Prni1Qmi2Rmi2Unqr
- m+1Am+2 Uerl
Again by Exercise 9 we have
Pm+1Am+2 - APerl
Thus
Pm+2Um+2 = Pm+1Am+2Um+1 = APerlUerl
(b) Prove: PyU, = Ak. The proof is by induction on k. In the case
k=1
PU =Q R =A=A"
If
PoU, =A™
then it follows from part (a) that
Prii1Unmir = APLU,, = AA™ = A™ !
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11.

12.

To determine x; and 3, compare entries on both sides of the block
multiplication for the equation Ry 11Ux+1 = Uky1Dgy1.

R, by U xx ) _ (U xi D. O
0T gy o 1) |lo” 1 0T g
RU, Rixp+br) [ UkDr Bxi
(I Bk L o B
By hypothesis, RiyUy, = Uy Dy, so if we set § = [, then the diagonal

blocks of both sides will match up. Equating the (1,2) blocks of both
sides we get

Ryxy + by = Brxg
(R — Brl)x = —by,
This is a kx k upper triangular system. The system has a unique solution
since f is not an eigenvalue of Rj. The solution x; can be determined
by back substitution.

(a) Algorithm for computing eigenvectors of an n x n upper triangular
matrix with no multiple eigenvalues.

Set U1 = (1)
Fork=1,....n—1
Use back substitution to solve
(Rx — Brl) xx = —by,

where

T
B =Trht1.k+1 and  br = (M1 k4172 k41y - - s Tk k+1)

Set
U,
Uki1 = [ 0% Xlk ]

End (For Loop)

The matrix U, is upper triangular with 1’s on the diagonal. Its
column vectors are the eigenvectors of R.
(b) All of the arithmetic is done in solving the n — 1 systems
(Rk—ﬂkf)xk:—bk k:l,...,n—l
by back substitution. Solving the kth system requires

k(k + 1)

1+24---4+k= multiplications

and k divisions. Thus the kth step of the loop requires %kQ + %k
multiplications/divisions. The total algorithm requires

%ik2+3k 1 [n(2n—1)(n—1)+3n(n—1)]
k=1

2 6 2
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n®  4n®—n—4 e
=5 + — multiplications/divisions

The dominant term is n3/6.

SECTION 7

3.

5.

(a) an = llai]| =2, S =ai(ar —a11)=2, vi=(-1,1, 1, )T

Hl =1- LVlv,{1

P

2 3 8

0 2 -1
HIA: O 1 Hlb: —8

0 -2 =5

az=(2, L, =2)"[[=3 $=33-2)=3 va=(-1 1, -2)F

1 1
H2 = [ 0 H22 ] where H22 =1- EVQV%1

2 3 8
0 3 0
H2H1A— O O HQHlb— _9
0 O -3
Let A be an m x n matrix with nonzero singular values o1, ..., 0, and

singular value decomposition ULV 7. We will show first that ¥+ satis-
fies the four Penrose conditions. Note that the matrix X7 is an m x m
diagonal matrix whose first r diagonal entries are all 1 and whose re-
maining diagonal entries are all 0. Since the only nonzero entries in the
matrices ¥ and X7 occur in the first r diagonal positions it follows that

(EXH)E =% and TTEEt) =%t
Thus ST satisfies the first two Penrose conditions. Since both ¥¥T and
Y TY are square diagonal matrices they must be symmetric
(zxhH)T = ¥t
(Zto)T = =ty
Thus X7 satisfies all four Penrose conditions. Using this result it is easy
to show that AT = VX+U7 satisfies the four Penrose conditions.

(1) AATA=UxVTVvstuTusy? = Uxstsvl = UxvT = A

(2) AtAAY = vtUTUusvTvstuT = vetestut? = vetuT =
At
(3) (AANT = UxvTvestuh)T
= (Usxtuh)T
= uxehHTuT
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uxshHuT
= AA*

(vertuTtusvhT
= (Vvetxvh)T
v(Ete)TvT

= VEto)vT

= AtA

(4) (A*A)F

. Let B be a matrix satisfying Penrose condition (1) and (3), that is,

ABA=A and (AB)T = AB
If x = Bb, then
ATAx = ATABb = AT(AB)Tb = (ABA)Tb = ATb

1
L If X = ——x7T, then

I3

1
Xx = —QXTX =1
x5

Using this it is easy to verify that x and X satisfy the four Penrose
conditions.

(1) xXx=x1=x
2) XxX =1X = X

1
T _ Ty _ T _
3) xX)' =X'x= HXHQXX =xX

4) (Xx)T=1T=1= Xx

. If A has singular value decomposition ULV 7 then

(7) ATA=vyTuTusyv? =veTsy”

The matrix 7% is an n x n diagonal matrix with diagonal entries

o?,...,0%. Since A has rank n its singular values are all nonzero and it

follows that X7'Y is nonsingular. It follows from equation (7) that
(ATA)TTAT = (v(sTe) v (veTuT)
= V') 1xTu”

= vyxtu?
. Let
b=AATb = A(ATDb)
since

R(A) ={Ax|x € R"}
it follows that b € R(A).
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Conversely if b € R(A), then b = Ax for some x € R™. It follows

that
ATb = AT Ax
AAT™b = AATAx=Ax=b
A vector x € R"™ minimizes ||b — Ax|| if and only if x is a solution
to the normal equations. It follows from Theorem 7.9.1 that ATb is a
particular solution. Since A™b is a particular solution it follows that a
vector x will be a solution if and only if
x=A"b+1z

where z € N(ATA). However, N(ATA) = N(A). Since V,i1,...,Vp
form a basis for N(A) (see Exercise 7, Section 7), it follows that x is a
solution if and only if

Xx=A"b+ 1 Vep1 + -+ cnvin

(a) (XT)T is an m x n matrix whose nonzero diagonal entries are the
reciprocals of the nonzero diagonal entries of . Thus (X7)* = .
If A=USVT, then
(AN = (vstuht =UEH)TVT =UsVT = A
(b) ¥XF is an m x m diagonal matrix whose diagonal entries are all 0’s
and 1’s. Thus (XX1)%? = ¥XT and it follows that
(AAT? = (UsvVTvstuT)? = (usestuT)? = Uz h)2u”
= USStUT = 44"
() £*X is an n x n diagonal matrix whose diagonal entries are all 0’s
and 1’s. Thus (X7X)% = ¥7% and it follows that
(AT A)? = (vetUuTusvT)? = (vetevh)2 = v(zte)?vT
= VeVt =4t4
(1) ABA = XYT[Y(YTY)"\(XTX) 'XT|XY7
= XYTY)(YTY) H(XTX)"(XTX)YT
= Xy7T
= A
V(YY) LT X)X T (XY )Y (YY) L (XT X)X
Y(YTY) H(XTX) " (XTX)(YTY)(YTY) {(XTX) 1 X7
= Y(YTY) Y(XTX) 1 XT

Sy

(3) (AB)T = BT AT
= Y(YTY)"YXTX) 1 x4 (Y XT)
= X(XTX)"Y(YTy)-lyTyxT
XTX)1XT

- X(
= X(YTY)(YTY)"Y(XTX)"1XT
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— (XYY (YTY) I (XTX) 1 XT]
AB

(4) (BA)T = ATBT

= YXHYY'y)""(XTx) X"
YXTX(XTX)~"L(YTY) YT

= Y(YTYy) T

= Y(YTY) {(XTX)"L(XTX)YT
= [Y(YTY)"YXTX)"'XT)(XYT)
= BA

MATLAB EXERCISES

10.
12.

. The system is well conditioned since perturbations in the solutions are

roughly the same size as the perturbations in A and b.

(a) The entries of b and the entries of Vs should both be equal to the row
sums of V.

(a) Since L is lower triangular with 1’s on the diagonal, it follows that
det(L) =1 and

det(C) = det(L) det(LT) =1

and hence C~! = adj(C). Since C' is an integer matrix its adjoint will
also consist entirely of integers.

. Since A is a magic square, the row sums of A —¢I will all be 0. Thus the row

vectors of A — tI must be linearly dependent. Therefore A — tI is singular
and hence ¢ is an eigenvalue of A. Since the sum of all the eigenvalues is
equal to the trace, the other eigenvalues must add up to 0. The condition
number of X should be small, which indicates that the eigenvalue problem
is well-conditioned.

. Since A is upper triangular no computations are necessary to determine its

eigenvalues. Thus MATLAB will give you the exact eigenvalues of A. How-

ever the eigenvalue problem is moderately ill-conditioned and consequently

the eigenvalues of A and Al will differ substantially.

(b) Cond(X) should be on the order of 108, so the eigenvalue problem should
be moderately ill-conditioned.

(b) Ke = —He.

(a) The graph has been rotated 45° in the counterclockwise direction.

(¢) The graph should be the same as the graph from part (b). Reflecting
about a line through the origin at an angle of ¢ is geometrically the
same as reflecting about the z-axis and then rotating 45 degrees. The
later pair of operations can be represented by the matrix product

c —S 1 0y (¢ S
s c 0 1)  |s —c
where ¢ = cos% and s = sin %.



MATLAB Ezercises 171

13. (b)
b(1,:) =b(2,:) = b(3,:) = b(4,:) = }(a(2,:) +a(3,:))
(¢) Both A and B have the same largest singular value s(1). Therefore
[All2=s(1) =B
The matrix B is rank 1. Therefore s(2) = s(3) = s(4) = 0 and hence
1Bllr = lIsll2 = s(1)
14. (b)
Al = s(1) = |1 Bll
(¢) To construct C, set
D(4,4)=0 and C=Ux*xDxV’

It follows that
[Cll2 = s(1) = [|A]l2

and

IClF = v/s(1)? + 5(2)2 + 5(3)% < [Is]|2 = [|All»
15. (a) The rank of A should be 4. To determine V1 and V2 set
V1=V(,1:4) V2=V(.,5:6)

P is the projection matrix onto N(A). Therefore r must be in N(A).
Since w € R(AT) = N(A)+t, we have

r'w=0

(b) Q is the projection matrix onto N (AT). Therefore y must be in N(AT).
Since z € R(A) = N(AT)*, we have

yTz:O

(d) Both AX and U1(U1)T are projection matrices onto R(A). Since the
projection matrix onto a subspace is unique, it follows that

AX =U1(U)T

16. (b) The disk centered at 50 is disjoint from the other two disks, so it contains
exactly one eigenvalue. The eigenvalue is real so it must lie in the interval
[46, 54]. The matrix C' is similar to B and hence must have the same
eigenvalues. The disks of C' centered at 3 and 7 are disjoint from the
other disks. Therefore each of the two disks contains an eigenvalue.
These eigenvalues are real and consequently must lie in the intervals
[2.7,3.3] and [6.7,7.3]. The matrix CT has the same eigenvalues as C
and B. Using the Gerschgorin disk corresponding to the third row of CT
we see that the dominant eigenvalue must lie in the interval [49.6, 50.4].
Thus without computing the eigenvalues of B we are able to obtain nice
approximations to their actual locations.
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CHAPTER TEST A

. The statement is false in general. For example, if

a=0.11x10° b=032x10"2 ¢=0.33x10"2
and 2-digit decimal arithmetic is used, then
fl(fl(a +b)+¢c)=a=0.11 x 10°

and
fl(a+ fl(b+c)) =0.12 x 10°

. The statement is false in general. For example, if A and B are both 2 x 2

matrices and C' is a 2 X 1 matrix, then the computation of A(BC') requires
8 multiplications and 4 additions, while the computation of (AB)C requires
12 multiplications and 6 additions.

. The statement is false in general. It is possible to have a large relative error

if the coefficient matrix is ill-conditioned. For example, the n x n Hilbert
matrix H is defined by
1
Y1
For n = 12, the matrix H is nonsingular, but it is very ill-conditioned. If you
tried to solve a nonhomogeneous linear system with this coefficient matrix
you would not get an accurate solution.

. The statement is true. For a symmetric matrix the eigenvalue problem is well

conditioned. (See the remarks following Theorem 7.6.1.) If a stable algorithm
is used then the computed eigenvalues should be the exact eigenvalues of a
nearby matrix, i.e., a matrix of the form A + E where ||E|| is small. Since
the problem is well conditioned the eigenvalues of nearby matrices will be
good approximations to the eigenvalues of A.

. The statement is false in general. If the matrix is nonsymmetric then the

eigenvalue problem could be ill-conditioned. If so, then even a stable al-
gorithm will not necessary guarantee accurate eigenvalues. In particular if
A has an eigenvalue-eigenvector decomposition XDX ! and X is very ill-
conditioned, then the eigenvalue problem will be ill-conditioned and it will
not be possible to compute the eigenvalues accurately.

. The statement is false. If A=! and the LU factorization are both available the

it doesn’t matter which you use since it takes the same number of arithmetic
operations to solve LUx = b using forward and back substitution as it does
to multiply A=!b.

. The statement is true. The 1-norm is computed by taking the sum of the

absolute values on the entries in each column of A and then taking the
maximum of the column sums. The infinity norm is computed by taking the
sum of the absolute values on the entries in each row of A and then taking
the maximum of the row sums. If A is symmetric then the row sums and
column sums will be the same and hence the both norms will be equal.
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8. The statement is false in general. For example if
4 0
=5 )
then ||A||2 =4 and [|A||F = 5.

9. The statement is false in general. If A has rank n, then the least squares
problem will have a unique solution. However, if A is ill-conditioned the
computed solution may not be a good approximation to the exact solution
even though it produces a small residual vector.

10. The statement is false in general. For example, if

10 10
A‘[o 108] and B_[o 0]

then A and B are close since || A—B||r = 1078. However their pseudoinverses
are not close. In fact, |AT — BT||p = 10%

CHAPTER TEST B

1. If y = Bx then the computation of a single entry of y requires n multipli-
cations and n — 1 additions. Since y has n entries, the computation of the
matrix-vector product Bx requires n? multiplications and n(n—1) additions.
The computation A(Bx) = Ay requires 2 matrix-vector multiplications. So
the number of scalar multiplications and scalar additions that are necessary
is 2n? and 2n(n — 1).

On the other hand if C' = AB then the computation of the jth column of C'
requires a matrix-vector multiplication ¢; = Ab; and hence the computa-
tion of C' requires n matrix-vector multiplications. Therefore the computa-
tion (AB)x = Cx will require n+ 1 matrix-vector multiplications. The total
number of arithmetic operations will be (n + 1)n? scalar multiplications and
(n+ 1)n(n — 1) scalar additions.

For n > 1 the computation A(Bx) is more efficient.

2. (a)
23 6|3 4 4 8|0 4 4 8|0
4480 — 12 3 6|3 —=101 2|3
13 4|4 1 3 4|4 0 2 2|4
4 4 8|0 4 4 8|0
- 10 2 2|4 =10 2 2|4
01 2|3 0 0 1]1

The solution x = (—3,1,1)7 is obtained using back substitution.
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(b)
0 1 0 4 4 8
P = 0 1|, PA=1]1 3 4
1 0 0 2 3 6
and
1 0 0 4 4 8
LU=|1 10 0 2 2
3 3 1 00 1
c) If we set d = P=(8,2,1)” and solve Ly = d by forward substitution
y
1 0 0|8
(Ld)=1|1 102
S

then the solution is y = (8,0, —3)7. To find the solution to the system
Ax = ¢, we solve Ux =y using back substitution.

4 4 8] 8
W y)y=|0 2 2| o
00 1]-3

The solution is x = (5, 3, —3)7.
3. If Q is a 4 x 4 orthogonal matrix then for any nonzero x in R* we have
|Qx|| = ||x|| and hence

T e
X0 [

To determine the Frobenius norm of ), note that
1QIF = llaull* + llazll* + llas)l* + [laal* = 4

and hence ||Q|r = 2.
4. (a) |H1=1+3+35+1=5
|H=1||, = max(516, 5700, 13620, 8820) = 13620
(b) From part (a) we have cond;(H) = 3 - 13620 = 28375 and hence

) 1 —11
x|l — 98375 - M =2.043 x 107°

Iblx 50

5. The relative error in the solution is bounded by

Ix = x|l

1|1

[[lloo

[Ib]oo

so it is possible that one could lose as many as 7 digits of accuracy.

~107¢

condy, (A)
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6. (a)a:3,6:3(3—1):6,v:(—2,2,—2)T
1 2 2
1 3 3 3
H:I—BVVT: % % %
_2 2 1
3 3 3
(b)

1 0 0

1 1

G=10 5 "

0o -1 _—1

V2 V2

7. If A has QR-factorization A = QR and B = R() then
Q"AQ = Q"QRQ = RQ =B

The matrices A and B are similar and consequently must have the same
eigenvalues. Furthermore, if A is an eigenvalue of B and x is an eigenvector
belonging to A then

QT AQx = Bx = Xx
and hence
AQRx = \Qx

So @x is an eigenvector of A belonging to A.

8. The estimate you get will depend upon your choice of a starting vector. If
we start with up = xg = ey, then

vy = Ae, = ay, u; = vy = (0.25,1)7

vy = Auy = (2.25,4)T, uy = Tvo = (0.5625,1)7

vz = Auy = (2.5625,5.25)7T, u3z = =5=v3 = (0.548810, 1)
vy = Auz = (2.48810,4.95238)T, uy = (0.502404, 1)T

vy = Auy = (2.50240,5.00962)7, us == (0.499520, 1)7

ve = Aus = (2.49952, 4.99808)7

Our computed eigenvalue is the second coordinate of v, 4.99808 (rounded to
6 digits) and the computed eigenvector is us. The actual dominant eigenvalue
of Ais A =5 and x = (0.5,1)7 is an eigenvector belonging to \.

9. The least squares solution with the smallest 2-norm is

x=ATb=VEtU"b =

| G SIS
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10. If we set ay = [lail| = 2, /1 =2, vi = (=1,1,1,1)" and Hy = I — g-viv{

then Hia; = 2e;. If we multiply the augmented matrix (A b) by H; we get

2 9 7
0 1]-1
0 —2|-2

Next we construct a 3 x 3 Householder matrix Hs to zero out the last 2 en-
tries of the vector (1,2, —2)7. If we set iy = 3, B» = 6 and vy = (—2,2, —2)7,
then Hy = I — %ngg. If we apply Hs to the last 3 rows of H1(A |b) we
end up with the matrix

2 9| 7
0 3 1
0 0|-2
0 0| O

The first two rows of this matrix form a triangular system. The solution

x = (2,3)7 to the triangular system is the solution to the least squares
problem.
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