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Preface to the Second Edition

This second edition of “Categories Work™ adds two new chapters on
topics of active interest. One is on symmetric monoidal categories and
braided monoidal categories and the coherence theorems for them—items
of interest in their own right and also in view of their use in string theory in
quantum field theory. The second new chapter describes 2-categories and
the higher-dimensional categories that have recently come into promi-
nence. In addition, the bibliography has been expanded to cover some of
the many other recent advances concerning categories.

The earlier 10 chapters have been lightly revised, clarifying a number
of points, in many cases due to helpful suggestions from George Janelidze.
In Chapter III, I have added a description of the colimits of representable
functors, while Chapter IV now includes a brief description of character-
istic functions of subsets and of the elementary topoi.

Dune Acres, March 27, 1997 Saunders Mac Lane



Preface to the First Edition

Category theory has developed rapidly. This book aims to present those
ideas and methods that can now be effectively used by mathematicians
working in a variety of other fields of mathematical research. This occurs
at several levels. On the first level, categories provide a convenient con-
ceptual language, based on the notions of category, functor, natural
transformation, contravariance, and functor category. These notions are
presented, with appropriate examples, in Chapters I and II. Next comes
the fundamental idea of an adjoint pair of functors. This appears in many
substantially equivalent forms: that of universal construction, that of direct
and inverse limit, and that of pairs of functors with a natural isomorphism
between corresponding sets of arrows. All of these forms, with their inter-
relations, are examined in Chapters III to V. The slogan is “Adjoint func-
tors arise everywhere.”

Alternatively, the fundamental notion of category theory is that of
a monoid—a set with a binary operation of multiplication that is associa-
tive and that has a unit; a category itself can be regarded as a sort of
generalized monoid. Chapters VI and VII explore this notion and its gen-
eralizations. Its close connection to pairs of adjoint functors illuminates
the ideas of universal algebra and culminates in Beck’s theorem char-
acterizing categories of algebras; on the other hand, categories with a
monoidal structure (given by a tensor product) lead inter alia to the study
of more convenient categories of topological spaces.

Since a category consists of arrows, our subject could also be described
as learning how to live without elements, using arrows instead. This line of
thought, present from the start, comes to a focus in Chapter VIII, which
covers the elementary theory of abelian categories and the means to prove
all of the diagram lemmas without ever chasing an element around a
diagram.

Finally, the basic notions of category theory are assembled in the
last two chapters: more exigent properties of limits, especially of filtered
limits; a calculus of “ends”; and the notion of Kan extensions. This is the
deeper form of the basic constructions of adjoints. We end with the obser-
vations that all concepts of category theory are Kan extensions (§7 of
Chapter X).

vil



viii Preface to the First Edition

I have had many opportunities to lecture on the materials of these
chapters: at Chicago; at Boulder, in a series of colloquium lectures to the
American Mathematical Society; at St. Andrews, thanks to the Edinburgh
Mathematical Society; at Zurich, thanks to Beno Eckmann and the For-
schungsinstitut fiir Mathematik; at London, thanks to A. Fréhlich and
Kings and Queens Colleges; at Heidelberg, thanks to H. Seifert and
Albrecht Dold; at Canberra, thanks to Neumann, Neumann, and a Ful-
bright grant; at Bowdoin, thanks to Dan Christie and the National Science
Foundation; at Tulane, thanks to Paul Mostert and the Ford Foundation;
and again at Chicago, thanks ultimately to Robert Maynard Hutchins and
Marshall Harvey Stone.

Many colleagues have helped my studies. I have profited much from a
succession of visitors to Chicago (made possible by effective support from
the Air Force Office of Scientific Research, the Office of Naval Research,
and the National Science Foundation): M. André, J. Bénabou, E. Dubuc,
F.W. Lawvere, and F.E.J. Linton. I have had good counsel from Michael
Barr, John Gray, Myles Tierney, and Fritz Ulmer, and sage advice from
Brian Abrahamson, Ronald Brown, W.H. Cockcroft, and Paul Halmos.
Daniel Feigin and Geoffrey Phillips both managed to bring some of
my lectures into effective written form. My old friend, A.H. Clifford,
and others at Tulane were of great assistance. John MacDonald and
Ross Street gave pertinent advice on several chapters; Spencer Dickson,
S.A. Huq, and Miguel La Plaza gave a critical reading of other material.
Peter May’s trenchant advice vitally improved the emphasis and arrange-
ment, and Max Kelly’s eagle eye caught many soft spots in the final
manuscript. I am grateful to Dorothy Mac Lane and Tere Shuman for
typing, to Dorothy Mac Lane for preparing the index, and to M.K.
Kwong for careful proofreading—but the errors that remain, and the
choice of emphasis and arrangement, are mine.

Dune Acres, March 27, 1971 Saunders Mac Lane
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Introduction

Category theory starts with the observation that many properties of
mathematical systems can be unified and simplified by a presentation
with diagrams of arrows. Each arrow f : X— Y represents a function;
that is, a set X, a set ¥, and a rule x— fx which assigns to each element
xe X an element fx e Y; whenever possible we write fx and not f(x),
omitting unnecessary parentheses. A typical diagram of sets and func-

tions is

X—g—Z;

it is commutative when h is h=g- f, where g~ f is the usual composite
function g» f : X— Z, defined by x+>g(fx). The same diagrams apply
in other mathematical contexts; thus in the “category” of all topological
spaces, the letters X, Y, and Z represent topological spaces while f, g, and &
stand for continuous maps. Again, in the “category” of all groups,
X, Y, and Z stand for groups, f, g, and A for homomorphisms.

Many properties of mathematical constructions may be represented
by universal properties of diagrams. Consider the cartesian product
X x Yoftwo sets, consisting as usual of all ordered pairs {x, y) of elements
xe X and ye Y. The projections (x, y>+x, {x,y>+y of the product
on its “axes” X and Y are functions p: X x Y— X, q: X x Y— Y. Any
function h: W— X X Y from a third set W is uniquely determined by its
composites peh and goh Conversely, given W and two functions
fandg as in the diagram below, there is a unique function » which makes
the diagram commute; namely, Aw = {f w,gw) for each w in W:
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Thus, given X and Y, {p, ¢) is “universal” among pairs of functions from
some set to X and Y, because any other such pair < f, g) factors uniquely
(via h) through the pair {p,q)>. This property describes the cartesian
product X x Y uniquely (up to a bijection); the same diagram, read in
the category of topological spaces or of groups, describes uniquely the
cartesian product of spaces or the direct product of groups.

Adjointness is another expression for these universal properties.
If we write hom(W, X) for the set of all functions f: W—X and
hom({U, V>,{X, Y)) for the set of all pairs of functions f:U—X,
g:V-—Y, the correspondence h+{ph,qh)={f,g> indicated in the
diagram above is a bijection

hom(W, X x Y)=hom((W, W), (X, Y>).

This bijection 1s “natural” in the sense (to be made more precise later)
that it is defined in “the same way” for all sets W and for all pairs of sets
{X,Y)> (and it is likewise “natural” when interpreted for topological
spaces or for groups). This natural bijection involves two constructions
on sets: The construction W W, W which sends each set to the diagonal
pair AW = (W, W), and the construction (X, Y>~ X x Y which sends
each pair of sets to its cartesian product. Given the bijection above,
we say that the construction X x Y is a right adjoint to the construction 4,
and that 4 is left adjoint to the product. Adjoints, as we shall see, occur
throughout mathematics.

The construction “cartesian product” is called a “functor” because it
applies suitably to sets and to the functions between them; two functions
k:X-—X and t: Y—> Y’ have a function k x{ as their cartesian product:

kxt: XxY—->X'xY, <(x,y>—=<kx,ty).

Observe also that the one-point set 1 = {0} serves as an identity under the
operation “cartesian product”, in view of the bijections

IxXhXx&eXxxl N

given by A{0, x> =x, 0{x,0> =x.

The notion of a monoid (a semigroup with identity) plays a central
role in category theory. A monoid M may be described as a set M to-
gether with two functions

u:MxM—-M, n:1l-M 2)
such that the following two diagrams in u and 7 commute:
MxMxM-22 M x M IxM2Z M x M2 M x 1

N A

MxM £ M, M = M = M
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here 1 in 1 x p is the identity function M— M, and 1 in 1 x M is the one-
point set 1= {0}, while A and p are the bijections of (1) above. To say
that these diagrams commute means that the following composites are
equal:

po(Ixp)=po(ux1), pe(npx1)=24, pe(lxn)=p.

These diagrams may be rewritten with elements, writing the function u
(say) as a product p(x,y) = xy for x,y € M and replacing the function #
on the one-point set 1= {0} by its (only) value, an element n(0)=ue M.
The diagrams above then become

{x, Y, )X, yz) <0, x>t {u, x) <x, u) —Kx, 0
] I e |
xy, 2o——(xy)z=x(y2), x = ux, xXu = x.

They are exactly the familiar axioms on a monoid, that the multiplica-
tion be associative and have an element u as left and right identity.
This indicates, conversely, how algebraic identities may be expressed by
commutative diagrams. The same process applies to other identities;
for example, one may describe a group as a monoid M equipped with
a function { : M— M (of course, the function x+—x"!) such that the
following diagram commutes:

M2 MMM M x—{x, xD——{x, x>

| - [

1 M O u = xx7},

here d:M—M x M 1is the diagonal function x+—{x,x) for xeM,
while the unnamed vertical arrow M — 1 = {0} is the evident (and unique)
function from M to the one-point set. As indicated just to the right,
this diagram does state that { assigns to each element x € M an element
x~! which is a right inverse to x.

This definition of a group by arrows p, 5, and { in such commutative
diagrams makes no explicit mention of group elements, so applies
to other circumstances. If the letter M stands for a topological space
(not just a set) and the arrows are continuous maps (not just functions),
then the conditions (3) and (4) define a topological group — for they
specify that M is a topological space with a binary operation p of multi-
plication which is continuous (simultaneously in its arguments) and
which has a continuous right inverse, all satisfying the usual group
axioms. Again, if the letter M stands for a differentiable manifold (of
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class C*®) while 1 is the one-point manifold and the arrows g, 4, and {
are smooth mappings of manifolds, then the diagrams (3) and (4) become
the definition of a Lie group. Thus groups, topological groups, and Lie
groups can all be described as “diagrammatic” groups in the respective
categories of sets, of topological spaces, and of differentiable manifolds.

This definition of a group in a category depended (for the inverse
in (4)) on the diagonal map 6: M—Mx M to the cartesian square
M x M. The definition of a monoid is more general, because the cartesian
product x in M x M may be replaced by any other operation [J] on two
objects which is associative and which has a unit 1 in the sense prescribed
by the isomorphisms (1). We can then speak of a monoid in the system
(C,, 1), where C is the category, [J is such an operation, and 1 is its
unit. Consider, for example, a monoid M in (Ab, ®, Z), where Ab is
the category of abelian groups, x is replaced by the usual tensor product
of abelian groups, and 1 is replaced by Z, the usual additive group of
integers; then (1) is replaced by the familiar isomorphism

ZR®X=2X=X®Z, X an abelian group.

Then a monoid M in (Ab, ®, Z) is, we claim, simply a ring. For the given
morphism u: M®M—M is, by the definition of &®, just a function
M xM—M, call it multiplication, which is bilinear; i.e., distributive
over addition on the left and on the right, while the morphism n: Z—M
of abelian groups is completely determined by picking out one element
of M; namely, the image u of the generator 1 of Z. The commutative
diagrams (3) now assert that the multiplication u in the abelian group M
is associative and has u as left and right unit — in other words, that M
is indeed a ring (with identity = unit).

The (homo)-morphisms of an algebraic system can also be described
by diagrams. If (M, i, > and {M’, i/, ') are two monoids, each described
by diagrams as above, then a morphism of the first to the second may
be defined as a function f: M — M’ such that the following diagrams
commute:

M MxM—“->M 11— M

DT

M, M xM—ESM, 11—

In terms of elements, this asserts that f(xy)=(fx)(fy) and fu=u’,
with u and ' the unit elements; thus a homomorphism is, as usual, just
a function preserving composite and units. If M and M’ are monoids
in (Ab, ®,Z), that is, rings, then a homomorphism f as here defined is
just a morphism of rings (preserving the units).
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Finally, an action of a monoid {M, u,n> on a set S is defined to be a
function v : M x § — S such that the following two diagrams commute:

MxMxS1** ,MxS IxS—L,MxS
e
MxS§S—2>— 8, S.

If we write v(x, s) = x * s to denote the result of the action of the monoid
element x on the element s € S, these diagrams state just that

x-(y-s)={(xy)-s, u-s=s

for all x, ye M and all se S. These are the usual conditions for the action
of a monoid on a set, familiar especially in the case of a group acting
on a set as a group of transformations. If we shift from the category of
sets to the category of topological spaces, we get the usual continuous
action of a topological monoid M on a topological space S. If we take
{M, u, ) to be a monoid in (Ab, ®, Z), then an action of M on an object
S of Ab is just a left module S over the ring M.



1. Categories, Functors, and Natural Transformations

1. Axioms for Categories

First we describe categortes directly by means of axioms, without
using any set theory, and call them “metacategories”. Actually, we begin
with a simpler notion, a (meta)graph.

A metagraph consists of objects a, b, c, ..., arrows f,g, h, ..., and two
operations, as follows:

Domain, which assigns to each arrow f an object a= dom f;
Codomain, which assigns to each arrow f an object b= cod f.

These operations on f are best indicated by displaying f as an actual
arrow starting at its domain (or “source”) and ending at its codomain
(or “target”):
fia—b or abb.
A finite graph may be readily exhibited: Thus - —+— - or - 3-.
A metacategory is a metagraph with two additional operations:
Identity, which assigns to each object a an arrow id,=1,:a—a;
Composition, which assigns to each pair (g, f> of arrows with

domg=cod f an arrow g- f, called their composite, with go f:dom f
—codg. This operation may be pictured by the diagram

b
7\
gy ¢

which exhibits all domains and codomains involved. These operations
in a metacategory are subject to the two following axioms:
Associativity. For given objects and arrows in the configuration

albtchd
one always has the equality

ke(gef)=(keg)ef. (1)
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This axiom asserts that the associative law holds for the operation of
composition whenever it makes sense (i.e., whenever the composites on
either side of (1) are defined). This equation is represented pictorially
by the statement that the following diagram is commutative:

a ke(gofy=(kog)o d

fl m = [k
™~

—_—C .
g9

Unit law. For all arrows f:a—b and g:b—c composition with
the identity arrow 1, gives

lyef=f and ge°l,=g. )

This axiom asserts that the identity arrow 1, of each object b acts as an
identity for the operation of composition, whenever this makes sense.
The Egs. (2) may be represented pictorially by the statement that the
following diagram is commutative:

a—L b

N

b-"—g‘—’C .

We use many such diagrams consisting of vertices (labelled by objects
of a category) and edges (labelled by arrows of the same category).
Such a diagram is commutative when, for each pair of vertices ¢ and ¢/,
any two paths formed from directed edges leading from ¢ to ¢’ yield,
by composition of labels, equal arrows from c to ¢'. A considerable part
of the effectiveness of categorical methods rests on the fact that such
diagrams in each situation vividly represent the actions of the arrows
at hand.

If b is any object of a metacategory C, the corresponding identity
arrow 1, is uniquely determined by the properties (2). For this reason, it
is sometimes convenient to identify the identity arrow 1, with the object b
itself, writing b: b—b. Thus 1,=b =1d,, as may be convenient.

A metacategory is to be any interpretation which satisfies all these
axioms. An example is the metacategory of sets, which has objects all
sets and arrows all functions, with the usual identity functions and the
usual composition of functions. Here “function” means a function with
specified domain and specified codomain. Thus a function f: X —>Y
consists of a set X, its domain, a set Y, its codomain, and a rule v+ fx
(i.e., a suitable set of ordered pairs {x, f x>) which assigns, to each element
x e X, an element fx e Y. These values will be written as fx, f,, or f(x),
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as may be convenient. For example, for any set S, the assignment s+ s
for all se S describes the identity function 15: S—S;if S is a subset of Y,
the assignment s~ s also describes the inclusion or insertion function
S— Y these functions are different unless S = Y. Given functions f: X — Y
and ¢g:Y—Z, the composite function g f:X—Z is defined by
(g f)x=g(fx)for all xe X. Observe that g f will mean first apply f,
then ¢ — in keeping with the practice of writing each function f to the
left of its argument. Note, however, that many authors use the opposite
convention.

To summarize, the metacategory of all sets has as objects, all sets, as
arrows, all functions with the usual composition. The metacategory of all
groups is described similarly: Objects are all groups G, H, K ; arrows are
all those functions f from the set G to the set H for which f: G—H
is a homomorphism of groups. There are many other metacategories:
All topological spaces with continuous functions as arrows: all compact
Hausdorff spaces with the same arrows: all ringed spaces with their
morphisms, ctc. The arrows of any metacategory are often called its
morphisms.

Since the objects of a metacategory correspond exactly to its identity
arrows, it is technically possible to dispense altogether with the objects
and deal only with arrows. The data for an arrows-only metacategory C
consist of arrows, certain ordered pairs {y. ), called the composable
pairs of arrows, and an operation assigning to each composable pair
{y.f> an arrow ¢ f. called their composite. We say “yg f is defined”
for “(g, f> 1s a composable pair™.

With these data one defines an identity of C to be an arrow u such
that f = f whenever the composite / u is defined and v g =g when-
ever u g is defined. The data are then required to satisfy the following
three axioms:

(i) The composite (k ¢} f is defined if and only if the composite
k {g [)is defined. When either is defined. they are equal (and this
triple composite is written as kg f').

(i1) The triple composite k¢ f is defined whenever both composites kg
and ¢ f are defined.

(iii) For each arrow g of C there exist identity arrows u and u’ of C
such that v’ ¢ and ¢ u are defined.

In view of the explicit definition given above for identity arrows, the
last axiom is a quite powerful one; it implies that v’ and u are unique in
(iii), and it gives for each arrow ¢ a codomain v’ and a domain u. These
axioms are equivalent to the preceding ones. More explicitly, given a
metacategory of objects and arrows, its arrows, with the given composi-
tion, satisfy the “arrows-only” axioms: conversely, an arrows-only
metacategory satisfies the objects-and-arrows axioms when the identity
arrows, defined as above, are taken as the objects {Proof as exercise).
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2. Categories

A category (as distinguished from a metacategory) will mean any
interpretation of the category axioms within set theory. Here are the
details. A directed graph (also called a “diagram scheme™) is a set O of
objects, a set A of arrows, and two functions

dom

A=—30. 1

cod

In this graph, the set of composable pairs of arrows is the set
AxoA={g,f>lg9,fe A and domg=codf},

called the “product over O”.
A category is a graph with two additional functions

0254, Ax,A—=-4,

. 2
c—id,, g, /Or—g-/,

called identity and composition also written as gf, such that
dom(ida)=a=cod(ida), dom(gof)=domf, cod(gef)=codg (3)

for all objects ae O and all composable pairs of arrows {g, ) € A x o4,
and such that the associativity and unit axioms (1.1) and (1.2) hold.
In treating a category C, we usually drop the letters A and O, and write

ceC fin C @

for “c is an object of C” and “f is an arrow of C”, respectively. We also
write
hom(,c)={f|fin C, domf=b, codf=c} (5)

for the set of arrows from b to ¢. Categories can be defined directly in
terms of composition acting on these “hom-sets” (§ 8 below); we do not
follow this custom because we put the emphasis not on sets (a rather special
category), but on axioms, arrows, and diagrams of arrows. We will
later observe that our definition of a category amounts to saying that a
category is a monoid for the product x ,, in the general sense described
in the introduction. For the moment, we consider examples.

0 is the empty category (no objects, no arrows);

1 is the category © with one object and one (identity) arrow;

2 is the category ® — 9 with two objects a, b, and just one arrow
a—b not the identity;
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3 is the category with three objects whose non-identity arrows are

arranged as in the triangle /—‘>\' ;
1] is the category with two objects a, b and just two arrows a=3b
not the identity arrows. We call two such arrows parallel arrows.

In each of the cases above there is only one possible definition of
composition.

Discrete Categories. A category is discrete when every arrow is an
identity. Every set X is the set of objects of a discrete category (just add
one identity arrow x— x for each x e X), and every discrete category is
so determined by its set of objects. Thus, discrete categories are sets.

Monoids. A monoid is a category with one object. Each monoid is
thus determined by the set of all its arrows, by the identity arrow, and
by the rule for the composition of arrows. Since any two arrows have a
composite, a monoid may then be described as a set M with a binary
operation M x M — M which is associative and has an identity (= unit).
Thus a monoid is exactly a semigroup with identity element. For any
category C and any object ae C, the set hom(a, a) of all arrows a—a
is a monoid.

Groups. A group is a category with one object in which every arrow
has a (two-sided) inverse under composition.

Matrices. For each commutative ring K, the set Matrg of all rect-
angular matrices with entries in K is a category; the objects are all
positive integers m, n, . . ., and each m x n matrix 4 is regarded as an arrow
A :n—m, with composition the usual matrix product.

Sets. If V is any set of sets, we take Ens; to be the category with
objects all sets X eV, arrows all functions f: X—Y, with the usual
composition of functions. By Ens we mean any one of these categories.

Preorders. By a preorder we mean a category P in which, given
objects p and p’, there is at most one arrow p—p’. In any preorder P,
define a binary relation < on the objects of P with p < p’ if and only if
there is an arrow p—p’ in P. This binary relation is reflexive (because
there is an identity arrow p—s p for each p) and transitive (because arrows
can be composed). Hence a preorder is a set (of objects) equipped with
a reflexive and transitive binary relation. Conversely, any set P with
such a relation determines a preorder, in which the arrows p—p’ are
exactly those ordered pairs {p, p") for which p £ p’. Since the relation is
transitive, there is a unique way of composing these arrows; since it is
reflexive, there are the necessary identity arrows.

Preorders include partial orders (preorders with the added axiom
that p<p’ and p'<p imply p=p’) and linear orders (partial orders
such that, given p and p’, either p<p’ or p’<p).

Ordinal Numbers. We regard each ordinal number 1 as the linearly
ordered set of all the preceding ordinalsn = {0, 1, ..., n — 1}; in particular,
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0 is the empty set, while the first infinite ordinal is w=1{0,1,2,...}.
Each ordinal n is linearly ordered, and hence is a category (a preorder).
For example, the categories 1, 2, and 3 listed above are the preorders be-
longing to the (linearly ordered) ordinal numbers 1, 2, and 3. Another
example 1s the linear order w. As a category, it consists of the arrows

0-5152-53—-..,

all their composites, and the identity arrows for each object.

A is the category with objects all finite ordinals and arrows f:m—n
all order-preserving functions (i <j in m implies f; < £ in n). This category
4, sometimes called the simplicial category, plays a central role
(Chapter VII).

Finord = Set,, isthe category with objectsallfinite ordinalsnand arrows
f:m—n all functions from m to n. This is essentially the category of all
finite sets, using just one finite set n for each finite cardinal number n.

Large Categories. In addition to the metacategory of all sets — which
is not a set — we want an actual category Set, the category of all small
sets. We shall assume that there is a big enough set U, the “universe”,
then describe a set x as “small” if it is a member of the universe, and take
Set to be the category whose set U of objects is the set of all small sets, with
arrows all functions from one small set to another. With this device
(details in §7 below) we construct other familiar large categories, as
follows:

Set: Objects, all small sets; arrows, all functions between them.

Set,: Pointed sets: Objects, small sets each with a selected base point;
arrows, base-point-preserving functions.

Ens: Category of all sets and functions within a (variable) set V.

Cat: Objects, all small categories; arrows, all functors (§ 3).

Mon: Objects, all small monoids; arrows, all morphisms of monoids.

Grp: Objects, all small groups; arrows, all morphisms of groups.

Ab: Objects, all small (additive) abelian groups, with morphisms
of such.

Rng: All small rings, with the ring morphisms (preserving units)
between them.

CRng: All small commutative rings and their morphisms.

R-Mod: All small left modules over the ring R, with linear maps.

Mod-R: Small right R-modules.

K-Mod: Small modules over the commutative ring K.

Top: Small topological spaces and continuous maps.

Toph: Topological spaces, with arrows homotopy classes of maps.

Top, : Spaces with selected base point, base point-preserving maps.

Particular categories (like these) will always appear in bold-face type.
Script capitals are used by many authors to denote categories.
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3. Functors

A functor is a morphism of categories. In detail, for categories C and B
afunctor T: C — Bwith domain C and codomain B consists of two suitably
related functions: The object function T, which assigns to each object
¢ of C an object Tc¢ of B and the arrow function (also written T) which
assigns to each arrow f:c—c¢' of C an arrow Tf: Tc— T¢’ of B, in such
a way that

T(l)=1g, Tl(g°f)=Tg"Tf, (1)

the latter whenever the composite g f is defined in C. A functor, like a
category, can be described in the “arrows-only” fashion: It is a function T
from arrows f of C to arrows Tf of B, carrying each identity of C to
an identity of B and each composable pair <{g, /> in C to a composable
pair {Tg, Tf> in B, with Tg- Tf=T(g~f).

A simple example is the power set functor 2 :Set— Set. Its object
function assigns to each set X the usual power set 2 X, with elements all
subsets SCX; its arrow function assigns to each f:X—Y that map
P f:PX—2PY which sends each SCX to its image fS C Y. Since both
Ply)=1,x and Plg fY)=Pg Pf, this clearly defines a functor
Z :Set—Set.

Functors were first explicitly recognized in algebraic topology,
where they arise naturally when geometric properties are described by
means of algebraic invariants. For example, singular homology in a
given dimension n (n a natural number) assigns to each topological space
X an abelian group H,(X), the n-th homology group of X, and also to
each continuous map f: X — Y of spaces a corresponding homomorphism
H,(f): H(X)—H,(Y) of groups, and this in such a way that H, becomes
a functor Top— Ab. For example, if X = Y = §' is the circle, H,($*)=Z,
so the group homomorphism H,(f): Z— Z is determined by an integer d
(the image of 1); this integer is the usual “degree” of the continuous
map f: S'—S!. In this case and in general, homotopic maps f,g: X—Y
yield the same homomorphism H,(X)— H,(Y), so H, can actually be
regarded as a functor Toph— Grp, defined on the homotopy category.
The Eilenberg-Steenrod axioms for homology start with the axioms that
H,, for each natural number n, is a functor on Toph, and continue with
certain additional properties of these functors. The more recently
developed extraordinary homology and cohomology theories are also
functors on Toph. The homotopy groups n,(X) of a space X can also
be regarded as functors; since they depend on the choice of a base point
in X, they are functors Top,— Grp. The leading idea in the use of functors
in topology is that H, or n, gives an algebraic picture or image not just
of the topological spaces, but also of all the continuous maps between
them.
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Functors arise naturally in algebra. To any commutative ring K
the set of all non-singular nx n matrices with entries in K is the usual
general linear group GL,(K); moreover, each homomorphism f: K—K'
of rings produces in the evident way a homomorphism GL,, f: GL,(K)
—GL,(K') of groups. These data define for each natural number n a
functor GL,: CRng— Grp. For any group G the set of all products
of commutators xyx™ !y~ !(x, y e G) is a normal subgroup [G, G] of G,
called the commutator subgroup. Since any homomorphism G—H
of groups carries commutators to commutators, the assignment
G+ [G, G] defines an evident functor Grp— Grp, while G—G/[G, G]
defines a functor Grp— Ab, the factor-commutator functor. Observe,
however, that the center Z(G) of G (all ae G with ax = xa for all x) does
not naturally define a functor Grp— Grp, because a homomorphism
G— H may carry an element in the center of G to one not in the center of H.

A functor which simply “forgets” some or all of the structure of an
algebraic object is commonly called a forgetful functor (or, an underlying
functor). Thus the forgetful functor U : Grp— Set assigns to each group G
the set UG of its elements (“forgetting” the multiplication and hence the
group structure), and assigns to each morphism f: G— G’ of groups the
same function f, regarded just as a function between sets. The forgetful
functor U : Rng— Ab assigns to each ring R the additive abelian group
of R and to each morphism f: R— R’ of rings the same function, regarded
just as a morphism of addition,

Functors may be composed. Explicitly, given functors

CLB3 4
between categories A, B, and C, the composite functions
c=>S(Te)  f=S(TS)

on objects ¢ and arrows f of C define a functor S- T: C— 4, called the
composite (in that order) of S with T. This composition is associative.
For each category B there is an identity functor I : B— B, which acts as
an identity for this composition. Thus we may consider the metacategory
of all categories: its objects are all categories, its arrows are all functors
with the composition above. Similarly, we may form the category
Cat of all small categories — but not the category of all categories.

An isomorphism T:C— B of categories is a functor T from C to B
which is a bijection, both on objects and on arrows. Alternatively, but
equivalently, a functor T: C— B is an isomorphism if and only if there
is a functor S:B—C for which both composites ST and TS are
identity functors; then S is the two-sided inverse S=T '

Certain properties much weaker than isomorphism will be useful.

A functor T: C—B is full when to every pair ¢, ¢’ of objects of C
and to every arrow g: Tc— T¢’ of B, there is an arrow f:c—c’ of C
with g = Tf. Clearly the composite of two full functors is a full functor.
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A functor T : C — B is faithful (or an embedding) when to every pair
¢, ¢’ of objects of C and to every pair f}, f,:c—c of parallel arrows of
Ctheequality Tf, = Tf, : Tc — T¢ implies f| = f,. Again, composites of
faitbful functors are faithful. For example, the forgetful functor Grp— Set
is faithful but not full and not a bijection on objects.

These two properties may be visualized in terms of hom-sets (see (2.5)).
Given a pair of objects ¢, ¢’ € C, the arrow function of T:C— B assigns
to each f:c—¢ an arrow Tf:Tc—Tc¢ and so defines a function

T. . :hom(c, ¢)—hom(Tc, T¢), f—Tf.

Then T is full when every such function is surjective, and faithful when
every such function is injective. For a functor which is both full and
faithful (i.e., “fully faithful”), every such function is a bijection, but this
need not mean that the functor itself is an isomorphism of categories, for
there may be objects of B not in the image of T.

A subcategory S of a category C is a collection of some of the objects
and some of the arrows of C, which includes with each arrow f both the
object dom f and the object cod f, with each object s its identity arrow
1, and with each pair of composable arrows s— s'—s" their composite.
These conditions ensure that these collections of objects and
arrows themselves constitute a category S. Moreover, the injection
(inclusion) map S— C which sends each object and each arrow of S to
itself (in C) is a functor, the inclusion functor. This inclusion functor is
automatically faithful. We say that S is a full subcategory of C when the
inclusion functor S—C is full. A full subcategory, given C, is thus
determined by giving just the set of its objects, since the arrows between
any two of these objects s, s are all morphisms s— s’ in C. For example,
the category Set, of all finite sets is a full subcategory of the category Set.

Exercises

1. Show how each of the following constructions can be regarded as a functor:
The field of quotients of an integral domain; the Lie algebra of a Lie group.

2. Show that functors 1—C, 2— C, and 3— C correspond respectively to objects,
arrows, and composable pairs of arrows in C.

3. Interpret “functor” in the following special types of categories: (a) A functor
between two preorders is a function T which is monotonic (ie., p < p’ implies
Tp < Tp').(b) A functor between two groups (one-object categories)is a morphism
of groups. (c) If G is a group, a functor G—Set is a permutation representation
of G, while G— Matry is a matrix representation of G.

4. Prove that there is no functor Grp— Ab sending each group G to its center
(consider S, — S3 — S, the symmetric groups).

5. Find two different functors T: Grp— Grp with object function T(G)=G the
identity for every group G.
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4. Natural Transformations

Given two functors S,T:C—B, a natural transformation 7:S5--T
is a function which assigns to each object c of C an arrowr,=1¢:Sc—Tc
of B in such a way that every arrow f:c—c' in C yilelds a diagram

¢ Sc—X—Tc
J’f SIJ’ J’ Tf (1
c, Sce—¥ T¢

which is commutative. When this holds, we also say that t.:Sc—Tc
is natural in c. If we think of the functor S as giving a picture in B of
(all the objects and arrows of) C, then a natural transformation 7 is a
set of arrows mapping (or, translating) the picture S to the picture T,
with all squares (and parallelograms!) like that above commutative:

a\ Saif——ti————»’raw‘

h b Sh Shb—=2 — | —Tbh
c Sc———— > T¢ ’
TC
We call ta,th,tc,..., the components of the natural transformation «.

A natural transformation is often called a morphism of functors;
a natural transformation t with every component tc invertible in B
is called a natural equivalence or better a natural isomorphism;in symbols,
1:S=T. In this case, the inverses (t¢)”! in B are the components of a
natural isomorphism 77! T—= .

The determinant is a natural transformation. To be explicit, let
detgM be the determinant of the nxn matrix M with entries in the
commutative ring K, while K* denotes the group of units (invertible
elements) of K. Thus M is non-singular when det, M is a unit, and dety
is a morphism GL, K— K* of groups (an arrow in Grp). Because the
determinant is defined by the same formula for all rings K, each morphism
f:K—K' of commutative rings leads to a commutative diagram

GL, K5, K*
GL. fJ’ J’f* (2)
GL,K'—SE5, K%,

This states that the transformation det:GL,—( )* is natural between
two functors CRng— Grp.

For each group G the projection p;: G—G/[G, G] to the factor-
commutator group defines a transformation p from the identity functor
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on Grp to the factor-commutator functor Grp— Ab— Grp. Moreover,
p is natural, because each group homomorphism f: G— H defines the
evident homomorphism f* for which the following diagram commutes:

G—2¢ . G/[G, G]
f[ If’ (3)
H—P5 ,H/[H, H].

The double character group yields a suggestive example in the
category Ab of all abelian groups G. Let D(G) denote the character
group of G, so that DG = hom(G, R/Z) is the set of all homomorphisms
t: G—R/Z with the familiar group structure, where R/Z is the additive
group of real numbers modulo 1. Each arrow f: G'— G in Ab determines
an arrow D f:DG-— DG (opposite direction!) in Ab, with
(Dfit=tf:G—-R/L for each t; for composable arrows,
D(ge f)=D f- Dg. Because of this reversal, D is not a functor (it is a
“contravariant” functor on Ab to Ab, see §11.2); however, the twice
iterated character group G+ D(D G) and the identity I(G)= G are both
functors Ab— Ab. For each group G there is a homomorphism

16: G—D(D G)

obtained in a familiar way: To each geG assign the function
169 : DG—R/Z given for any character t e DG by t—tg; thus (tqg)t =t(g).
One verifies at once that 7 is a natural transformation t:I--D D; this
statement is just a precise expression for the elementary observation that
the definition of  depends on no artificial choices of bases, generators, or
the like. In case G is finite, 74 is an isomorphism; thus, if we restrict
all functors to the category Ab, of finite abelian groups, 7 is a natural
isomorphism.

On the other hand, for each finite abelian group G there is an iso-
morphism g4 : G= DG of G to its character group, but this isomorphism
depends on a representation of G as a direct product of cyclic groups
and so cannot be natural. More explicitly, we can make D into a co-
variant functor D':Ab,;—Ab,; on the category Ab,; with objects
all finite abelian groups and arrows all isomorphisms f between such
groups, setting D’G=DG and D' f=Df"'. Then o5:G—-DG is a
map o:I— D' of functors Ab, ;—Ab  ;, but it is not natural in the sense
of our definition.

A parallel example is the familiar natural isomorphism of a finite-
dimensional vector space to its double dual

Another example of naturality arises when we compare the category
Finord of all finite ordinal numbers n with the category Set, of all finite
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sets (in some universe U). Every ordinal n=1{0,1,...,n—1} is a finite
set, so the inclusion § is a functor S: Finord— Set,. On the other hand,
each finite set X determines an ordinal number n = # X, the number of
elements in X ; we may choose for each X a bijection 6,: X— # X. For
any function f : X — Y between finite sets we may then define a corre-
sponding function #f : #X — # Y between ordinals by #f = 0y f 9}1;
this ensures that the diagram

X—% 4 x

e

Y—L»#Y

will commute, and makes # a functor # :Set ,— Finord. If X is itself
an ordinal number, we may take fy to be the identity. This ensures that
the composite functor # o § is the identity functor I of Finord. On the
other hand, the composite S 4 is not the identity functor I : Set ,— Set ,
because it sends each finite set X to a special finite set — the ordinal number
n with the same number of elements as X. However, the square diagram
above does show that §: - S # is a natural isomorphism. All told we
have I=So 4, I'=4-S.

More generally, an equivalence between categories C and D is defined
to be a pair of functors S: C— D, T: D—C together with natural iso-
morphisms Io=T- S, I = So T. This example shows that this notion
(to be examined in §IV.4) allows us to compare categories which are
“alike” but of very different “sizes”.

We shall use many other examples of naturality. As Eilenberg-
Mac Lane first observed, “category’ has been defined in order to be able
to define “functor” and “functor” has been defined in order to be able to
define “natural transformation”.

Exercises

1. Let S be a fixed set, and X* the set of all functions h: S— X. Show that X +> X
is the object function of a functor Set—Set, and that evaluation ey : X5 x §- X,
defined by e(h, s) = h(s), the value of the function h at se S, is a natural trans-
formation.

2. If H is a fixed group, show that G+~ H x G defines a functor H x - : Grp— Grp,
and that each morphism f: H— K of groups defines a natural transformation
Hx —5Kx —.

3. If B and C are groups (regarded as categories with one object each) and
S, T:B—C are functors (homomorphisms of groups), show that there is a
natural transformation S— T if and only if S and T are conjugate; i.e., if and
only if there is an element he C with Tg=h(Sg)h~! for all ge B.
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4. For functors S, T: C— P where C is a category and P a preorder, show that
there is a natural transformation S—» T (which is then unique) if and only if
Sc £ Tc for every object ce C.

5. Show that every natural transformation t : S—» T defines a function (also called 1)
which sends each arrow f:c—c’ of C to an arrow 7f:Sc—T¢' of B in such a
way that Tgetf =1(gf)=1g-° S/ for each composable pair {g, 1. Conversely.
show that every such function t comes from a unique natural transformation
with 7.=17(1). (This gives an “arrows only” description of a natural transfor-
mation.)

6. Let F be a field. Show that the category of all finite-dimensional vector spaces
over F (with morphisms all linear transformations) is equivalent to the category
Matr,. described in §2.

5. Monics, Epis, and Zeros

In categorical treatments many properties ordinarily formulated by
means of elements (elements of a set or ofa group) are instead formulated
in terms of arrows. For example, instead of saying that a set X has just
one element, one can say that for any other set Y there is exactly one
function Y— X. We now formulate a few more instances of such methods
of “doing without elements”.

An arrow e:a—b is invertible in C if there is an arrow ¢ :b—a
in C with €e=1, and ee'=1,. If such an ¢ exists, it is unique, and is
written as ¢’ =e~'. By the usual proof, (e; e,)"! =e; 'ey?, provided the
composite ¢, ¢, is defined and both e, and e, are invertible. Two objects
a and b are isomorphic in the category C if there is an invertible arrow
(an isomorphism) e . a—b; we write a=b. The relation of isomorphism
of objects is manifestly reflexive, symmetric, and transitive.

An arrow m:a—b is monic in C when for any two parallel arrows
f1, f2:d—a the equality mo f; =m- f, implies f, = f,; in other words,
m is monic if it can always be cancelled on the left (is left cancellable).
In Set and in Grp the monic arrows are precisely the injections (mono-
morphisms) in the usual sense; i.e., the functions which are one-one into.

An arrow h:a—b is epi in C when for any two arrows g,,g,:b—c
the equality g, - h = g, - himplies g, = g,; in other words, h1s epi when itis
right cancellable. In Set the epi arrows are precisely the surjections
(epimorphisms) in the usual sense; i.e., the functions onto.

For an arrow h:a—b, a right inverse is an arrow r:b—a with
hr=1,. A right inverse (which is usually not unique) 1s also called a
section of h. If h has a right inverse, it is evidently epi; the converse holds
in Set, but fails in Grp. Similarly, a left inverse for h is called a retraction
for h, and any arrow with a left inverse is necessarily monic. If gh=1,,
then g is a split epi, h a split monic, and the composite f = hg is defined
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and is an idempotent. Generally, an arrow f: b—b is called idempotent
when 2= f; an idempotent is said to split when there exist arrows ¢
and h such that f=hg and gh=1.

An object 1 is terminal in C if to each object a in C there is exactly
one arrow a—t. If t is terminal, the only arrow t—t is the identity, and
any two terminal objects of C are isomorphic in C. An object s is initial
in C if to each object a there is exactly one arrow s—a. For example,
in the category Set, the empty set is an initial object and any one-point
set is a terminal object. In Grp, the group with one element is both
initial and terminal.

A null object z in C is an object which is both initial and terminal.
If C has a null object, that object is unique up to isomorphism, while for
any two objects a and b of C there is a unique arrow a—z—b (the
composite through z), called the zero arrow from a to b. Any composite
with a zero arrow is itself a zero arrow. For example, the categories Ab
and R-Mod have null objects (namely 0!), as does Set, (namely the one-
point set).

A groupoid is a category in which every arrow is invertible. A typical
groupoid is the fundamental groupoid m(X) of a topological space X.
An object of 7(X) is a point x of X, and an arrow x—x' of n(X) is a
homotopy class of paths f from x to x'. (Such a path fis a continuous
function I— X, I the closed interval I =[0, 1], with f(0)=x, f(1)= X,
while two paths f, g with the same end-points x and x' are homotopic
when there is a continuous function F:IxI—X with F(t,0)= f(1),
F(t, )=g(t),and F(0, s)=x, F(1, s)= x' for all s and ¢ in I.) The composite
of paths g : x'— x” and f: x—x' is the path h which is “f followed by g”,
given explicitly by

h=f20,  0st=172,

(1)
=g2t—1), 12511,

Composition applies also to homotopy classes, and makes n(X) a
category and a groupoid (the inverse of any path is the same path traced
in the opposite direction).

Since each arrow in a groupoid G is invertible, each object x in
G determines a group homg(x, x), consisting of all g: x— x. If there is
anarrow f: x— X', the groups homg(x, x)and homg/(x', x) are isomorphic,
under g+ fgf~! (ie, under conjugation). A groupoid is said to be
connected if there is an arrow joining any two of its objects. One may
readily show that a connected groupoid is determined up to isomorphism
by a group (one of the groups homg(x, x)) and by a set (the set of all
objects). In this way, the fundamental groupoid n(X) of a path-connected
space X is determined by the set of points in the space and a group
hom,x,(x, x) - the fundamental group of X.
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Exercises

1. Find a category with an arrow which is both epi and monic, but not invertible
(e.g., dense subset of a topological space).

. Prove that the composite of monics is monic, and likewise for epis.

. If a composite g < f is monic, so is f. Is this true of g?

. Show that the inclusion Z— Q is epi in the category Rng.

. In Grp prove that every epi is surjective (Hint. If ¢ : G— H has image M not H,
use the factor group H/M if M has index 2. Otherwise, let Perm H be the group
of all permutations of the set H, choose three different cosets M, Mu and Mv
of M, define 6 € Perm H by o(xu) = xv, 6(xv)=xu for xe M, and ¢ otherwise
the identity. Let y : H— Perm H send each h to left multiplication y, by h, while
wy=0""yp,0. Then po=y'p, but p+y').

6. In Set, show that all idempotents split.

7. Anarrow f :a—b in a category C is regular when there exists an arrow g: b—a
such that fgf = f. Show that f is regular if it has either a left or a right inverse,
and prove that every arrow in Set with a # (¥ is regular.

8. Consider the category with objects (X, e, t>, where X isa set,ee X,and t: X— X,
and with arrows f:(X,e, t>— (X', €, t'> the functions f on X to X' with
fe=¢ and ft=1r'f. Prove that this category has an initial object in which X
is the set of natural numbers, ¢ =0, and ¢ is the successor function.

9. If the functor T:C— B is faithful and Tf is monic, prove [ monic.

[C N N )

6. Foundations

One of the main objectives of category theory is to discuss properties
of totalities of Mathematical objects such as the “set” of all groups or
the “set” of all homomorphisms between any two groups. Now it is the
custom to regard a group as a set with certain added structure, so we
are here proposing to consider a set of all sets with some given structure.
This amounts to applying a comprehension principle: Given a property
@(x) of sets x, form the set {x|¢(x)} of all sets x with this property.
However such a principle cannot be adopted in this generality, since it
would lead to some of the famous paradoxical sets, such as the set of all
sets not members of themselves.

For this reason, the standard practice in naive set theory, with the
usual membershiprelatione,is torestrict the application of the comprehen-
sion principle. One allows the formation from given sets u, v of the set
{u, v} (the set with exactly u and v as elements), of the ordered pair
{u, v), of an infinite set (the set w={0, 1,2, ...} of all finite ordinals),
and of

The Cartesian Product uxv={{x,yy|xeu and yev},
The Power Set Pu={v{vCu},
The Union (of a set x of sets) ux={y|yez for some zex}.
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Finally, given a property ¢(x) (technically, a property expressed in
terms of x, the membership relation, and the usual logical connectives,
including “for all sets t” and “there exists a set t”) and given a set u one
allows

Comprehension for elements of u: {x|xeu and ¢@(x)}.

In words: One allows the set of all those x with a given property ¢
which are members of an already given set u.

To this practice, we add one more assumption: The existence of a
universe. A universe is defined to be a set U with the following (somewhat
redundant) properties:

(1) xeueU implies xe U,

(i) ue U and ve U imply {u, v}, {u,v), and uxveU.

(iii) xe U implies xe U and uxeU,

(iv) we U (here w={0,1,2,...} is the set of all finite ordinals),

(v) if f: a—bis a surjective function withae Uand bC U, thenb e U.

These closure properties for U ensure that any of the standard opera-
tions of set theory applied to elements of U will always produce elements
of U; in particular, w e U provides that U also contains all the usual
sets of real numbers and related infinite sets. We can then regard
“ordinary” Mathematics as carried out exclusively within U (ie., on
elements of U) while U itself and sets formed from U are to be used for
the construction of the desired large categories.

Now hold the universe U fixed, and call a set u e U a small set. Thus
the universe U is the set of all small sets. Similarly, call a function f: u—v
small when u and v are small sets. This implies that f itself can be regarded
as a small set — say, as the ordered triple {u, G,, v}, with G,Cuxv
the usual set of all {x, y> with x e u, y = fx. The limited comprehension
principle thus allows the construction of the set A of all those sets which
are small functions, since these functions are all elements of U. We can
now define the category Set of all small sets to be that category in which U
(the set of all small sets) is the set of objects and A (the set of all small
functions) is the set of arrows. Henceforth Set will always denote this
category.

A small group is similarly a small set with a group structure; i.e., is
an ordered pair {u, m)», where u is a small set and m: u x u—u a function
(binary operation on u) satisfying the usual group axioms. Since any
small group is an element of U, we may form the set of all small groups
and the set of all homomorphisms between two small groups. They
constitute the category Grp of all small groups.

The same process will construct the category of all small Mathematical
objects of other types. For example, a category is small if the set of its
arrows and the set of its objects are both small sets; we will soon form the
category Cat of all small categories. Observe, however, that Set is not
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a small category, because the set U of its objects is not a small set (other-
wise U e U, and this is contrary to the axiom of regularity, which asserts
that there are no infinite chains ... x,ex,_; € X,_, € -+ € X,). Similarly,
Grp is not small.

This description of the foundations may be put in axiomatic form.
We are assuming the standard Zermelo-Fraenkel axioms for set theory,
plus the existence of a set U which is a universe. The Zermelo-Fraenkel
axioms (on a membership relation €) are: Extensionality (sets with the
same elements are equal), existence of the null set, existence of the sets
{u, v}, (u, v, Pu, and ux for all sets u, v, and x, the axiom of infinity,
the axiom of choice, the axiom of regularity, and the replacement axiom:

Replacement. Let a be a set and ¢(x, y) a property which is functional
for x in g, in the sense that ¢(x, y) and ¢(x, ') for xea imply y=y,
and that for each x ea there exists a y with ¢(x, y). Then there exists a
set consisting of all those y such that ¢(x, y) holds for xea.

Briefly speaking, the replacement axiom states that the image of a set
a under a “function” ¢ is a set. It can be shown that the replacement
axiom implies the comprehension axiom, as stated above. Moreover,
our conditions defining a universe U imply that all the sets xe U (all
the small sets) do satisfy the Zermelo-Fraenkel axioms — for example,
condition (v} in the definition of a universe corresponds to replacement.
We shall see that our assumption of one universe suffices for the usual
purposes of category theory.

Some authors assume instead sets and “classes”, using, for these
concepts, the Godel-Bernays axioms. To explain this, define a class C
to be any subset CCU of the universe. Since x eue U implies xe U,
every element of U is also a subset of U, therefore every small set is also a
class; but conversely, some classes (such as U itself) are not small sets.
These latter are called the proper classes. Together, the small sets and the
classes satisfy the standard Godel-Bernays axioms (see Godel [1940]).

A large category is one in which both the set of objects and the set of
arrows are classes (proper or otherwise). Using only small sets and all
classes one can describe many of the needed categories — in particular,
our categories Set, Grp, etc. are proper classes, hence are large categories
in this sense. Initially, category theory was restricted to the study of small
and large categories (and based on the Godel-Bernays axioms). However,
we will have many occasions to form categories which are not classes.
One such is the category Cls of all classes: Its objects are all classes;
its arrows all functions f': C— C’ between classes. Then the set of objects
of Cls is the set (U) of all subsets of U; itis not a class; in fact, its cardinal
number is larger than the cardinal of the universe U. Another useful
category is Cat’, the category of all large categories. It is not a class.

In the sequel we shall drop the notation U for the chosen universe
and speak simply of small sets, of classes, and of sets, observing that the
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“sets” include the small sets and the classes, as well as many other sets
such as 2(U), 22(U), {U}, and the like. Note, in particular, that {U}
is a set which has only one element (namely, the universe U). It is thus
intuitively very “small”, but it is not a small set in our sense; {U} e U
would imply U e U, a contradiction to the axiom of regularity. Thus
“small set” for us means a member of the universe, and not a set with a
small cardinal number.

Our foundation by means of one universe does provide, within set
theory, an accurate way of discussing the category of all small sets and all
small groups, but it does not provide sets to represent certain meta-
categories, such as the metacategory of all sets or that of all groups.
Grothendieck uses an alternative device. He assumes that for every set X
there is a universe U with X e U. This stronger assumption evidently
provides for each universe U a category of all those groups which are
members of U. However, this does not provide any category of all
groups. For this reason, there has been considerable discussion of a
foundation for category theory (and for all of Mathematics) not based
on set theory. This is why we initially gave the definition of a category C
in a set-free form, simply by regarding the axioms as first-order axioms
on undefined terms “object of C”, “arrow of C”, “composite”, “identity”,
“domain”, and “codomain”. In this style, axioms for the elementary
(i.e., first-order) theory of the category of all sets, as an alternative to the
usual axioms on membership can be given—as an ‘“‘elementary topos”
(cf. Mac Lane-Moerdijk [1992]).

Exercises

1. Given a universe U and a function f : I—b with domain I € U and with every
value f; an element of U, for ie I, prove that the usual cartesian product IT, f; is
an element of U.

2. (a) Given a universe U and a function f : I—b with domain [ € U, show that
the usual union v f; is a set of U.

(b) Show that this one closure property of U may replace condition (v} and the
condition x e U implies ux e U in the definition of a universe.

7. Large Categories

In many relevant examples, a category consists of all (small) Mathe-
matical objects with a given structure, with arrows all the functions which
preserve that structure. We list useful such examples with their monics.
Ab, the category of all small abelian groups, has objects all small
(additive) abelian groups A4,B,... and arrows all homomorphisms
S A— B of abelian groups, with the usual composition. In this category,
an arrow is monic if and only if it is a monomorphism {one-one into).
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Also, an epimorphism (a2 homomorphism onto) is clearly epi. Conversely,
a homomorphism f:A—B which is epi as an arrow must be onto
as a function. For, otherwise, the quotient group B/fA is nonzero, so
there are then two different morphisms B— B/f A, the projection p
and the zero morphism O, which have p f =0 =0/, a contradiction to the
assumption that fis epi. In Ab, the zero group is both initial and terminal.

A small ring R is a small set with binary operations of addition and
multiplication which satisfy the usual axioms for a ring — including the
existence of a two-sided identity (= unit) 1 for multiplication. Rng
will denote the category of all small rings; the objects are the small
rings R, the arrows f:R—S the (homo)morphisms of rings — where
a morphism of rings is assumed to carry the unit of R to that of S. In
this category the zero ring is terminal, and the ring Z of integers is
initial since Z— R is the unique arrow carrying 1 € Z to the unit of the
ring R. The monic arrows are precisely the monomorphisms of rings.
Every epimorphism of rings is epi as an arrow, but the inclusion Z—Q
of Z in the field Q of rational numbers is epi, but not an epimorphism.

If R is any small ring, the category R-Mod has objects all small
left R-modules A, B, ... and arrows f:A—B all morphisms of R-
modules (R-linear maps). In this category monics are monomorphisms,
epis are epimorphisms, and the zero module is initial and terminal.
If Fis a field, the category F-Mod, also written Vctp, is that of all vector
spaces (linear spaces) over F. By Mod-R we denote the category of all
small right R-modules. If R and S are two rings, R-Mod-S is the category
of all small R-S-bimodules (left R-, right S-modules A with r(as)=(ra)s
for all re R, ae A4, and s e S). One may similarly construct categories of
small algebraic objects of any given type.

The category Top of topological spaces has as objects all small
topological spaces X,Y,... and as morphisms all continuous maps
f:X—Y. Again, the monics are the injections and the epis the surjections.
The one-point space is terminal, and the empty space is initial. Similarly,
one may form the category of all small Hausdorff spaces or of all small
compact Hausdorff spaces.

The category Toph has as objects all small topological spaces X, Y, ...,
while a morphism «: X— Y is a homotopy class of continuous maps
f:X—Y;in other words, two homotopic maps f 2 g: X — Y determine
the same morphism from X to Y. The composition of morphisms is the
usual composition of homotopy classes of maps. In this category, the
homotopy class of an injection need not be a monic, as one may see, for
example, for the injection of a circle into a disc (as the bounding circle
of that disc). This category Toph, which arises naturally in homotopy
theory, shows that an arrow in a category need not be the same thing
as a function. There are a number of other categories which are useful
in homotopy theory: For example, the categories of CW-complexes,
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of simplicial sets, of compactly generated spaces (see § VIL8), and of
Kan complexes.

Set, will denote the category of small pointed sets (often called “based”
sets). By a pointed set is meant a nonvoid set P with a selected element,
written * or *p and called the “base point” of P. A map f:P—Q of
pointed sets is a function on the set P to the set Q which carries base
point to base point; i.e., which satisfies f(xp) = *,. The pointed sets with
these maps as morphisms constitute the category Set,. In this category
the set {#} with just one point (the base point) is both an initial and a
terminal object. A morphism f is monic in Set,, if and only if it has a left
inverse, epi if and only if it has a right inverse, and invertible if and only
if it is both monic and epic.

Similarly, Top, denotes the category of small pointed topological
spaces: the objects are spaces X with a designated base point *; the mor-
phisms are continuous maps f: X— Y which send the base point of X
to that of Y. Again, Toph, is the category with objects pointed spaces and
morphisms homotopy classes of continuous base-point-preserving maps
(where also the homotopies are to preserve base points). Both categories
arise in homotopy theory, where the choice of a base point is always
needed in defining the fundamental group or higher homotopy groups
of a space, cf. §5.

Binary relations can be regarded as the arrows of a category Rel
The objects are all small sets X, Y, ..., and the arrows R: X— Y are the
binary relations on X to Y; that is, the subsets RCXxY. If S: Y—>Z
is another such relation, the composite relation S R: X—Z is defined
to be the usual relative product

SoR={{x,z)|for some ye?, {(x,y>eR and <(y,z>eS}.

The identity arrow X — X is the identity relation on X, consisting of all
{x,x) for x € X. The axioms for a category evidently hold. This category
Rel contains Set as a subcategory on the same objects, where each func-
tion f: X — Y is interpreted as the relation consisting of all pairs {x, fx)
for xe X. But Rel has added structure: For each R: X— Y there is a
converse relation R : Y— X consisting of all pairs (y, x> with {x, y> e R.

A concrete category is a pair (C, U) where C is a category and U
a faithful functor U: C—Set. Since U is faithful, we may identify each
arrow f of C with the function U f. In these terms, a concrete category
may be described as a category C in which each object ¢ comes equipped
with an “underlying” set Uc, each arrow f:b—c is an actual function
Ub— U ¢, and composition of arrows is composition of functions. Many
of the explicit large categories described above are concrete categories
in this sense, each relative to its evident forgetful functor U, but this is not
so for Toph or for Rel. For the applications, the notion of category is
simpler (and more “abstract’”’) than that of concrete category.
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8. Hom-Sets
For objects a and b in the category C the hom-set

home(a,b)={f1f 1is an arrow f:a—b in C}

consists of all arrows of the category with domain a and codomain b.
The notation for this set is frequently and variously abbreviated as

homc(a, b) = C(a, b= hom(a, b)=(a, b) = (a, b)¢ .

A category may be defined in terms of hom-sets as follows. A small
category is given by the following data:

(i) A set of objects a,b,c,-..;

(i) A function which assigns to each ordered pair <a, b} of objects a
set hom (a, b);

(ili) For each ordered triple {a, b, ¢) of objects a function

hom (b, ¢) x hom(a, b)— hom(a, ¢),

called composition, and written g, f>+>geof for gehom(b,c),
f € hom(a, b);

(iv) Foreach object b, an element 1, € hom(b, b), called theidentity of b.

These data are required to satisfy the familiar associativity and unit
axioms (1.1) and (1.2), plus an added “disjointness” axiom:

(v) If <a,b)> +=<a, b, then hom(a, b)nhom(d’, b’)=4, where ¢ is
the empty set.

In particular, the associativity axiom may be restated as the require-
ment that the following diagram, with each arrow given in the evident
way by composition, be 2 commutative diagram:

hom(c, d) x hom(b, ¢) x hom(a, b)—hom(b, d) x hom(a, b)

hom(c, d) x hom(a, c)

hom(a, d) .

This definition of a category is equivalent to the original definition
of §2. Axiom (v) above requires that “distinct” hom-sets be disjoint;
it is included to ensure that each arrow have a definite domain and a
definite codomain. Should this axiom fail in an example, it can be readily
reinstated by adjusting the hom-sets so that they do become disjoint.
For example, we can replace each original set hom(a, b) by the set
{a} x hom(a, b) x {b}; this amounts to “labelling” each fehom(a,b)
with its domain a and codomain b. Some authors omit this axiom (v).
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A functor T: C— B may be described in terms of hom-sets as the
(usual) object function T together with a collection of functions

T, .:C(c,cy=B(Tc, Tc')

(namely, the functions f+ T, for f € C(c, ¢')) such that each T, .1, =1,
and such that every diagram

C(c,c"yx C(c, ¢y————C(c, ")
Toryorr X Tever Toen

B(T¢, T¢"yx B(Te, Td)— B(Te¢, Tc"),

with horizontal arrows the composition in B and C, is commutative.

We leave the reader to describe a natural transformation t:S—=T
in terms of functions C(c, ¢')— B(S¢, T¢').

In many relevant examples, the hom-sets of a category themselves
have some structure; for instance, in the category of vector spaces V, W, ...
over a fixed field, each hom(V, W) is itself a vector space (of all
linear transformations ¥V — W). The simplest such case is that in
which the hom-sets are abelian groups. Formally, define an Ab-category
(also called a preadditive category) to be a category A in which each
hom-set A(a, b) is an additive abelian group and for which composition
is bilinear: For arrows f, f':a—b and g,¢ : b—¢,

G+g)e(f+f)=gof+gof +gof+g-f".

Thus Ab, R-Mod, Mod-R, and the like are all 4 b-categories.
Because the composition {g, f>+g-° f is bilinear,

A(b, c)x A(a, b)— A(a, c),
it can also be written (using the tensor product ® = ® ) as a linear map
A(b, )® A(a, b)— A(a, ¢),

and the Ab-category A may be described completely in these terms
(without assuming ahead of time that it is a category). Thus an Ab-
category is given by the data

(i) A set of objects g, b,¢, ...;

(i1} A function which assigns to each ordered pair of objects (b, ¢
an abelian group A(b, ¢);
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(ili) For each ordered triple of objects (a, b, c) a morphism
A(b, )@ A(a, b)— Ala, ¢)

of abelian groups called composition, and written g® f+>g-° f;

(iv) For each object, a morphism Z— A(a, a). (Here Z is the additive
abelian group of integers; this morphism is completely determined by
the image of 1€ Z, which may be written as 1,.)

These data are required to satisfy the associative and unit laws
for composition, stated as in (1.1) and (1.2), or by diagrams. The definition
of Ab-category is just like the definition of category by hom-sets: Set is
replaced by Ab, cartesian product x of sets by tensor product in Ab,
and the one-point set  is replaced by Z. There is an evident generalization
to categories A which have hom-objects A(b, ¢) in a category like Ab
which is equipped with a multiplication like ® and a unit like Z for this
multiplication. These are called “enriched categories” (Kelly [1982]).

If A and B are Ab-categories, a functor T: A— B is said to be additive
when every function T: A(a,a)—B(Ta, Ta') is a homomorphism of
abelian groups; that is, when T(f + f")= Tf + Tf" for all parallel pairs f
and f’. Clearly, the composite of additive functors is additive. Ab-cat
will denote the category of all small Ab-categories, with arrows additive
functors.

Notes.

These notes, like those at the end of later chapters, are informal remarks
on the background and prospects of our subject, with references to the biblio-
graphy (for example, H. Pétard {1980 b] refers to the second article by Pétard listed
for the year 1980).

The fundamental idea of representing a function by an arrow first appeared
in topology about 1940, probably in papers or lectures by W. Hurewicz on relative
homotopy groups; see [1941].

His initiative immediately attracted the attention of R. H. Fox (see Fox [1943])
and N. E. Steenrod, whose [1941] paper used arrows and (implicitly) functors;
see also Hurewicz-Steenrod [1941]). The arrow f: X— Y rapidly displaced the
occasional notation f(X)C Y for a function. It expressed well a central interest of
topology. Thus a notation (the arrow) led to a concept (category).

Commutative diagrams were probably also first used by Hurewicz.

Categories, functors, and natural transformations themselves were discovered
by Eilenberg-Mac Lane [1942a] in their study of limits (via natural transformations)
for universal coefficient theorems in Cech cohomology. In this paper commutative
diagrams appeared in print (probably for the first time). Thus Ext was one of the
first functors considered. A direct treatment of categories in their own right appeared
in Eilenberg-Mac Lane [1945]. Now the discovery of ideas as general as these is
chiefly the willingness to make a brash or speculative abstraction, in this case sup-
ported by the pleasure of purloining words from the philosophers: “Category”
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from Aristotle and Kant, “Functor” from Carnap (Logische Syntax der Sprache),
and “natural transformation” from then current informal parlance. Initially,
categories were used chiefly as a language, notably and effectively in the Eilenberg-
Steenrod axioms for homology and cohomology theories. With recent increasing
use, the question of proper foundations has come to the fore. Here experts are still
not in agreement; our present assumption of “one universe” is an adequate stopgap,
not a forecast of the future.

Category theory asks of every type of Mathematical object: “What are the mor-
phisms?”; it suggests that these morphisms should be described at the same time
as the objects. Categorists, however, ordinarily name their large categories by the
common name of the objects; thus Set, Cat. Only Ehresmann [1965] and his school
have the courage to name each category by the common name of its arrows:
our Cat is their category of functors. This emphasis on (homo)morphisms is
largely due to Emmy Noether, who emphasized the use of homomorphisms of
groups and rings.



11. Constructions on Categories

1. Duality

Categorical duality is the process “Reverse all arrows”. An exact de-
scription of this process will be made on an axiomatic basis in this section
and on a set-theoretical basis in the next section. Hence for this section
a category will not be described by sets (of objects and of arrows) and
functions (domain, codomain, composition) but by axioms as in § L.1.

The elementary theory of an abstract category (ETAC) consists of
certain statements X which involve letters a, b, ¢, ... for objects and
letters f, g, h, ... for arrows. These statements are the ones built up from
the atomic statements which involve the usual undefined terms of category
theory; thus, atomic statements are “a is the domain of f”, “b is the
codomain of f, “i is the identity arrow of a”, and “g can be composed
with f and h is the composite”, “a =5" and “f =¢g”. These atomic state-
ments can also be written as equations in the familiar way: “a= dom f”,
“h=gof”. A statement X is defined to be any phrase (well formed formula)
built up from the types of atomic statements listed above in the usual
fashion by means of the ordinary propositional connectives (and, or, not,
implies, if and only if) and the usual quantifiers (“for all a”, “for all /™, “there
exists an a...”, “there exists an f ...”). Thus “f:a—b” is the abbrevia-
tion we have adopted for the statement, “a is the domain of f and b is
the codomain of ™.

A sentence is a statement with all variables quantified (i.e., all variables
are “bound”, none being “free”). For example, “for all f there exist a
and b with f:a—b” is a sentence (one which in fact is an axiom, true
in every category). The axioms of ETAC (as given in § 1.1) are certain
such sentences.

The dual of any statement X of ETAC is formed by making the
following replacements throughout in X: “domain” by “codomain”,
“codomain” by “domain”, and “A is the composite of g with f** by “A is
the composite of f with ¢”; arrows and composites are reversed. Logic
(and, or, ...)is unchanged. This gives the following table (a more extensive
table appears in Exercise IV.3.1).

21
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Statement % Dual statement 2*
fia—b f:b—a

a=domf a=codf

i=1, i=1,

h=g-f h=feg

[ is monic fisepi

u 1s a right inverse of A u is a left inverse of &
fis invertible [ is invertible

t is a terminal object t is an initial object .

Note that the dual of the dual is the original statement (X**=2). If a
statement involves a diagram, the dual statement involves that diagram
with all arrows reversed.

The dual of each of the axioms for a category is also an axiom. Hence
in any proof of a theorem about an arbitrary category from the axioms,
replacing each statement by its dual gives a valid proof (of the dual
conclusion). This is the duality principle: If a statement % of the elementary
theory of an abstract category is a consequence of the axioms, so is the
dual statement Z*. For example, we noted the (elementary) theorem that
a terminal object of a category, if it exists, is unique up to isomorphism.
Therefore we have the dual theorem: An initial object, if it exists, is unique
up to isomorphism. For more complicated theorems, the duality principle
is a handy way to have (at once) the dual theorem. No proof of the dual
theorem need be given. We usually leave even the formulation of the
dual theorem to the reader.

The duality principle also applies to statements involving several
categories and functors between them. The simplest (and typical) case is
the elementary theory of oné functor; i.e, of two categories C and B
and a functor T: C— B. For this theory, the atomic statements are those
listed above for the category C, a corresponding list for the category B,
as well as the statements “Tc=>b" or “Tf =h", giving the values of the
object and arrow functions of T on objects ¢ and arrows f of C. The
axioms include the axioms for a category for C and for B and also the
statements T(gf)=(Tg)(Tf) and T(1,)=1;, which assert that T is
a functor. The dual of a statement is formed by simultaneously dualizing
the atomic parts referring to C and to B (i.e., reversing arrows in C
and in B). Since the statement that T'is a functor is self-dual, the duality
principle above is still true.

We emphasize that duality for a statement involving several categories
and functors between them reverses the arrows in each category but does
not reverse the functors.
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2. Contravariance and Opposites

To each category C we also associate the opposite category C°®. The
objects of C° are the objects of C, the arrows of C°® are arrows f°P,
in one-one correspondence f f°° with the arrows f of C. For each
arrow f:a—b of C, the domain and codomain of the corresponding
f°r are as in f°°:b—a (the direction is reversed). The composite
[P g° = (g f)Pis defined in C*® exactly when the composite g f is defined
in C. This clearly makes C°P a category. Moreover, the domain of f°P
is the codomain of f, f°P is monic if and only if f is epi, and so on. Indeed,
this process translates any statement X about C into the dual statement
2* about C°°. In detail, an evident induction on the construction of X
from atomic statements proves that if >’ is any statement with free variables
f, g, ... in the elementary theory of an abstract category, then X is true
for arrows f, ¢, ... of a category C if and only if the dual statement Z*
is true for the arrows f°P, g°®, ... of the opposite category C*. In particular,
a sentence X is true in C°P if and only if the dual sentence 2* is true in C.
This observation allows us to interpret the dual of a property X as the
original property applied to the opposite category (some authors call
C°? the “dual” category, and write it C® = C*).

If T: C— B 1s a functor, its object function ¢+ Tc and its mapping
function f+ Tf, rewritten as f°P—(Tf)°, together define a functor
from C°? to B°?, which we denote as T°P: C°°— B°P. The assignments
CrHC and T+ T°P define a (covariant!) functor Cat— Cat.

Consider a functor S:C°— B. By the definition of a functor, it
assigns to each object ¢ e C® an object Sc of B and to each arrow
fP:b—aof C®an arrow Sf°P:Shb— Sa of B, with S(f°Pg°?)=(S f°?)(Sg°®)
whenever f°Pg°P is defined. The functor S so described may be expressed
directly in terms of the original category C if we write Sf for Sf°P;
then S is a contravariant functor on C to B, which assigns to each object
ce C an object Sc e B and to each arrow f:a—b an arrow Sf: Sh—Sa
(in the opposite direction), all in such a way that

S1)=1s5., S(f9=E9 /), (1)

the latter whenever the composite fg is defined in C. Note that the arrow
function S of a contravariant functor inverts the order of composition.
Specific examples of contravariant functors may be conveniently presented
in this form; i.e., as functions S inverting composition. An example is
the contravariant power-set functor P on Set to Set: For each set X,
PX ={S|SC X} is the set of all subsets of X; for each function f: X — Y,
Pf:PY—PX sends each subset TCY to its inverse image f ~'TC X.
Another example is the familiar process which assigns to each vector
space V its dual (conjugate) vector space V* and to each linear trans-
formation f: V— Wits dual f*: W*— V*; these assignments describe a
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contravariant functor on the category of all vector spaces (over a fixed
field) to itself.

To contrast, a functor T: C— B as previously defined, in §1.3, is
called a covariant functor on C to B. For general discussions it is much
more convenient to represent a contravariant functor S on C to B as a
covariant functor S:C°— B, or sometimes as a covariant functor
S°P: C— B°P. In this book an arrow between (symbols for) categories will
always denote a covariant functor T: C— B or S: C°*— B between the
designated categories.

Hom-sets provide an important example of co- and contravariant
functors. Suppose that C is a category with small hom-sets, so that each
hom(a, b) = { f| f: a— bin C} is a small set, hence an object of the category
Set of all small sets. Thus we have for each object ae C the covariant
hom- functor

C(a, —) =hom(a, —): C— Set; )

its object function sends each object b to the set hom(a, b); its arrow
function sends each arrow k:b—b’ to the function

hom(a, k) : hom(a, b)—hom(a, b') 3

defined by the assignment fi—=keof for each f:a—b. To simplify the
notation, this function hom(a, k) is sometimes written kK, and called
“composition with k on the left”, or “the map induced by k”.

The contravariant hom- functor, for each object b e C, will be written
covariantly, as

C(—,b)=hom(—, b): C®*—Set; @)

it sends each object a to the set hom(a, b), and each arrow g:a—a’
of C to the function

hom(g, b) : hom(a’, b)— hom(a, b) (5

defined by f~ fog. Omitting the object b, this function hom(g, b) is
sometimes written simply as g* and called “composition with g on the
right”. Thus, for each f:d'—b,

kyf=kof, g*f=fg.
For two such arrows g : @ — a4’ and k : b — b’ the diagram
hom(a’, b)) —£——hom(a, b)
k'J, J'kt (6)
hom(a’, b)—E—— hom(a, b')

in Set is commutative, because both paths send f € hom(d, b) to kfg.
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These hom-functors have been defined only for a category C with
small hom-sets. The familiar large categories Grp, Set, Top, etc. do have
this property. To include categories without this property, we can proceed
as follows: Given a category C, take a set V large enough to include all
subsets of the set of arrows of C (for example, V could be the power set
of the set of arrows of C). Let Ens = Set,, be the category with objects
all sets X € V, arrows all functions f: X— Y between two such sets and
composition the usual composition of functions. Then each hom-set
C(a, b) = hom(a, b)is an object of this category Ens, so the above procedure
defines two hom-functors

C(a, —):C—Ens, C(—,b):C"—Ens. (7

In particular, when Vis the universe of all small sets, Ens = Set; in general,
Ens is a (variable) category of sets which acts as a receiving category for
the hom-functors of a category or categories of interest.

There are many other examples of contravariant functors. For X a
topological space, the set Open(X) of all open subsets U of X, when
ordered by inclusion, is a partial order and hence a category; there is an
arrow ¥ — U precisely when ¥V < U. Let C(U) denote the set of all con-
tinuous real-valued functions 4 : U — R,; the assignment &+ h| ¥V restricting
each h to the subset V is a function C(U)— C(V) for each ¥V C U. This
makes C a contravariant functor on Open (X) to Set. This functor is
called the sheaf of germs of continuous functions on X. On a smooth
manifold, the sheaf of germs of C*-differentiable functions is constructed
in similar fashion (cf. Mac Lane-Moerdijk [1992]).

Mod-R is a contravariant functor from rings R to categories. Spe-
cifically, if g : R— S is any morphism of (small) rings, each right S-module
B becomes a right R-module Bg=(Modg)B by “pull-back” along
o:EachreRactson beBby b-r=>b-(gr). Clearly Modg is a functor
Mod-S—Mod-R, and Mod(g, g,) = (Modg,) (Modg,), so Mod itself
can be regarded as a contravariant functor on Rng to Cat’, the category
of all large categories.

One may also form the category Mod of all (right) modules over all
rings. An object of Mod is a pair (R, 4), where R is a small ring and 4
a small right R-module. A morphism (R, A>—<S, B) is a pair <p, [,
where g : R— Sis a morphism of rings and f: A— (Mod g) B is a morphism
of right R-modules. With the evident composition, this yields a category
Mod. A projection functor Mod— Rng is given by (R, 4>+ R. Further
study of the relation of this functor to the previous functor Rng— Cat’
leads to the theory of fibered categories. (Mod is fibered over Rng,
the fiber over each R being the category Mod-R.)
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3. Products of Categories

From two given categories B and C we construct a new category
Bx C, called the product of B and C, as follows. An object of Bx C
is a pair <b, ¢} of objects b of B and ¢ of C; an arrow <b,c)— b, c’>
of Bx C is a pair {f, g ) of arrows f:b—b" and g: c— ¢, and the com-
posite of two such arrows

<b’ c><_f’g>_,<b” C’> [SXY' D) <brr, <’
is defined in terms of the composites in B and C by

Srgdelfig>={ff,g°g>. 1)
Functors
B<EBxC4C,

called the projections of the product, are defined on (objects and) arrows by

P{figp=f, Q.9 =9g.

They have the following property: Given any category D and two functors
B&DLC,

there is a unique functor F : D— B x C with PF =R, Q F =T, explicitly,
these two conditions require that Fh, for any arrow s in D, must be
{Rh, Th); conversely, this value for Fh does make F a functor with the
required properties. The construction of F (dotted arrow) may be
visualized by the following commutative diagram of functors:

/ \ el

B—-BxC-2C.

This property of the product category states that the projections P
and @ are “universal” among pairs of functors to B and C. It is exactly
like a similar property of the projections from the (cartesian) product of
two sets, two groups, or two spaces. The general properties of such pro-
ducts in any category will be considered in Chapter ITL

Two functors U:B—B and V:C—C have a product
UxV:BxC— B x C' which may be defined explicitly on objects and
arrows as

(UxV)<b, ey =<Ub,Vey  (UxV){f,g>=<Uf,Vg).
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Alternatively, this functor U x ¥ may be described as the unique functor
(as in the diagram above) which makes the following diagram commuta-
tive:

Be—E _BxC—2-C

l J 3
¥
B2 BxC—2L-C.

The product x is thus a pair of functions: To each pair {B, C) of cate-
gories, a new category B x C; to each pair of functors (U, V), a new
functor U x V. Moreover, when the composites U'o U and V’'o I are
defined, one clearly has (U’ x V')o(U x V)= U'U x V'V. Hence the
operation x itself is a functor; more exactly, on restricting to small cate-
gories, it is a functor

x : Cat x Cat— Cat.

There are similar functors Grp x Grp— Grp, Top xTop—Top, etc.

Our definition of product categories has included in (2) the descrip-
tion of functors F: D— B x C to a product category. On the other hand,
functors S: Bx C—D from a product category are called bifunctors
(on B and C) or functors of two variable objects (in B and in C). Such
bifunctors occur frequently; for instance, the cartesian product X x Y
of two sets X and Yis (the object function of) a bifunctor Set x Set— Set.
Thus our definition of product category gives an automatic definition
of “functor of two variables” — just as the definition of the product X x ¥
of two topological spaces gives an automatic definition of “continuous
function of two variables”.

Fix one argument in a bifunctor S; the result is an ordinary functor
of the remaining argument. The whole bifunctor S is determined by these
two arrays of one-variable functors in the following elementary way.

Proposition 1. Let B, C, and D be categories. For all objects ce C
and be B, let

L:B—-D, M,:C—D

be functors such that M,(c)=L.b) for all b and c. Then there exists
a bifunctor S: Bx C—D with S(—,c)=L, for all ¢ and S(b, —)=M,
forallbif and only if for every pair of arrows f: b— b and g : c— ¢ one has

Mb’gochch’foMbg' (4)
These equal arrows (4) in D are then the value S(f,g) of the arrow
Sfunction of S at fand g.

Proof. If we write b and ¢ for the corresponding identity arrows,
the definition (1) of the composite in B x C shows that

Vogro{fied=b"fgc)=L{f,9>={fb,c'g>={f,c>(b,g).
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Applying the functor S to this equation gives

S, g)S(f,c)=S(f,c)S(b,g);
as a commutative diagram this condition is

S(b, )22, (b, ¢’)
S(f, o) S(f.¢)
S, )29, (b, ¢).

This is just condition (4) rewritten, so that condition (4) is necessary.
Conversely, given all L, and M,, this condition defines S(f, g) for every
pair f,g; it may be verified that this definition does yield a bifunctor S
with the required properties.

One may also form products of three or more categories, or combine
the construction of product categories and opposite categories. There
is an evident isomorphism (B x C)°® 2 B x C°?. A functor B°®* x C—D
is often called a bifunctor, contravariant in B and covariant in C, with
values in D. For example, if C is a category with small hom-sets, the
hom-sets define such a bifunctor

hom : C°®* x C—Set.

Indeed, the commutative diagram (6) of §2 shows exactly that the co-
and contravariant hom-functors

hom(—,c): C® — Set, hom(b,~): C — Set

do satisfy the condition (4) of the theorem, necessary to make hom
a bifunctor.

Next consider natural transformations between bifunctors
S, S": Bx C— D. Let a be a function which assigns to each pair of objects
beB, ceC an arrow

ab, ¢): S(b, c)—S'(b, ¢) (5)

in D. Call « natural in b if for each ¢ e C the components a(b, ¢) for all b
define
a(_a C) : S(_, C)_L’S,(_’ C)’

a natural transformation of functors B— D. The reader may readily
prove the useful result:

Proposition 2. For bifunctors S, S', the function a displayed in (5)
is a natural transformation a : S—= S (i.e., of bifunctors) if and only if a(b, c)
is natural in b for each c € C and natural in ¢ for each b e B.

Such natural transformations appear in the fundamental definition of
adjoint functors (Chapter IV). A functor F: X— C is the left adjoint
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of a functor G: C— X (opposite direction) when there is a bijection
hom(Fx, ¢} = homy(x, Gc)

natural in x € X and ce C. Here hom(F—, —) is a bifunctor, the com-
posite
Xopx C—E2xM , cop ¢ ¢ home_,Get

and homy(—, G—) similarly (at least when X and C have small hom-
sets).

The product category can be visualized in the case C x 2, where 2
is the category with one non-identity arrow 0—1; explicitly Cx2
consists of two copies Cx 0 and C x 1 of C with arrows joining the first
to the second, as in the figure (“diagonal” arrows omitted) for C =3
which is the triangle category of §1.2:

Cx1 ——

Here the functors Ty, T; : C— C x 2 (“bottom” and “top”, respectively)
are defined for each arrow f of C by T, f={f,0) and T, f={/,1>.
If | denotes the unique non-identity arrow 0— 1 of 2, then we may define
a transformation between T,, T; : C—C x 2 by

Cx0

#:TO_'-)TI, #c:<c, l>a

for any object c. It maps “bottom” to “top” and is clearly natural. We
call u the universal natural transformation from C for the following
reason. Given any natural transformation t: S—» T between S, T: C— B
there is a unique functor F: C x2— B with Fuc=tc for any object c.
Specifically, F is, when f:c—c,

FCLO=8f, FLL=Tf, F{f, D=Tfere=1c>5f. (6)

It may be readily verified that these assignments do define a bifunctor
F:Cx2—B, and that Fu=r1.

Exercises

1. Show that the product of categories includes the following known special cases:
The product of monoids (categories with one object), of groups, of sets (discrete
categories).

2. Show that the product of two preorders is a preorder.
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3. If {C;liel} is a family of categories indexed by a set I, describe the product
C=1I1,C, its projections P;: C—C,, and establish the universal property of
these projections.

4. Describe the opposite of the category Matrg of § 1.2.

5. Show that the ring of continuous real-valued functions on a topological space
is the object function of a contravariant functor on Top to Rng.

4. Functor Categories

Given categories C and B, we consider all functors R, S, T, ...: C—B.
If 0: R—=S and t:S—T are two natural transformations, their com-
ponents for each c € C define composite arrows (- g)c=tc°gc which
are the components of a transformation t-¢:R—-+T. To show 7°a
natural, take any f:c—c¢' in C and consider the diagram

o Re RI po__

(t-a)c SC Sr SCI (t+a)c’

"—’TC_T‘!.—>TC,<_

Since ¢ and t are natural, both small squares are commutative. Hence
the rectangle commutes, so the composite 1 - ¢ is natural.

This composition of transformations is associative; moreover it has
for each functor T an identity, the natural transformation 1;: T— T with
components 1rc=1r. Hence, given the categories B and C, we may
construct formally a functor category BF = Funct(C, B) with objects
the functors T:C— B and morphisms the natural transformations
between two such functors. It is often suggestive to write

Nat(S, T)=B°(S, T)={t|7: ST natural} )]

for the “hom-set” of this category. It need not be a small set.

Functor categories will be used extensively. For example, if B and C
are sets (categories with all arrows identities), then B® is also a set;
namely, the familiar “function-set” consisting of all functions C— B.
In particular, for B= {0, 1} a two-point set, {0, 1} is (isomorphic to)
the set of all subsets of C (the “power set” ZC). For any category B,
B! is isomorphic to B, while B? is called the category of arrows of B;
its objects are arrows f: a—b of B, and its arrows f— /' are those pairs
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(h, k) of arrows in B for which the square

a__"_) a

) J jr @

b—* b

commutes. If M is a monoid (category with one object) Set" is the
category with objects the actions of M (on some set) and arrows the
morphisms of such actions. An object of the functor category Grp™ is a
group with operators M.

If K is a commutative ring and G a group, then the functor category
(K-Mod)¢ is the category of (K-linear) representations of G. Spe-
cifically, each functor T: G— K-Mod is determined by a K-module V
(the image of the single object of the category G) and a morphism
T: G— Aut(V) of groups (a representation of G by linear transformations
V— V). If T’ is a second such representation, a natural transformation
¢: T T is given by a single arrow ¢: V—V’ (its component at the
single object of G) such that the diagram

V2o V'

ngv JT'g (3)

| - RN

commutes for every g € G. In representation theory, such a ¢ is called
an intertwining operator. Thus (K-Mod)® is the category with objects
the representations of G and morphisms the intertwining operators.

When the category C is large, the functor category B¢ need not be a
subset of the universe. For example, if B= {0, 1} is the set with just two
elements, while C is the set U, then a functor U— B is just a function on
U to a set with two elements. The possible such functions correspond
(as characteristic functions) to the possible subsets of U. Therefore the
set of objects in {0, 1}V is equivalent to the set 2(U) of all subsets of U,
and this set has a larger cardinal number than U.

Exercises

1. For R aring, describe R-Mod as a full subcategory of the functor category Ab®.

2. Describe B*, for X a finite set (a finite discrete category).

3. Let N be the discrete category of natural numbers. Describe the functor category
Ab™ (commonly known as the category of graded abelian groups).

4. If P and Q are preorders, describe the functor category QF and show that it is
a preorder.
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5. If Fin is the category of all finite sets and G is a finite group, describe Fin® (the
category of all permutation representations of G).

6. LetM be theinfinite cyclic monoid (elements 1, m, m?, ...). In the functor categories
(Matrg)? and (Matrg™ show that objects are matrices and isomorphic objects
(matrices) are exactly equivalent and similar matrices, respectively, in the usual
sense of linear algebra. For Matr, see §1.2.

7. Given categories B, C, and the functor category BZ, show that each functor
H:C— B? determines two functors S, T: C— B and a natural transformation
7:S- T, and show that this assignment H+— (S, T, t) is a bijection.

8. Relate the functor H of Exercise 7 to the functor F of (3.6).

5. The Category of All Categories
We have defined a “vertical” composite 1+ g,
!
CTB N
—
of two natural transformations. There is another “horizontal” composi-

tion for natural transformations. Given functors and natural trans-

formations
S S’
—_—
C |rB [r4 (D

T T

one may form first the composite functors S°S and T' T: C— A and
then construct a square

§'Se—2,T'Se
S'rcl lT'rc
S Te—"“ T Te

which is commutative because of the naturality of ' for the arrows 7c¢
of B. Now define (7' 7)c to be the diagonal of this square;

(tet)c=T'1cev Sc=7TcoS'tc. (2)
To show t'o7:S'S-=T'T natural, form the diagram
S'Se S'tc S'Te ' Te T Te ¢

A R )

S'Sb—gm—S Th—g>T'Th, b

for any arrow f of C. Horizontally, the composites by definition are
(t'e7)c and (t'> 1) b; the left-hand square commutes because 7 is natural
and §' is a functor, while the right-hand square commutes because ¢’ is
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natural and Tf: Tc— Tb is an arrow. The commutativity of the outside
of the diagram states that 7’ 7 is natural.

This composition {t’,7>— 1<t is readily shown to be associative.
It moreover has identities. If I;: B—B is the identity functor for the
category B and 1lg:Ig—=sI, the identity natural transformation of that
functor to itself, one has 1zet=1 and 7' 1y =1". Thus 1 is the identity
for the composition o; it is also the identity for the composition -. It is
convenient to let the symbol S for a functor also denote the identity
transformation S—=> S. With this notation in the situation above we have
composite natural trdnsformations

Sot:808=8eT, tToT:ST=-T-T.

The definition (2) can then be rewritten, using also the vertical
composition, as
Tor=(To1)  (Te S)= (> T) (S 1). (3)
There is a more general rule. Given three categories and four trans-
formations

c3LB54, (4)
A SN

the “vertical” composites under - and the “horizontal” composites under o
are related by the identity (interchange law)

(T g)e(tr0)=(t°1)"(¢"°0). )

The reader may enjoy writing down the evident diagrams needed to prove
this fact.

These results may be summarized as follows (considering only small
categories):

Theorem 1. The collection of all natural transformations is the set
of arrows of two different categories under two different operations of
composition, - and o, which satisfy the interchange law (5). Moreover, any
arrow (transformation) which is an identity for the composition o is also
an identity for the composition -.

Notethatthe objects for the horizontal composition-are the categories,
for the vertical composition, the functors. In using these compositions,
the symbol - for the “horizontal” composition is often omitted (as it is
usually in writing composition of arrows in a category), while the solid
dot designating “vertical” composition is retained. Observe that objects
and arrows of C may be written as functors ¢:1—C or f:2—C; then
symbols such as g c=gc have their accepted meaning in a situation
such as

1——C s 'B.
—_
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By a double category (Ehresmann) is meant a set which (like the set of
all natural transformations) is the set of arrows for two different composi-
tions which together satisfy (5). A 2-category (short for two-dimensional
category) is a double category in which every identity arrow for the first
composition is also an identity for the second composition. For example,
the category of all commutative squares in Set is a double category
(under the evident horizontal and vertical compositions) but not a
2-category. There are also n-categories for higher n, see Chapter XII.

Two (partially defined) binary operations « and o are said to satisfy
the interchange law when (5) holds wherever the composites on either
side are defined. Here some other examples. If C is a category and
+:Cx C—C is a functor (for example, a tensor product), while a,0d’, 7
and 7’ are arrows of C such that the composites ¢’ ¢ and '~ 7 are defined,
then the interchange law (5) holds; indeed, it is precisely the requirement
that the functor - preserve composition o. If 6, ¢’, 7, and 7’ are square
matrices such that the usual matrix products ¢’c ¢ and 7’> 7 are defined,
while t* ¢ denotes the matrix

t 0
o o

with blocks  and ¢ along the diagonal, zeros elsewhere, then (5) holds.

The functor category BE is itself a functor of the categories B and C,
covariant in B and contravariant in C. Specifically, if we consider only
the category Cat of all small categories, it is a functor Cat°? x Cat— Cat;
the object function sends a pair of categories (C, B) to the functor
category BC, and the arrow function sends a pair of functors F: B—B’
and G: C'—C to the functor

FS:B°—B°
defined on objects Se B as FéS=FoSoG and on arrows 7:S—= T in
B€ as Fét = Fot+G. Note, for example, that F€ is just “compose with

F on the left” while B is “compose with G on the right”. This functor
is an exact analogue to the hom-functor Set°® x Set— Set.

Exercises
1. For small categories 4, B, and C establish a bijection
Cat(4 x B, C) = Cat(4, C%),

and show it natural in 4, B, and C. Hence show that — x B: Cat— Cat has a
right adjoint (see Chapter IX).
2. For categories 4, B, and C establish natural isomorphisms

(AxBS= A x BS, C4*Bx(CB.

Compare the second isomorphism with the bijection of Exercise 1.
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3. Use Theorem 1 to show that horizontal composition is a functor
o A% x BC— A€,

4. Let G be a topological group with identity element ¢, while g, ¢/, 1, 7', are con-
tinuous paths in G starting and ending at e (thus, if I is the unit interval, o : I— G
is continuous with ¢(0) = e = a(1)). Define 1< ¢ to be the path ¢ followed by the
path 1, as in (1.5.1). Define 7 - ¢ to be the pointwise product of t and o, so that
(tro)t={(tt)(ot) for 0 <t < 1. Prove that the interchange law (5) holds.

5. (Hilton-Eckmann). Let S be a set with two (everywhere defined) binary operations
©:SxS—S, o: Sx S—S§ which both have the same (two-sided) unit element e
and which satisfy the interchange identity (5). Prove that + and - are equal, and
that each is commutative.

6. Combine Exercises 4 and 5 to prove that the fundamental group of a topological
group is abelian.

7. If T: A— D is a functor, show that its arrow functions T, ,: A(a, b)— D(Ta, Th)
define a natural transformation between functors 4% x 4— Set.

8. For the identity functor I. of any category, the natural transformations
o: I I form a commutative monoid. Find this monoid in the cases C = Grp,
Ab, and Set.

6. Comma Categories

There is another general construction of a category whose objects
are certain arrows, as in the following several special cases.

If b is an object of the category C, the category of objects under b
is the category (b | C) with objects all pairs {f, ¢}, where ¢ is an object
of C and f:b—c an arrow of C, and with arrows h: {f,c>—<{f' ¢
those arrows h: c— ¢’ of C for which k= f = f". Thus an object of (b | C)
is just an arrow in C from b and an arrow of (b ] C) is a commrutative
triangle with top vertex b. In displayed form:

b b
objects < f,¢)>: jf; arrows {f,c>B{f > ‘f/\f‘ (1)
c c—toc

The composition of arrows in (b | C)is then given by the compositionin C
of the base arrows & of these triangles.

For example, if * denotes any one-point set, while X is any set, each
function *— X is just a selection of a point in the set X; hence (x | Set)
is just the category of pointed sets (§1.7). Similarly, (Z | Ab) is the cate-
gory of abelian groups, each with a selected element.

If a is an object of C, the category (C | a) of objects over a has

C

c—tae
objects: Jf; arrows: f\‘/f , (2)
a

a
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the triangle commutative. For example, = is terminal in Set so there is
always a unique X — *; therefore (Set | *) is isomorphic to Set. Or again,
Z is a ring, and the category (Rng | Z) is the category whose objects are
rings equipped with a morphism ¢:R—Z (called a ring R with an
“augmentation” ¢) and whose morphisms are morphisms of rings preserv-
ing the augmentation.

If b is an object of C and S: D— C a functor, the category (b ] S)
of objects S-under b has as objects all pairs {f,d) with de ObjD and
f:b—Sd and as arrows h:{f,d>—{f",d') all those arrows h:d—d'
in D for which f'=Shef. In pictures,

b b
objects: Jf ;. arrows h: ‘f/y (3)
Sd Sd—5—Sd’ (commutative).

Again, composition is given by composition of the arrows & in D. Note
especially that equality of arrows in (b ] S) means their equality as
arrows of D.

For example, let U: Grp—Set be the forgetful functor. Then for
each set x an object of (x| U) is a function x— Ug from x into the
underlying set of some group g; for example, the function mapping x
into the underlying set of the free group generated by the elements of the
set x is one such object. This category (x | U) — and others like it — will
be used extensively in the treatment of adjoint functors.

Again,ifae Cand T: E— Cis a functor, one may construct a category
(T} a) of objects T-over a.

Here is the general construction. Given categories and functors

ELCED

the comma category (T | S), also written (T, S), has as objects all triples
{e,d,f>, with de ObjD, ec ObJE, and f:Te—Sd, and as arrows
{e,d, f>— e, d, f'> all pairs (k,h)> of arrows k:e—e¢', h:d—d such
that f’o Tk = Sheof. In pictures,

Te Te—* 5 Te
objects (e, d, f>: }f; arrows <k, h)>: Jf lf’ 4
Sd Sd—*5d,

with the square commutative. The composite <{k',h' )<<k, h) is
{k'ek,h k), when defined.

This general description of the comma category (T ] S) does include
all the cases listed. Indeed, an object b of C may be regarded as a functor
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b:1—C. Taking T=b in this sense, the comma category (T | S) becomes
the category (b | S) of objects S-under b. If § = Cis theidentity functor of C,
this becomes in particular the category (b | C) of objects of C under b.
Similarly, one may take S to be a functor 1—C; i.e., an object a of C.
Again, take S= T = the identity functor of C. Then (C |C) is exactly
the category C2 of all arrows of C. Or take S and T to be objects a and b
of C; then (T | S)=(b | a) is the category with objects all arrows f: b—a
and morphisms only the identity arrow for each object; in other words
(b | a) is the set (the discrete category) homc(b, a). This case is the reason
for the choice of the name “comma category” and the notation (T, S) —
a notation which we avoid because the comma is already overworked.

The construction of the comma category (T ] S) may be visualized
by the following commutative diagram of categories and functors

(TlS)

/lk\ (5
E-pCiay ClgpCes-D

here d,, d; are the two functors 1—2, the functor category C? is just
the category of arrows f of C, and so the functors C%, C*' (defined as at
the end of the last section) are simply the functors which send each arrow
fof Ctoits domain and its codomain, respectively. The functors P and Q
(called the projections of the comma category) and the functor R are
defined (on objects) as suggested in the diagram

(e,d,f: Te—Sd)

(6)
er>Te<(f: Te—Sd)y—Sd<id.

Exercises

1. If K is a commutative ring, show that the comma category (K | CRng) is the
(usual) category of all small commutative K-algebras.

2. If t is a terminal object in C, prove that (C | t) is isomorphic to C.

. Complete (6) by defining P, Q, and R on arrows.

4. (S.A.Huq). Given functors T, S:D—C, show that a natural transformation
7: TS is the same thing as a functor 7: D—(T | S) such that Pr=Qt=idp,
with P and Q the projections of (5).

5. Given any commutative diagram of categories and functors

w
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(bottom row as in (5)), prove that there is a unique functor L: X—(T | S)
for which P"=PL, ' =QL, and R'=RL. (This describes (T | S) as a “pull-
back”, cf. §111.4.)

6. (a) For fixed small C, D, and E, show that (T, $>+(T | S) is the object function
of a functor (CE)? x (CP)— Cat.
(b) Describe a similar functor for variable C, D, and E.

7. Graphs and Free Categories

First, recall the construction of the free monoid F X generated by a set X.
It consists of all the finite strings x; x> - - - x, of elements x; of the set X
the multiplication of these strings is given by juxtaposition, so that the
empty string serves as the unit element of F X. The characteristic property
of this free monoid may be stated as follows: For any monoid M, let UM
denote the set of elements of M. Then any function f : X — U M extends
to a unique morphism of monoids:

f:X—> UM  extendstoa g:FX—-M.

To get the corresponding description of a free category, we replace the
starting set X by a directed graph G.

Recall that a (directed) graph G (§1.2) is a set O of objects (vertices),
and a set A of arrows f (edges), and a pair of functions A30:

4% .
AT’ O, &yf=domain f, &,f= codomain f.

A morphism D: G—G’ of graphs is a pair of functions D,: 0— 0O’ and
D,: A— A’ such that

Dpdof=08oDyf and Dy0o,f=0,D,f

for every arrow f € A. These morphisms, with the evident composition,
are the arrows of the category Grph of all small graphs (a graph is small
if both O and A are small sets). Each graph may be pictured by a diagram
of vertices (objects) and arrows, just like the diagram for a category
except that neither composite arrows nor identity arrows are provided.
Hence a graph is often called a diagram scheme or a precategory.

Every category C determines a graph U C with the same objects and
arrows, forgetting which arrows are composites and which are identities.
Every functor F: C—C' is also a morphism UF:UC—UC’ between
the corresponding graphs. These observations define the forgetful functor
U : Cat— Grph from small categories to small graphs.

Let O be a fixed set. An O-graph will be one with O as its set of objects;
a morphism D of O-graphs will be one with D, : O— O the identity. The
simplest O-graph O is 0—=0, with both functions domain and range
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the identity. If A and B are (the sets of arrows of) two O-graphs, the
product over O is

AxoB={{g,/)100g=0.f, geA, feB}; (1)
it is the set of “composable pairs” of arrows + %+ % - The definitions
009, f>=0of 01<g,f> =019 2

make this seta O-graph. This product operation on O-graphsis associative,
since for any three O-graphs A4, B, and C there is an evident isomorphism
AX o(Bx oCY= (A x gB)Yx ,C. For the special O-graph O there is also
an isomorphism 4 = 4 x¢0, given by f++{f,0¢ f). Also, A = O xoA.

A category with objects O may be described as an O-graph A equipped
with two morphisms ¢: A x o A—A4 and i: 0— A of O-graphs (composi-
tion and identity) such that the diagrams

X oA)X pAZ AX g(AX gA) 5 AX gA O x A5 Ax gAEL A% ,0

X oA s A, A = A = 4

are commutative, where 1 x c is short for 1 x 4c, etc. Indeed, composable
arrows {g, f» have a composite given by c as c(g, f), each object be O
has an identity arrow given by i(b)e A, while the first diagram states
that composition is associative and the second that each i(a) acts as
a left and right identity for composition. In this sense, a category is like
a monoid, as described in the introduction: Set there is replaced by
O-Grph, and product of sets by xg.

Any O-graph G may be used to “generate” a category C on the same
set O of objects; the arrows of this category will be the strings” of com-
posable arrows of G, so that an arrow of C from b to a may be pictured
as a path from b to a, consisting of successive edges of G. This category
C will be written C = C(G) and called the free category generated by the
graph G. Its basic properties may be stated as follows.

Theorem 1. Let G={A =30} be a small graph. There is a small
category C = Cg with O as set of objects and a morphism P:G—UC
of graphs from G to the underlying graph U C of C with the following
property. Given any category B and any morphism D: G— U B of graphs,
thereis aunique functor D' : C— Bwith (U D’} P = D, as in the commutative
diagram

C G—2 U.C

D \ iiub' . 4
B, UB
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In particular, if B has O as set of objects and D is a morphism of O-graphs,
then D' is the identity on objects.

The property of P stated in (4) is equivalent to stating that the arrow
P:G— UC is an initial object in the comma category (G | U). Hence P
is unique up to an isomorphism (of C). Similar properties appear often;
we shall say that P is “universal” among morphisms from G to the
underlying-graph functor U.

Proof. Take the objects of C to be those of G and the arrows of C
to be the finite strings (or “paths”™)

al._fl_)az_f_2>a3__>...ﬁ‘_1)a"

composed of n objects ay,...,a, of G connected by n—1 arrows f;:a,—a,; ,
of G. Regard each such string as an arrow <{a,,f},...,fn~ 1,3, 0;—4a,
in C, and define the composite of two strings by juxtaposition (i.e., by
concatenation), identifying the common end. This composition is mani-
festly associative, and strings {a,) of length n=1 are its identities. Every
string of length n> 1 is a composite of strings of length 2:

<a1af1’ a,, '~~aan—1afn—1a an> = <an—1’fn—1? an>° e <a1af1’ a2> . (5)

The desired morphism P: G— U C of graphs sends each arrow f: a, —a,
of the given graph G to the string <ay, f, a,> of length 2.

Now consider any other morphism D:G— UB of the given graph
G to the underlying graph of some category B. If there is a functor
D’': C— B with UD’> P=D, as in the commutative diagram (4), then D’
must be D'{a)=Da on objects and D'{a,, fi,a,> =D f, on arrows.
Since any string of length n >1 is a composite (5) in C, D’ must be given by

Dr<a1af1’ a, "'aan—-l?f;l—ls an>=Df;|—1° "'onl .

Conversely, this formula does define a functor D’ : B— C for which the
indicated diagram commutes, g.e.d.

Here are some easy examples. For the graph consisting of a single
arrow f with 8, f = &, f, the free category consists of allarrows 1, f, f2, ... .
For the graph consisting of a single arrow g with different ends, the free
category consists of this arrow plus two identity arrows (one at each end).
For the graph - — - — . with three different vertices the free category is
a commutative triangle (add one composite arrow and three identity
arrows).

When O consists of one point, the graph G reduces simply to a set
X (the set X =A of arrows) and the theorem provides the familiar
construction of a free monoid M generated by X, as follows:

Corollary 2. To any set X there is a monoid M and a function
p: X—> UM, where UM is the underlying set of M, with the following
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universal property: For any monoid L and any function h: X — U L there
is a unique morphism b’ : M— L of monoids with h=UH o p.

The elements of M are the identity and strings {x,,...,x,_», for
x;eX.

Graphs may be used to describe diagrams. If G is any graph, a
diagram of the shape G in the category B may be defined to be a morphism
D: G— UB of graphs. By the Theorem, these morphisms D correspond
exactly to functors D' : C;— B, via the bijection D’'+=D=UD’s P. This
bijection

Cat(Cq, B) = Grph(G, U B) (6)

is natural in G and B, so asserts that C : Grph — Cat is left adjoint (see
Chapter IV) to the forgetful functor U : Cat — Grph.

Exercises

1. Define “opposite graph” and “product of two graphs” to agree with the cor-
responding definitions for categories (i.e., so that the functor U will preserve
opposites and products).

2. Show that every finite ordinal number is a free category.

3. Show that each graph G generates a free groupoid F (i.e., one which satisfies
Theorem 1 with “category C” replaced by “groupoid F” and “category B”
by “groupoid E”). Deduce as a corollary that every set X generates a free group.

8. Quotient Categories

Certain categories may be described by generators and relations, as
follows:

Proposition 1. For a given category C, let R be a function which
assigns to each pair of objects a, b of C a binary relation R, , on the hom-
set C(a, b). Then there exist a category C/R and a functor @ = Qg: C— C/R
such that (i) If fR,,f in C, then Qf=Qf'; (ii) If H:C—D is any
Sunctor from C for which fR, ,f' implies Hf=Hf" for all f and f’,
then there is a unique functor H': C/R— D with H'> Qg = H. Moreover,
the functor Qg is a bijection on objects.

Put briefly:  is the universal functor on C with Q f = Q f' whenever
fRf.

For example, if C=Top and /R f’ means that f is homotopic to [,
then the desired quotient category C/R is just the category Toph of § 1.7,
with objects topological spaces and arrows homotopy classes of con-
tinuous maps. This direct construction is possible for Toph because the
relation of homotopy between maps is an equivalence relation preserved
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by composition. The general case requires a preliminary construction
on the relation R to achieve these properties.

Sketch of proof. Call R a congruence on C if (i) for each pair a, b
of objects, Ryp is a reflexive, symmetric, and transitive relation on
C(a,b); (ii) if f, f' : @ — b have f Ry 1", then for all g : @ — a and all
h:b—VY one has (hfg)R, ,(hf'g). Given any R, there is a least con-
gruence R’ on C with RCR’ (proof as exercise). Now take the objects of
C/R to be the objects of C, and take each hom-set (C/R) (a, b) to be the
quotient C(a, b)/R;, of C(a,b) by the equivalence relation R’ there.
Because the relation is preserved by composition, the composite in C
carries over to C/R by the evident projection @ : C— C/R. Now for any
functor H:C—D the sets S, ,={f,f :a—b|Hf=Hf'} evidently
form a congruence on C. Thus, if SO R one also has SO R’, and H factors
as H=H'e Qp, as required.

In case C is the free category generated by a graph G we call C/R
the category with generators G and relations R. For example, 3 may be
described as the category generated by three objects 0, 1, 2, three arrows
f:0—1,g:1—2, and h:0—2, and one relation h=g-f. As a special
case (one object), this includes the case of a monoid given by generators
and relations.

Exercises

1. Show that the category generated by the graph

with the one relation g’ f = f’g has four identity arrows and exactly five non-
identity arrows f, g, f, g and g f = f'g.

2. If Cis a group G (regarded as a category with one object) show that to each con-
gruence R on C there is a normal subgroup N of G with fRyg if and only if
g ' feN.

Notes.

The leading idea of this chapter is to make the simple notion of a functor apply
to complex cases by defining suitable complex categories — the opposite category for
contravariant functors, the product category for bifunctors, the functor category
really as an adjoint to the product, and the comma category to reduce universal
arrows to initial objects. The importance of the use of functor categories (some-
times called “categories of diagrams™) was emphasized by Grothendieck [1957]
and Freyd [1964]. The notion of a comma category, often used in special cases, was
introduced in full generality in Lawvere’s (unpublished) thesis [1963], in order to
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give a set-free description of adjoint functors. For a time it was a sort of secret tool
in the arsenal of knowledgeable experts.

Duality has a long history. The duality between point and line in geometry,
especially projective geometry, led to a sharp description of axiomatic duality in
the monumental treatise by Veblen-Young on projective geometry. The explicit
description of duality by opposite categories is often preferable, as in the Pontrjagin
duality which appears (§IV.3) as an equivalence between categories, or as an
equivalence between a category and an opposite category (see Negrepontis [1971]).



III. Universals and Limits

Universal constructions appear throughout mathematics in various
guises — as universal arrows to a given functor, as universal arrows from
a given functor, or as universal elements of a set-valued functor. Each
universal determines a representation of a corresponding set-valued
functor as a hom-functor. Such representations, in turn, are analyzed
by the Yoneda Lemma. Limits are an important example of universals —
both the inverse limits (= projective limits = limits = left roots) and their
duals, the direct limits (= inductive limits = colimits = right roots). In
this chapter we define universals and limits and examine a few basic
types of limits (products, pullbacks, and equalizers ...). Deeper properties
will appear in Chapter IX on special limits, while the relation to adjoints
will be treated in Chapter V.

1. Universal Arrows

Given the forgetful functor U :Cat— Grph and a graph G, we have
constructed (§ I1.7) the free category C on G and the morphism P: G—UC
of graphs which embeds G in C, and we have shown that this arrow P
is “universal” from G to U. A similar universality property holds for the
morphisms embedding generators into free algebraic systems of other
types, such as groups or rings. Here is the general concept.

Definition. If S: D—C is a functor and ¢ an object of C, a universal
arrow fromc to S is a pair {r, u) consisting of an object r of D and an arrow
u:c—Sr of C, such that to every pair {d, > with d an object of D and
Sf:c—Sdanarrow of C,thereis aunique arrow f": r-—d of D with S f'ou= f.
In other words, every arrow f to S factors uniquely through the universal
arrow u, as in the commutative diagram

c—4%—Sr r

I [sr L (1)
v v

c—L 54, d
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Equivalently, u: ¢c— Sr is universal from ¢ to S when the pair {r, u>
is an initial object in the comma category (c | S), whose objects are the
arrows c—Sd. As with any initial object, it follows that {r, u) is unique
up to isomorphism in (¢ | S); in particular, the object r of D is unique
up to isomorphism in D. This remark is typical of the use of comma
categories.

This notion of a universal arrow has a great variety of examples;
we list a few:

Bases of Vector Spaces. Let Vety denote the category of all vector
spaces over a fixed field K, with arrows linear transformations, while
U: Vety—Set is the forgetful functor, sending each vector space V to
the set of its elements. For any set X there is a familiar vector space Vy
with X as a set of basis vectors; it consists of all formal K-linear combina-
tions of the elements of X. The function which sends each xe X into
the same x regarded as a vector of Vy is an arrow j: X — U(Vy). For
any other vector space W, it is a fact that each function f: X— U(W)
can be extended to a unique linear transformation f’:Vy— W with
U f'oj= f. This familiar fact states exactly that j is a universal arrow
from X to U.

Free Categories from Graphs. Theorem I1.7.1 for the free category C
on a graph G states exactly that the functor P: G — U C is universal.
The same observation applies to the free monoid on a given set of gen-
erators, the free group on a given set of generators, the free R-module
(over a given ring R) on a given set of generators, the polynomial algebra
over a given commutative ring in a given set of generators, and so on in
many cases of free algebraic systems.

Fields of Quotients. To any integral domain D a familiar construction
gives a field Q(D) of quotients of D together with a monomorphism
Jj: D—Q(D)(which s often formulated by making D a subdomain of @(D)).
This field of quotients is usually described as the smallest field containing
D, in the sense that for each D C K with K a field there is a monomorphism
f:Q(D)—K of fields which is the identity on the common subdomain D.
However, this inclusion D C K may readily be replaced by any mono-
morphism D— K of domains. Hence our statement means that the pair
{Q(D),j> is universal for the forgetful functor Fld— Dom,, from the
category of fields to that of domains — provided we take arrows of
Dom,, to be the monomorphisms of integral domains (note that a homo-
morphism of fields is necessarily a monomorphism). However, for the
larger category Dom with arrows all homomorphisms of integral domains
there does not exist a universal arrow from each domain to a field. For
instance, for the domain Z of integers there is for each prime p a homo-
morphism Z — Z,; the reader should observe that this makes impossible
the construction of a universal arrow from Z to the functor Fid — Dom.

Complete Metric Spaces. Let Met be the category of all metric spaces
X,Y,..., with arrows X — Y those functions which preserve the metric
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(and which therefore are necessarily injections). The complete metric
spaces form (the objects of) a full subcategory. The familiar completion
X of a metric space X provides an arrow X — X which is universal for
the evident forgetful functor (from complete metric spaces to metric
spaces).

In many other cases, the function embedding a mathematical object
in a suitably completed object can be interpreted as a universal arrow.
The general fact of the uniqueness of the universal arrow implies the
uniqueness of the completed object, up to a unique isomorphism (who
wants more?).

The idea of universality is sometimes expressed in terms of “universal
elements”. If D is a category and H : D—Set a functor, a universal element
of the functor H is a pair (r, e) consisting of an object r € D and an element
ee Hr such that for every pair {(d, x) with xe Hd there is a unique
arrow f:r—d of D with (Hf)e=x.

Many familiar constructions are naturally examples of universal
elements. For instance, consider an equivalence relation E on a set S,
the corresponding quotient set S/E consisting of the equivalence classes
of elements of S under E, and the projection p : S— S/E which sends each
se S to its E-equivalence class. Now S/E has the familiar property that
any function f on S which respects the equivalence relation can be re-
garded as a function on S/E. More formally, this means that if /: S— X
has fs= fs’ whenever sEs, then f can be written as a composite f = f'p
for a unique function f': S/E— X:

S—2 S/E

I i

s—L ., x.

This states exactly that (S/E, p) is a universal element for that functor
H : Set-—Set which assigns to each set X the set H X of all those functions
f:S—X for which sEs' implies fs= fs'.

Again, let N be a normal subgroup of a group G. The usual projection
p: G—G/N which sends each g e G to its coset pg=gN in the quotient
group G/N is a universal element for that functor H: Grp—Set which
assigns to each group G’ the set H G’ of all those homomorphisms f: G— G’
which kill N (have fN=1). Indeed, every such homomorphism factors
as f = f'p, for a unique f": G/N— G'. Now the quotient group is usually
described as a group whose elements are cosets. However, once the cosets
are used to prove this one “universal” property of p: G— G/N, all other
properties of quotient groups — for example, the isomorphism theorems —
can be proved with no further mention of cosets (see Mac Lane-Birk-
hoff [1967]). All that is needed is the existence of a universal element
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p of the functor H. For that matter, even this existence could be proved
without using cosets (see the adjoint functor theorem stated in § V.6).

Tensor products provide another example of universal elements.
Given two vector spaces V and V’ over the field K, the function H which
assigns to each vector space W the set HW = Bilin(V, V'; W) of all bi-
linear functions V x V'— W is the object function of a functor
H : Vecty— Set, and the usual construction of the tensor product provides
both a vector space V® ¥V’ and a bilinear function ® : VxV'->V® V",
usually written {v, v > v® ', so that the pair (V ® V', ®) is a universal
element for the functor H = Bilin(V, V'; —). This applies equally well
when the field K is replaced by a commutative ring (and vector spaces
by K-modules).

The notion “universal element” is a special case of the notion “universal
arrow”. Indeed, if * is the set with one point, then any element ec Hr
can be regarded as an arrow e: * — Hr in Ens. Thus a universal element
{r, e> for H is exactly a universal arrow from * to H. Conversely, if C
has small hom-sets, the notion “universal arrow” is a special case of the
notion “universal element”. Indeed, if S: D—C is a functor and ce C
is an object, then (r,u:c—Sr) is a universal arrow from ¢ to S if and
only if the pair {(r,ue C(c,Sr)) is a universal element of the functor
H=C(c,S —). This is the functor which acts on objects d and arrows
h of D by

d"’C(C,Sd), hl_)C(C’Sh)’

Hitherto we have treated universal arrows from an object ce C
to a functor S: D— C. The dual concept is also useful. A universal arrow
from S to c is a pair {(r,v) consisting of an object re D and an arrow
v:Sr—c with codomain ¢ such that to every pair {4, /) with f: Sd—c¢
there is a unique f": d—r with f =ve Sf’, as in the commutative diagram

d Sd—L—c
f sr i

3 v

r, Sr—2—c.

The projections p:axb—a, g:axb—b of a product in C (for
C = Grp, Set, Cat,...) are examples of such a universal. Indeed, given
any other pair of arrows f: c—a, g: c—b to a and b, there is a unique
h:c—axb with ph= f,gh=g. Therefore {p,q) is a “universal pair”.
To make it a universal arrow, introduce the diagonal functor
4:C—-CxC, with Ac={c,c). Then the pair f,g above becomes an
arrow {f,g>:dc—<a,b) in C x C, and {p, gD is a universal arrow from
4 to the object <{a, b).
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Similarly, the kernel of a homomorphism (in Ab, Grp, Rng, R-Mod, ...)
is a universal, more exactly, a universal for a suitable contravariant
functor.

Note that we say “universal arrow to §” and “universal arrow from S~
rather than “universal” and “couniversal”.

Exercises

1. Show how each of the following familiar constructions can be interpreted as a
universal arrow:
(a) The integral group ring of a group (better, of a monoid).
(b) The tensor algebra of a vector space.
(c) The exterior algebra of a vector space.
2. Find a universal element for the contravariant power set functor £ : Set®®— Set.
3. Find (from any given object) universal arrows to the following forgetful functors:
Ab— Grp, Rng— Ab (forget the multiplication), Top—Set, Set,— Set.
4. Use only universality (of projections) to prove the following isomorphisms of
group theory:
(a) For normal subgroups M, N of G with M CN, (G/M)/(N/M)=G/M.
(b) For subgroups S and N of G, N normal, with join SN, SN/N=S/SnN.
5. Show that the quotient K-module A4/S (S a submodule of 4) has a description by
universality. Derive isomorphism theorems.
. Describe quotients of a ring by a two-sided ideal by universality.
7. Show that the construction of the polynomial ring K[x] in an indeterminate x
over a commutative ring K is a universal construction.

=2}

2. The Yoneda Lemma

Next we consider some conceptual properties of universality. First,
universality can be formulated with hom-sets, as follows:

Proposition 1. For a functor S : D— C a pair {r,u: c— Sr) is universal
from ¢ to S if and only if the function sending each f':r—d into
Sf'ou:c— Sd is a bijection of hom-sets

D(r,d)= C(c, Sd). 1)

This bijection is natural in d. Conversely, given r and c, any natural iso-
morphism (1) is determined in this way by a unique arrow u:c— Sr such
that {r,u) is universal from c to S.

Proof. The statement that (r, u) is universal is exactly the statement
that f"—Sf’ou= f is a bijection. This bijection is natural in d, for if
g :d—d, then S(g’'f)ou=S8g>(Sf'ou)

Conversely, a natural isomorphism (1) gives for each object d of D
a bijection @, : D(r, d)— C(c, Sd). In particular, choose the objectd to ber;
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the identity 1, € D(r, ) then goes by ¢, to an arrow u:c—Srin C. For
any f':r—d the diagram

D(r,r)—*—C(c, Sr)
D(r,f’)J’ C517 2)

D(r, d)—2*4—C(c, Sd)

commutes because ¢ is natural. But in this diagram, 1, € D(r, r) is mapped
(top and right) to S f’= u and (left and bottom) to ¢,(f”). Since ¢, is a bi-
jection, this states precisely that each f:c— Sd has the form f=Sf"ou
for a unique f'. This is precisely the statement that {r,u) is universal.

If C and D have small hom-sets, this result (1) states that the functor
C(c,S —) to Set is naturally isomorphic to a covariant hom-functor
D(r, —). Such isomorphisms are called representations:

Definition. Let D have small hom-sets. A representation of a functor
K :D—Set is a pair {r, ), with r an object of D and

p:D(r,-)=K 3)

a natural isomorphism. The object r is called the representing object.
The functor K is said to be representable when such a representation exists.

Up to isomorphism, a representable functor is thus just a covariant
hom-functor D(r, —). This notion can be related to universal arrows as
follows.

Proposition 2. Let * denote any one-point set and let D have small
hom-sets. If {r,u:+— Kr) is a universal arrow from = to K:D—Set,
then the function p which for each object d of D sends the arrow f':r—d
to K(f")(ux) € Kd is a representation of K. Every representation of K is
obtained in this way from exactly one such universal arrow.

Proof. For any set X, a function f:* — X from the one-point set *
to X is determined by the element f(x)e X. This correspondence [+ f()
is a bijection Set(*, X)— X, natural in X eSet. Composing with K yields
a natural isomorphism Set(*, K —)--» K. This plus the representation p
of (3) gives
Set(x, K —)= K= D(r, —).

Therefore a representation of K amounts to a natural isomorphism
Set(, K —) =~ D(r, —). The proposition thus follows from the previous
one.

A direct proof is equally easy: Given the universal arrow u, the
correspondence f”+ K(f”) (u(+)) is a representation; given a representa-
tion v as in (3), v, maps 1 : r—r to an element of Kr, which is a universal
element, hence also a universal arrow *— Kr.
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2 &

Observe that each of the notions “universal arrow”, “universal
element”, and “representable functor” subsumes the other two. Thus, a
universal arrow from c to S : D— C amounts (Proposition 1) to a natural
isomorphism D(r,d)= C(c, Sd) and hence to a representation of the
functor C(c,S —): D—-»Set or equally well to a universal element for
the same functor.

The argument for Proposition 1 rested on the observation that each
natural transformation ¢ : D(r, —)-> K is completely determined by the
image under ¢, of the identity 1: »—r. This fact may be stated as follows:

Lemma ( Yoneda). If K : D — Set is a functor from D and r an object
in D ( for D a category with small hom-sets), there is a bijection
y:Nat(D(r, =), K) = 4
which sends each natural transformation o:D(r, —)=—K to a,1,, the
image of the identity r—r.

The proof is indicated by the following commutative diagram:

D(r,r)—=—K(r) r
I =D(r»f)l K J! (5)
d

D(ra d)_fd_)K(d)’

Corollary. For objects r,se D, each natural transformation
D(r, =)= D(s, —) has the form D(h, —) for a unique arrow h:s—r.

The Yoneda map y of (4) is natural in K and r. To state this fact
formally, we must consider K as an object in the functor category Set”,
regard both domain and codomain of the map y as functors of the pair
(K, r>, and consider this pair as an object in the category Set” x D. The
codomain for y is then the evaluation functor E, which maps each pair
{K,r) to the value Kr of the functor K at the object r; the domain is
the functor N which maps the object ¢K, r) to the set Nat(D(r, —), K)
of all natural transformations and which maps a pair of arrows F K — K/,
Sfir—r to Nat(D(f, —), F). With these observations we may at once
prove an addendum to the Yoneda Lemma:

Lemma. The bijection of (4) is a natural isomorphism y : N—» E between
the functors E, N :Set? x D— Set.

The object function r+ D(r, —) and the arrow function
(f: S—-’V)HD(f, _) : D(ra _)_'_)D(Ss _)
for fan arrow of D together define a full and faithful functor

Y: D°?— Set® (6)
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called the Yoneda functor. Its dual is another such functor
Y’ : D—Set®” (7
(also faithful) which sends f: s—r to the natural transformation
D(—, f): D(—,s)=D(—,r): D°*—Set.

D must have small hom-sets if these functors are to be defined (because
Set is the category of all small sets). For larger D, the Yoneda lemmas
remain valid if Set is replaced by any category Ens whose objects are sets
X, Y, ..., and for which Ens(X, Y) is the set of all functions from X to Y,
provided of course that D has hom-sets which are objects in Ens. (The
meaning of naturality is not altered by further enlargement of Ens;
see Exercise 4.)

Exercises
1. Let functors K, K': D— Set have representations {r, ) and {r, v, respectively.

Prove that to each natural transformation 1 : K- K, there is a unique morphism
h:r'—r of D such that

top=1y'e D(h, —): D(r, —=)=K'.
2. State the dual of the Yoneda Lemma (D replaced by D°P).
3. (Kan; the coyoneda lemma.) For K : D — Set, (x | K) is the category of ele-
ments x € Kd, Q: (* | K) — D is the projection x € Kd +»d and for each

aeD,a:(x ] K)— D is the diagonal functor sending everything to the constant
value a. Establish a natural isomorphism

Nat(K, D(a, —))= Nat(a, Q).

4. (Naturality is not changed by enlarging the codomain category.) Let E be a full
subcategory of E'. For functors K, L: D—E, with J : E— E' the inclusion, prove
that Nat(K, L)~ Nat(J K, J L).

3. Coproducts and Colimits

We introduce colimits by a variety of special cases, each of which is a
universal.

Coproducts. For any category C, the diagonal functor 4: C—Cx C
is defined on objects by 4(c)={c,¢)>, on arrows by A(f)=<{f, f>.
A universal arrow from an object {a,b> of C xC to the functor 4 is
called a coproduct diagram. It consists of an object ¢ of C and an arrow
{a,b)—{c,c) of CxC; that is, a pair of arrows i:a—c, j:b—c from
a and b to a common codomain ¢. This pair has the familiar universal
property: For any pair of arrows f:a—d, g:b—d there is a unique
h:c—dwithf = hoi, g = hoj. When such a coproduct diagram exists,
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the object ¢ is necessarily unique (up to isomorphism in C); it is written
c=allb or c=a+b and is called a coproduct object. The coproduct
diagram then is

a—sallbi-b;

the arrows i and j are called the injections of the coproduct a I1 b (though
they are not required to be injective as functions). The universality of this
diagram states that any diagram of the following form can be filled in
uniquely (at k) so as to be commutative:

a——allbi-b
oA i
d .

Hence the assignment { f, g>+h is a bijection

C(a,d)x C(b,d)y= C(a 11 b, d) 2)

[ ———

natural in d, with inverse h—<{hi, hj)>. If every pair of objects ¢,b in C
has a coproduct then, choosing a coproduct diagram for each pair, the
coproduct I1: C x C—C is a bifunctor, with A1 k defined for arrows
h:a—d', k:b—b" as the unique arrow hllk:allb—ad Il b with
(W k)i=i"h (hUk)j=jk (draw the diagram!).

The diagram (1) is more familiar in other guises. For example, in
Set take aI1 b to be a disjoint union of the sets a and b(i.e., a union of
disjoint copies of a and b), while i and j are the inclusion maps aCa Il b,
bCall b. Now a function h on a disjoint union is uniquely determined
by independently giving its values on a and on b; i.e, by giving the
composites hi and hj. This says exactly that diagram (1) can be filled
in uniquely at h. To be sure, a disjoint union is not unique, but it is unique
up to a bijection, as befits a universal.

The coproduct of any two objects exists in many of the familiar cate-
gories, where it has a variety of names as indicated in the following list:

Set disjoint union of sets,

Top disjoint union of spaces,

Top, wedge product (join two spaces at the base points),
Ab, R-Mod direct sum A® B,

Grp free product,

CRng tensor product R® S .

In a preorder P, a least upper bound aub of two elements a and b,
if it exists, is an element aub with the properties (i) a<aub, b<aub;
and (ii) if a<c and b =<c, then aub < c¢. These properties state exactly
that aub is a coproduct of a and b in P, regarded as a category.
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Infinite Coproducts. In the description of the coproduct, replace
CxC=C? by C* for any set X. Here the set X is regarded as a discrete
category, so the functor category C* has as its objects the X-indexed
families a={a, | xe X} of objects of C. The corresponding diagonal
functor 4: C— C¥ sends each ¢ to the constant family (all ¢,=c). A
universal arrow froma to 4 is an X-fold coproduct diagram; it consists
of a coproduct object Il a,eC and arrows (coproduct injections)
i.:a,—I a, of C with the requisite universal property. This universal
property states that the assignment fr{fi |xe X} is a bijection

C(l,a,,c)= [] Cla,,0), 3)
xeX
natural in c. In Set, a coproduct is an X-fold disjoint union.

Copowers. If the factors in a coproduct are all equal (a, =b for all x),

the coproduct I1_b is called a copower and is written X +b, so that

C(X+b,c)=C(b,c)*, 4

natural in ¢. For example, in Set, with b=7Y a set, the copower
X - Y= X x Yis the cartesian product of the sets X and Y.

Cokernels. Suppose that C has a null object z, so that for any two
objects b,ce C there is a zero arrow 0:b—z—c. The cokernel of
fra—bisthenan arrowu:b—esuchthat Yuf=0:a—e; (i) ifh: b—c
has hf=0, then h="hu for a unique arrow # :e—c. The picture is

a-Lsbtse  uf=0,
\3;;« (5
v
¢, hf=0.

In Ab, the cokernel of f: A— B is the projection B— B/f A to a quotient
group of B, and in many other such categories a cokernel is essentially a
suitable quotient object. However, in categories without a null object
cokernels are not available. Hence we consider more generally certain
“coequalizers”.

Coequalizers. Given in C a pair f,g:a—b of arrows with the same
domain a and the same codomain b, a coequalizer of {f, g} is an arrow
u:b—e(or, a pair {e,ud) such that () uf =ug; (1) ifh:b—chashf =hg,
then h="hu for a unique arrow h':e—c. The picture is

a=3b—>e uf=ug,
OB L (6)
v
¢, hf=hg.

A coequalizer u can be interpreted as a universal arrow as follows.
Let |} denote the category which has precisely two objects and two
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non-identity arrows from the first object to the second; thus the category is
-=3-. Form the functor category CH. An object in CY is then a functor
from +=2 - to C; that is, a pair {f,g>:a—b of parallel arrows a=3 b
in C. An arrow in C" from one such pair {f,g> to another {f’,¢’> is
a natural transformation between the corresponding functors; this
means that it is a pair (h, k) of arrows h:a—a and k: b— b in C

a:fb kg=gh,

d—=b, kf=fh,
g

which make the f-square and the g-square commute. There is also a
diagonal functor 4: C—C*, defined on objects ¢ and arrows r of C as

1
cT—c¢

c
1
Jr = 'lr Jr
Vel cl__1_.__> Vel :
1
insymbols, Ac={1,, 1,>and Ar = (r, r>. Now given the pair{ f, g> : a—b,
an arrow h:b—c with hf=hg is the same thing as an arrow

Chf=hg b {f,g>—<1, 1) in the functor category C*:
a—l =
g
hfl Jh hf=hg.
1

C=——¢

In other words, the arrows & which “coequalize” f and g are the arrows
from {f,g> to 4. Therefore a coequalizer {e,u) of the pair {f,g) is
just a universal arrow from < f, g> to the functor 4.

Coequalizers of any set of maps froma to b are defined in the same way.

In Ab, the coequalizer of two homomorphisms f,g: A—B is the
projection B— B/(f —g)A on a quotient group of B (by the image of
the difference homomorphism). In Set, the coequalizer of two functions
f,g:X—Yis the projection p: Y— Y/E on the quotient set of ¥ by the
least equivalence relation ECY x Y which contains all pairs { fx, gx)
for xe X. The same construction, using the quotient topology, gives
coequalizers in Top.

Pushouts. Given in C a pair f: a—b, g : a—c of arrows with a common
domain a, a pushout of { f, g)> is a commutative square, such as that on
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the left below

a—L—p a—~ b
ly lﬂ ly lh W)
c—2 sy, c—* s,

such that to every other commutative square (right above) built on f, g
there is a unique t:r—s with tu=h and tv=k. In other words, the
pushout is the universal way of filling out a commutative square on the
sides f,g. It may be interpreted as a universal arrow. Let ++—+—-
denote the category which looks just like that. An object in the functor
category C" "7 is then a pair of arrows {f, ¢> in C with a common
domain, while A(c) = {1, 1) is the object function of an evident “diagonal”
functor 4: C—C~ ~. A commutative square hf =kg as on the right
above can then be read as an arrow

Ny be—Ll-a— 1
hl jhf=kg lk
A(S) Se—g—S—1 S

in C™ 7 from {f,g)> to 4s. The pushout is a universal such arrow.
Its vertex r, which is uniquely determined up to (a unique) isomorphism, is
often written as a coproduct “over a”

V=bHaC=bH<f‘g>C,

and called a “fibered sum™ or (the vertex of) a “cocartesian square”.
In Set, the pushout of { f, g> always exists; it is the disjoint union b I ¢
with the elements f x and g x identified for each x € a. A similar construction
gives pushouts in Top — they include such useful constructions as ad-
junction spaces. Pushouts exist in Grp; in particular, if f and g above
are monic in Grp, the arrows u and v of the pushout square are also monic,
and the vertex r is called the “amalgamated product” of b with c.

Cokernel Pair. Given an arrow f:a—b in C, the pushout of f with
f is called the cokernel pair of f. Thus the cokernel pair of f consists of an
object r and a parallel pair of arrows u, v : b—r, with domain b, such that
uf=vf and such that to any parallel pair h,k:b—s with hf=kf
there is a unique t:r—s with tu=h and tv=k:

a—f—>b$r, uf=vf,

s

\2,
h .
+
N

, hf=kf.
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Colimits. The preceding cases all deal with particular functor categories
and have the following pattern. Let C and J be categories (J for index
category, usually small and often finite). The diagonal functor

A:C—-C’

sends each object ¢ to the constant functor 4c¢ — the functor which has
the value ¢ at each object i eJ and the value 1, at each arrow of J. If
f:c—c'is an arrow of C, 4 f is the natural transformation 4 f: Ac=+Ac’
which has the same value f at each object i of J. Each functor F:J—C
is an object of C’. A universal arrow <r, u) from F to 4 is called a colimit
(a“direct limit” or “inductive limit”) diagram for the functor F. It consists
of an object r of C, usually written rzgr_n)F or r = ColimF, together

with a natural transformation u:F-s>Ar which is universal among
natural transformations 7:F->Adc. Since Ac i1s the constant functor,
the natural transformation t consists of arrows 7;: F;—c¢ of C, one for
each object i of J, with 7, Fu =1, for each arrow u: i—j of J. Pictorially,
all the squares in the following schematic diagram (for a special choice of J)

Fe—F,——F—=3F,«———F,
SO
I —_ C = C = C = C

must commute. It is convenient to visualize these diagrams with all the
“bottom” objects identified. For this reason, a natural transformation
7:F=Ac, often written as 7: F-c, omitting 4, is called a cone from the
base F to the vertex c, as in the figure

Fvi Fu FJ 5, Fk

N

C

(all triangles commutative). In this language, a colimit of F:J—C
consists of an object I:igFeC and a cone u:F-A(LimF) from the

base F to the vertex Lim F which is universal: For any cone t: F=Ac

from the base F there is a unique arrow t': LimF—c with 7;=1"g; for
every index i € J. We call u the limiting cone or the universal cone (from F).

For example, let J =w = {0—1—2—3— ...} and consider a functor
F: w—8et which maps every arrow of @ to an inclusion (subset in set).
Such a functor F is simply a nested sequence of sets F, CF; CF,C --.
The union U of all sets F,, with the cone given by the inclusion maps
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F,— U, is LimF. The same interpretation of unions as special colimits

applies in Grp, Ab, and other familiar categories. The reader may wish to
convince himself now of what we shall soon prove (Exercise V.1.8): For J
small, any F : J — Set has a colimit.

Exercises

1. In the category of commutative rings, show that R—R®S«S, with maps
r—r®1l, I®s<is, is a coproduct diagram.

2. If a category has (binary) coproducts and coequalizers, prove that it also has
pushouts. Apply to Set, Grp, and Top.

3. In the category Matr, of § 1.2, describe the coequalizer of two m x n matrices
A, B (ie., of two arrows n—m in Matry).

4. Describe coproducts (and show that they exist) in Cat, in Mon, and in Grph.

5. If E is an equivalence relation on a set X, show that the usual set X/E of equiv-
alence classes can be described by a coequalizer in Set.

6. Show that a and b have a coproduct in C if and only if the following functor
is representable: C(a, —) x C(b, —): C—Set, by c¢+—C(a, c) x C(b, c).

7. (Every abelian group is a colimit of its finitely generated subgroups.) If 4 is an
abelian group, and J, the preorder with objects all finitely generated subgroups
S C A ordered by inclusion, show that A is the colimit of the evident functor
J,— Ab. Generalize.

4. Products and Limits

The limit notion is dual to that of a colimit. Given categories C, J,
and the diagonal functor 4:C—C’, a limit for a functor F:J—C
is a universal arrow {r,v) from 4 to F. It consists of an object r of C,
usually written r=‘I£n_F or LimF and called the limit object (the

“inverse limit” or “projective limit”) of the functor F, together with a
natural transformation v:Ar-F which is universal among natural
transformations 7: Ac—=F, for objects ¢ of C. Since Ac:J—C is the
functor constantly c, this natural transformation 7 consists of one arrow
7;: ¢—F; of C for each object i of J such that for every arrow u:i—j
of J one has 7;= Fuo ;. We may call 7:c=+F a cone to the base F from
the vertex c. (We say “cone to the base F” rather than “cocone”). The
universal property of v is this: It is a cone to the base F from the vertex
<Li_mF; for any cone 7 to F from an object c, there is a unique arrow

t:c—LimF such that 7;=yv;t for all i. The situation may be pictured as

——— LimF=LimF

1t
¢ .
K"' — —j 7
N\ s
’xl ./\‘j"’i v = limiting cone,
Fi Fu El

——
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each cone is represented by a commuting triangle (just one of many),
with vertex up; there is a unique arrow ¢t which makes all the added
(vertex down) triangles commute. As with any universal, the object
Lim F and its limiting cone v: LimF— F are determined uniquely by the
functor F, up to isomorphism in C.
The properties of Lim and Lim are summarized in the diagram
— —_

LimF = LimF———F—% > LimF = ColimF
e -0
i i i (1)
c F c,

T a

where the horizontal arrows are cones, the vertical arrows are arrows in C.
When the limits exist, there are natural isomorphisms

C(c,kiEF)gNat(Ac, F)=Cone(c, F), 2
Cone(F, c)=Nat(F,Ac)gC(L_im>F, ). 3

There are familiar names for various special limits, dual to those for
colimits:

Products. If J is the discrete category {1,2}, a functor F : {1, 2} —» C
is a pair of objects {a, b) of C. The limit object is called a product of a
and b, and is written a x b or aIl b; the limit diagram consists of ax b
and two arrows p, g (or sometimes pry, pr,),

a&-axbdbp,

called the projections of the product. They constitute a cone from the ver-
tex a x b, so by the definition above of a limit, there is a bijection of sets

C(c,axby= C(c,a)x C(c, b) e

natural in ¢, which sends each h:c—axb to the pair of composites
{ph,qh>. Conversely, given arrows f:c—a and g:c—b, there is a
unique h:c—axb with ph=f and gh=g. We write

h=(f,g) :c—axb

and call h the arrow with components f and g. We have already observed
(in § I1.3) that the product of any two objects exists in Cat, in Grp, in Top,
and in Mon; in these cases (and in many others) it is called the direct
product. In a preorder, a product is a greatest lower bound.

Infinite products. If J is a set (=discrete category = category with
all arrows identities), then a functor F:J—C is simply a J-indexed
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family of objects a; e C, while a cone with vertex ¢ and base a; is just a
J-indexed family of arrows f;:c—a;. A universal cone p;:II;a;,—a;
thus consists of an object II;a;, called the product of the factors a,,
and of arrows p, called the projections of the product, with the following
universal property: To each J-indexed family (=cone) f;: c—a; there is
a unique f

fie—=Mja;, with pf=f;, jeJ.

The arrow f uniquely determined by this property is called the map
(to the product) with components f;, jeJ. Also {f;|jeJ}—f is a bi-
jection

I;C(c,ap=Clc, I1;a)), (5)

natural in ¢. Here the right hand product is that in C, while the left-hand
product is taken in Set (where we assume that C has small hom-sets).
Observe that the hom-functor C(c, —) carries products in C to products
in Set (see § V.4). Products over any small set J exist in Set, in Top,
and in Grp; in each case they are just the familiar cartesian products.

Powers. If the factors in a product are all equal (a; = b e C for all j)
the product IT;a; = IT;b is called a power and is written 7I;b = b’, so the

Cle, b = C(c, b, (6)

natural in c. The power on the left is that in Set, where every small power
X7 exists (and is the set of all functions J— X).

Equalizers. If J=]|, a functor F:||—C is a pair f,g:b—a of
parallel arrows of C. A limit object d of F, when it exists, is called an
equalizer (or, a “difference kernel”) of f and g. The limit diagram is

d5bma, fe=ge (7

(the limit arrow e amounts to a cone a«—d—b from the vertex d). The
limit arrow is often called the equalizer of f and g; its universal property
reads: To any h:c—b with fh=gh there is a unique 4 :c—d with
eh'=h.

In Set, the equalizer always exists; d is the set {xeb| fx=gx} and
e:d—b is the injection of this subset of b into b. In Top, the equalizer
has the same description (d has the subspace topology). In Ab the equalizér
d of f and g is the usual kernel of the difference homomorphism
f —g: b—a.

Equalizers for any set of arrows from b to a are described similarly.
Any equalizer e is necessarily a monic.
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Pullbacks. If J = (— - <), a functor F : (— + «)— C is a pair of arrows
b-Ha<?-d of C with a common codomain a. A cone over such a functor
is a pair of arrows from a vertex c such that the square (on the left)

c—%t s bx ,d—4—d
b ®
b—T——Pa, b——i—-—»a

commutes. A universal cone is then a commutative square of this form,
with new vertex written b x ,d and arrows p, g as shown on the right,
such that for any square with vertex ¢ there is a unique r:c—bx d
with k=gr, h=pr. The square formed by this universal cone is called a
pullback square or a “cartesian square” and the vertex b x ,d of the universal
cone is called a pullback, a “fibered product”, or a product over (the
object) a. This construction, possible in many categories, first became
prominent in the category Top. If g : d—a is a “fiber map” (of some type)
with “base” a and f is a continuous map into the base, then the projec-
tion p of the pullback is the “induced fiber map” (of the type considered).

The pullback of a pair of equal arrows f: b—a«—b: f, when it exists,
is called the kernel pair of f. Itis an object d and a pair of arrows p, g : d—b
such that fp= fq:d—a and such that any pair h, k:c—a with fh= fk
can be written as h=pr, k=gqr for a unique r: c—d.

If J=0 is the empty category, there is exactly one functor 0—C;
namely, the empty functor; a cone over this functor is just an object
ce C (i.e., just a vertex). Hence a universal cone on 0 is an object t of C
such that each object c e C has a unique arrow c--»t. In other words,
a limit of the empty functor to C is a terminal object of C.

Limits are sometimes defined for diagrams rather than for functors.
In detail, let C be a category, UC the underlying graph of C, and G
any graph. Then a diagram in C of shape G is a morphism D: G— U C of
graphs. Now define a cone u:c-+ D to be a function assigning to each
object ie G an arrow p;:¢—D; of C such that Dhoy;=p; for every
arrow h: i-——j of the graph G. This is just the previous definition of a cone
(a natural transformation u:A4c-»D), coupled with the observation
that this definition uses the composition of arrows in C but not in the
domain G of D. A limit for the diagram D is now a universal cone 1 : ¢ D.

This variation on the definition of a limit yields no essentially new
information. For, let F G be a free category generated by the graph G,
and P:G— U(F G) the corresponding universal diagram. Then each
diagram D:G—UC can be written uniquely as D=UD'-P for a
(unique) functor D': FG—C, and one readily observes that limits
(and limiting cones) for D’ correspond exactly to those for D.
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Exercises

L.

2.

W

10.

5.

In Set, show that the pullback of f: X—Z and g: Y—Z is given by the set of
pairs {{x,y> |xe X, yeY, fx=gy}. Describe pullbacks in Top.

Show that the usual cartesian product over an index set J, with its projections,
is a (categorical) product in Set and in Top.

. If the category J has an initial object s, prove that every functor F:J—C to

any category C has a limit, namely F(s). Dualize.

. In any category, prove that f: a—b is epi if and only if the following square is

a pushout:

. In a pullback square (8), show that f monic implies g monic.
. In Set, show that the kernel pair of f: X — Y is given by the equivalence relation

E={{x,x")|x,x"e X and fx = fx}, with suitable maps EZ3 X.

. (Kernel pairs via products and equalizers.) If C has finite products and equalizers,

show that the kernel pair of f: a~> b may be expressed in terms of the projections
Pi,D2:GXa—a as p e, p,e, where e is the equalizer of fp,, fp,:axa—b
(cf. Exercise 6). Dualize.

. Consider the following commutative diagram

. > — e

Ll

r———F e ————>

(a) If both squares are pullbacks, prove that the outside rectangle (with top
and bottom edges the evident composites) is a pullback.

(b) If the outside rectangle and the right-hand square are pullbacks, so is the
left-hand square.

. (Equalizers via products and pullbacks.) Show that the equalizer of f,g:b—a

may be constructed as the pullback of
(1., f):b—bxa—b:(1,,9).

If C has pullbacks and a terminal object, prove that C has all finite products
and equalizers.

Categories with Finite Products

A category C is said to have finite products if to any finite number of
objects ¢y, ..., ¢, of C there exists a product diagram, consisting of a
product object ¢; x --- x¢, and n projections p;: ¢, X .- X¢,~—¢;, for
i=1,...,n, with the usual universal property. In particular, C then has a
product of no objects, which is simply a terminal object ¢ in C, as well -
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as a product for any two objects. The diagonal map 6. : c— ¢ x cis defined
for each ¢ by p,d.=1,=p,9,; it is a natural transformation.

Proposition 1. If a category C has a terminal object t and a product
diagrama«—a x b—b for any two of its objects, then C has all finite products.
The product objects provide, by {a,b)+>axb, a bifunctor CxC—C.
For any three objects a, b, and ¢ there is an isomorphism

a=d, . ax(bxc)=(axb)xc (1)
natural in a, b, and c. For any object a there are isomorphisms

A=l,txaza =g, axt

IR

a 2

which are natural in a, where t is the terminal object of C.

Proof. A product of one object ¢ is just the diagram c¢— c formed
with the identity map of ¢, so is present in any category. Now suppose
that any two objects a,,a, of C have a product. If we choose one such
productdiagram a, «—a, x a, —a, for each pair of objects, then x becomes
a functor when f; x f, is defined on arrows f; by p/{fy x f3)= fip:.
One may then form a product of three objects a, b, and ¢ by forming the
iterated product object a x (b x ¢) with projections as in the diagram

b
"t
a——ax(bxc)—bxc

s

The projections to a and the two indicated composites give three arrows
from ax(bxc) to a, b, and ¢ respectively. By the universality of the
given projections (from two factors) it follows readily that these three
arrows form a product diagram for g, b, and ¢. Product diagrams for
more factors can be found by iteration in much the same way. For three
factors, one could also form a product diagram by the iteration (a x b) x ¢;
the uniqueness of the product objects then yields a unique isomorphism
a x (b x ¢)= (a x b) x c commuting with the given projections to a, b, and c.
This is the isomorphism « of the proposition, and it is natural. Finally,
sinceevery object has a unique arrow to the terminal object t, the diagram
t«—a-Lais a product diagram for t and a. The uniqueness of the product
object txa then yields an isomorphism A,:txa—a, and similarly
0, : @ x t — a. Naturality of 4 and ¢ follows. These isomorphisms, o, 4
and p so constructed are said to be “canonical.”

The dual result holds for finite coproducts; in particular a coproduct
of no factors is an initial object. For m objects a;, a coproduct diagram
consists of m injections i;:a;—a, I ---Ia,, and any map f:a,I.--la,—c
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is uniquely determined by its m cocomponents f-i;= f;:a;—c for
j=1,...,m. In particular, if C has both finite products and finite co-
products, the arrows

a,I---Ua,—b; x - xb,

from a coproduct to a product are determined uniquely by an mxn
matrix of arrows f;,, =p, fi;:a,—b,, where j=1,...,m, k=1,...,n In
categories of finite dimensional vector spaces, where finite coproduct co-
incides with finite product, this matrix is exactly the usual matrix of a
linear transformation relative to given bases in its domain and codomain.

More generally, let C be any category with a null object z (an object
z which is both initial and terminal), so that the arrow a—z— b through
z is the zero arrow 0:a—b. If C also has finite products and finite co-
products, there is then a “canonical” arrow

all---a,—a, x--xa

n

of the coproduct to the product ~ namely, that arrow which has the
identity n x n matrix (identities on the diagonal and zeroes elsewhere).
This canonical arrow may be an isomorphism (in Ab or R-Mod), a
proper monic (in Top, or Set,) or a proper epi (in Grp).

Exercises

1. Prove that the diagonal 8,: c— ¢ x ¢ is natural in c.
2. In any category with finite products, prove that the following diagrams in-
volving the canonical maps «, o, 1 of (1) and (2) always commute:

ax(bx(exd)-S@axbyx(cxd)-S{(axb)xc)xd
1xa axt

a

ax(bxeyxd)———2———(ax(bxc))xd,

tx(bxc)—2>(txb)xc ax(txc)—E-s(axtyxc
2 ax1 1x2 ex1
bxc¢ = bxc, axc = axc.

3. (a) Prove that Cat has pullbacks (cf. Exercise 11.6.5).
(b) Show that the comma categories (b | C) and (C |a) are pullbacks in Cat.
4. Prove that Cat has all small coproducts.
5. If B has (finite) products show that any functor category BC also has (finite)
products (calculated ~pointwise”).
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6. Groups in Categories

We return to the ideas of the introduction about expressing algebraic
identities by diagrams. Let C be a category with finite products and a
terminal object ¢. Then a monoid in C is a triple {c,u:cxc—g,
y : t — ¢, such that the following diagrams commute:

cx(cxc)—»(cxc)xc—»cxc

IX"I lu (1)

cxXce e > C,
txe— yexeet X ext
[ O g
C = c == C.

(This is exactly the definition of the introduction, except for the explicit
use in the first diagram of the associativity isomorphism « of (5.1).)
We now define a group in C to be a monoid {c, u, ) together with an
arrow { : c—c which makes the diagram (with 6, the diagonal)

c—% sexe—2 ,exe
l l“ (3)
t u c

commute (this suggests that { sends each xec to its right inverse).

By similar diagrams, one may define rings in C, lattices in C, etc.;
the process applies to any type of algebraic system defined by operations
and identities between them.

It is a familiar fact that if G is an (ordinary) group, so is the function
set G* for any X; indeed the product of two functions f, f’ in G* is
defined pointwise, as (f+ f)(x)=fx- f'x. In the present context this
construction takes the following form.

Proposition 1. If C is a category with finite products, then an object ¢
is a group (or, a monoid) in C if and only if the hom functor C(— c) is
a group (respectively, a monoid) in the functor category Set¢”.

Proof. Each multiplication p for ¢ determines a corresponding
multiplication I for the hom-set C(—, ¢}: C°®—Set, as the composite
C(~, ) x C(~, ) C(—, cx )= C(—, c)
where v = u, = C(—, ), while the first natural isomorphism is that given
(cf. (4.4)) by the definition of the product object ¢ x ¢. Conversely, given
any natural v as above, the Yoneda lemma proves that there is a unique
p:cxc—c with v=p,. A “diagram chase” shows that p is associative if
and only if 7 is; the chase uses the definition of the associativity iso-
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morphism « by its commutation with the projections of the three-fold
product. The rest of the proof is left as an exercise.

Since the functor category Set®” always has finite products (Exercise
5.5) we can consider objects ¢ in C such that C(—,c¢) is a group in this
functor category even if the category C does not have finite products;
however, I know no real use of this added generality.

Exercises

(Throughout, C is a category with finite products and a terminal object ¢.)

1. Describe the category of monoids in C, and show that it has finite products.

2. Show that the category of groups in C has finite products.

3. Show that a functor T : B — Set is a group in Set® if and only if each Tb, for b
an object of B, is an (ordinary) group and each Tf, f in B, is a morphism of
groups.

4. (a) If 4 is an abelian group (in Set) show that its multiplication 4 x 4 — A4,

its unit 1 — A4, and its inverse 4 — A are all morphisms of groups (where
A x A is regarded as the direct product group). Deduce that 4 with these
structure maps is a group in Grp.

(b) Prove that every group in Grp has this form.

7. Colimits of Representable Functors

The utility of representable functors hom(d, —) is emphasized by the fol-
lowing basic result about set-valued functors.

Theorem 1. Any functor K : D — Sets from a small category D to the
category of sets can be represented (in a canonical way) as a colimit of a
diagram of representable functors hom(d, —) for objects d in D.

Proof. First, given K, we construct the needed diagram category (for
the colimit) J as the so-called “category of elements” of K; that is, as the
comma category 1 | K (see §11.6.(3)) with objects pairs (d, x) of elements
x € K(d) for d e D and with arrows f : (d,x) — (d’,x’) those arrows
f:d — d' of D for which K(f)x = x’ (more briefly, f * x = x’). We then
claim that the given functor X is the colimit of the diagram on 1 | X
given by the functor

M :JP - Sets?

which sends each object (d,x) to the hom-functor D(d,—) and each
arrow f to the induced natural transformation f* : D(d’,—) — D(d, —).
Then the Yoneda isomorphism,

y~: K(d) —» Nat(D(d,—),K),
yields a cone in Sets? over the base M to K, as displayed by the arrows to
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K at the lower left of the following figure:

d,x) <L (@

J: fix=x,
M J J f:d—d
Sets?. D, =) L — D@,-) (1)
1 yx
y XJv y"lz J(y—lzl
G —— >L

We claim that this cone to K is a colimiting cone over D(d, —). First,
consider any other cone over D(d,—) to the vertex L, some functor
L:D — Sets. The arrows of this cone (arrows in Sets?) are natural
transformations D(d,—) — L, hence are given by the Yoneda lemma
in the form y~!z: D(d,—) — L for some z e L(d) as well as y~!7':
D(d’',—) — L, where (since it a cone) z/ = f z.

To show that this cone to the vertex K is universal, we must construct
a unique natura] transformation € : K — L which carries the first cone
into the second one. So for each x € K(d), we start from the object (d, x)
of J°P, as at the top in the diagram (1), and set

Ojx =z
for the z € L(d) present in the natura) transformation y~!z in the cone for
L. To show 8 natural, consider any f : d — d’ with f x = x/. Then also
fz=72, and since y~! is natural, f(y~'2) = y~}(f z) = y~'2. Therefore,
0 is natural. It is evidently unique, q.e.d.

A dual argument will show that any contravariant functor D¢ —
Sets can be represented as a colimit of a diagram of representable con-
travariant functors hom(—, 4).

For C a small category, a contravariant functor F : C°? — Sets is
often called a presheaf. The intuition comes from the case where C is the
category of open sets U of some topological space and F(U) is the set of
smooth (in some sense) functions defined on U, while an inclusion V < U
gives the map F(U) — F(¥') which restricts a function on U to one on V.
The functor category Sets” of all these functors (presheaves) is often
written as C. Certain of these functors (with a “matching” property) are
called sheaves; see Mac Lane-Moerdijk [1992].

Notes.

The Yoneda Lemma made an early appearance in the work of the Japanese pioneer
N. Yoneda (private communication to Mac Lane) [1954]; with time, its impor-
tance has grown.
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Representable functors probably first appeared in topology in the form of “uni-
versal examples”, such as the universal examples of cohomology operations (for
instance, in J. P. Serre’s 1953 calculations of the cohomology, modulo 2, of Eilenberg-
Mac Lane spaces).

Universal arrows are unique only up to isomorphism; perhaps this lack of
absolute uniqueness is why the notion was slow to develop. Examples had long
been present; the bold step of really formulating the general notion of a universal
arrow was taken by Samuel in 1948; the general notion was then lavishly popularized
by Bourbaki. The idea that the ordinary cartesian products could be described by
universal properties of their projections was formulated about the same time
(Mac Lane [1948, 1950]). On the other hand the notions of limit and colimit have
a long history in various concrete examples. Thus colimits were used in the proofs
of theorems in which infinite abelian groups are represented as unions of their
finitely generated subgroups. Limits (over ordered sets) appear in the p-adic
numbers of Hensel and in the construction of Cech homology and cohomology
by limit processes as formalized by Pontrjagin. An adequate treatment of the
natural isomorphisms occurring for such limits was a major motivation of the
first Eilenberg-Mac Lane paper on category theory [1945]. E. H. Moore’s general
analysis (about 1913) used limits over certain directed sets. In all these classical cases,
limits appeared only for functors F:J— C with J a linearly or partly ordered set.
Then Kan [1960] took the step of considering limits for all functors, while Freyd
[1964] for the general case used the word “root” in place of ~limit”. His followers
have chosen to extend the original word “limit” to this general meaning. Properties
special to limits over directed sets will be studied in Chapter IX.



IV. Adjoints

1. Adjunctions

We now present a basic concept due to Kan, which provides a different
formulation for the properties of free objects and other universal con-
structions. As motivation, we first reexamine the construction (§ I11.1)
of a vector space Vy with basis X. For a fixed field K consider the functors

14
Set = Vetg,

where, for each vector space W, U(W) is the set of all vectors in W,
so that U is the forgetful functor, while, for any set X, V(X) is the vector
space with basis X. The vectors of V(X) are thus the formal finite linear
combinations X r;x; with scalar coefficients ;e K and with each x; € X,
with the evident vector operations. Each function g : X — U(W) extends
to a unique linear transformation f:V(X)— W, given explicitly by
f(Zrx)=2rlgx;) (ie., formal linear combinations in V(X) to actual
linear combinations in W). This correspondence ¥ : g+ f has an inverse
@:f—f| X, the restriction of f to X, hence is a bijection

@ : Vet (V(X), W)= Set(X, U(W)).

This bijection ¢ = @y , is defined “in the same way” for all sets X and
all vector spaces W. This means that the ¢y  are the components of a
natural transformation ¢ when both sides above are regarded as functors
of X and W. It suffices to verify naturality in X and in W separately.
Naturality in X means that for each arrow h: X'— X the diagram

Vet (V(X), W) —2— Set(X, U(W))

(Vhy* "

Vet (V(X'), W) —2— Set(X’, UW)),

where h* g = g o h, will commute. This commutativity follows from the
definition of ¢ by a routine calculation, as does also the naturality in W.
Note next several similar examples.

75
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The free category C=FG on a given (small) graph G is a functor
Grph— Cat: it is related to the forgetful functor U : Cat— Grph by the
fact (§ 11.7) that each morphism D : G— U B of graphs extends to a unique
map D': FG—B of categories; moreover, D—D’ is a natural isomor-
phism

Cat(F G, B) = Grph(G, UB).

In thecategory of small sets,each functiong : $ x T— R oftwo variables
can be treated as a function g g : S — hom(7T, R) of one variable (in S)
whose values are functions of a second variable (in T); explicitly,
[(pg)sit = g(s,t) for se S, t € T. This describes ¢ as a bijection

¢ : hom(S x T, R) = hom(S,hom(T, R)) .
It is natural in S, T, and R. If we hold the set T fixed and define functors
F,G:Set—Set by F(S)=Sx T, G(R)=hom(T, R), the bijection takes
the form
hom(F(S), R) = hom(S, G(R))

natural in § and R, and much like the previous examples.
For modules A4, B, and C over a commutative ring K there is a
similar isomorphism

hom(A ® B, C) = hom(A4, homg(B, C))
natural in all three arguments.

Definition. Let A and X be categories. An adjunction from X to A
is a triple {F, G, ) : X — A, where F and G are functors

F
X<__"G_’A,

while @ is a function which assigns to each pair of objects xe X, ac A a
bijection of sets
=0, A(Fx,a)= X(x,Ga) 1
which is natural in x and a.

Here the left hand side A(Fx, a) is the bifunctor
X x 42X gor o 4 B0 Gt
which sends each pair of objects {x, a) to the hom-set A(Fx, a), and the
righthandsideis asimilar bifunctor X°? x A —Set. Therefore the naturality
of the bijection ¢ means that for all k:a—a’ and h:x'—x both the
diagrams:

A(Fx,a)—%— X(x, Ga) A(Fx,a)—&— X (x, Ga)

k.l l(ck» (Fhy* J J"* )

A(Fx, d)—2— X (x, Ga)) A(Fx,0—2— X(x', Ga)
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will commute. Here k,, is short for A(Fx, k), the operation of composition
with k, and h* = X(h, Ga).

This discussion assumes that all the hom-sets of X and A4 are small.
If not, we just replace Set above by a suitable larger category Ens of sets.

An adjunction may also be described without hom-sets directly in
terms of arrows. It is a bijection which assigns to each arrow f: Fx—a
an arrow ¢ f =rad f: x— Ga, the right adjunct of f, in such a way that
the naturality conditions of (2),

plkof)=Gk-of, @(f-Fhy=¢fh, 3

hold for all f and all arrows h:x'—x and k:a—a'. It is equivalent to
require that ¢ ~! be natural; i.e., that for every h, k and g: x—Ga one

has
¢ Ngh=¢ 'goFh, ¢ Y Gkog)=k-p 'g. (4)

Given such an adjunction, the functor F is said to be a left-adjoint
for G, while G is called a right adjoint for F. (Some authors write F—G;
others say that F is the ~adjoint” of G and G the “coadjoint” of F, but
other authors say the opposite; therefore we shall stick to the language of
“left”” and “right” adjoints.)

Every adjunction yields a universal arrow. Specifically, set a=Fx
in (1). The left hand hom-set of (1) then contains the identity 1 : Fx— Fx;
call its ¢-image 1. By Yoneda’s Proposition III.2.1, this #,is a universal
s Nix—GFx, 1,=0(lz),
from xe X to G. The adjunction gives such a universal arrow 15, for
every object x. Moreover, the function x>, is a natural transformation
I,— G F because every diagram

x—= 5>GFx'

hl Jm

x —=—GFx
is commutative. This one proves by the calculation
GFhe@o(lp)=@(Fholp)=@(lp Fhy=¢(lg)h.

based on the Eq. (3) describing the naturality of ¢. This calculation may
also be visualized by the commutative diagram

A(FX | Fx') =R, A(Fx', Fx) <% A(Fx, Fx)

| | X

XX, GFX ) X(X', GFx)e——X(x, GFx),

(G Fhyx

where h* = X (h, 1) and h, = X (1, h).
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The bijection ¢ can be expressed in terms of the arrows 7, as
o()=G(f)n, for f:Fx—a; )
indeed, by the naturality (3) of @ we méy compute that
o(f) =9(fo1rx) = Gf oplpx= Gf o, .

This computation may be visualized by chasing 1 around the commutative
square

A(Fx, FX)—2— X(x, GFx) I,
Jf* J(Gf)a I I
A(Fx,a)—2— X(x, Ga) folpf=Gfon,.

Dually, the adjunction gives a universal arrow from F. Indeed,
set x = Ga in the adjunction (1). The identity arrow 1 : Ga— Ga is now
present in the right-hand hom-set; its image under ¢! is called e,

e, FGa—a, e=0"%lg,), acA,

and is a universal arrow from F to a. As before, ¢ is a natural transforma-
tion ¢: F G=1,, and

¢ Yg)=¢,°Fg for g:x—Ga.
Finally, take x = Ga. Then g, = ¢ ~*(l;,) gives, by the formula (5) for ¢,
lga=oles) = Gle,) o Mg, -
This asserts that the composite natural transformation
G—"2»GFG—L—G

is the identity transformation.
To summarize, we have proved

Theorem 1. An adjunction {F, G, ¢)>: X — A determines
(i) A natural transformation n : Iy- G F such that for each object x the
arrow 1, is universal to G from x, while the right adjunct of each f: Fx—ais

¢f=Gfon.:x—Ga; (6)

(i) A natural transformation e¢: F G-I, such that each arrow g, is
universal to a from F, while each g : x— G a has left adjunct

9o 'g=¢g,cFg:Fx—a. (N
Moreover, both the following composites are the identities (of G, resp. F).
G—% ,GFG—"-G, F—E ,FGF—fF. (8)
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We call » the unit and ¢ the counit of the adjunction. (Formerly,
we called  a “front adjunction” and ¢ a “back adjunction”.)

The given adjunction is actually already determined by various
portions of all these data, in the following sense.

Theorem 2. Eachadjunction{F, G, ¢) : X — Aiscompletely determined
by the items in any one of the following lists:

(i) Functors F, G, and a natural transformation n:1y—=GF such
that each n,.: x— G F x is universal to G from x. Then ¢ is defined by (6).

(i1) The functor G: A— X and for each x € X an object Fyxe A and
a universal arrow n,:x— GFyx from x to G. Then the functor F has
object function Fy and is defined on arrows h: x—x' by GFhey,=#,°h.

(iil) Functors F, G, and a natural transformation ¢: F G- 1, such
that each ¢, : F Ga—a is universal from F to a. Here ¢~ is defined by (7).

(iv) The functor F: X — A and for each ae A an object Gyae X and
an arrow g, F Goa— a universal from F to a.

(v) Functors F, G and natural transformations n:Iy—=GF and
e: F G=1, such that both composites (8) are the identity transformations.
Here ¢ is defined by (6) and ¢~ by (7).

Because of (v), we often denote the adjunction <{F,G,¢> by
(F,G,n,e): X—A.

Proof. Ad (i): The statement that #, is universal means that to each
f:x—Ga there is exactly one g as in the commutative diagram
n

Fx - x———GFx
g \ éGg
a Ga.

This states precisely that 8(g) = Gg o, defines a bijection

f:A(Fx,a) — X(x,Ga) .
This bijection § is natural in x because # is natural, and natural in a be-
cause G is a functor, hence gives an adjunction {F, G,8). In case n was
the unit obtained from an adjunction {F, G, ¢), then 8 = ¢.

The data (ii) can be expanded to (i), and hence determine the adjunc-
tion. In (i) we are given simply a universal arrow {Fyx,#,> for every
object x € X; we shall show that there is exactly one way to make F,
the object function of a functor F for which # : Iy~ G F will be natural.
Specifically, for each h:x—x’ the universality of #, states that there is
exactly one arrow (dotted)

Fyx x—=GFyx

lh |
i !

Fox' x'—I= GFyx'
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which can make the diagram commute. Choose this arrow as
Fh:Fyx—F,x'; the commutativity states that # is now natural, and it is
easy to check that this choice of Fh makes F a functor.

The proofs of parts (iii) and (iv) are dual.

To prove part (v) we use 1 and ¢ to define functions

A(Fx, a)==X(x, Ga)

by ¢ f =G fon, for each f: Fx—a and 8g=¢,° Fg for each g: x— Ga.
Then since G is a functor and # is natural

@0g=Ge,°cGFgon,=Geong,o4.

But our hypothesis (8) states that Gg,<#n,=1. Hence ¢ 8 =id. Dually
0@ =1id. Therefore ¢ is a bijection (with inverse §). It is clearly natural,
hence is an adjunction (and, if we started with an adjunction, it is the one
from which we started).

This theorem is very useful. For example, parts (ii) and (iv) construct
an adjunction whenever we have a universal arrow from (or to) every
object of a given category. For example, the category C has finite products
when for each pair <{a, b) € CxC there is a universal arrow from
A4:C—CxCto<a,b). By the theorem above we conclude that the func-
tion <a,b)> —axb giving the product object is actually a functor
C x C—C, and that this functor is right adjoint to the diagonal functor 4:

@ :(CxC)(dc,<a, b)) = C(c,axb).
Using the definition of the arrows in C x C, this is
@:C(c,a)x C(c,by=C(c,axb).

The counit of this adjunction (set c=axb on the right) is an arrow
{axb,axby—<a,by; it is thus just a pair of arrows a<—axb—b;
namely, the projections p:axb—a and g:axb—b of the product.
The adjunction ¢ ~! sendseach f: c—a x bto the pair {pf, qf > ; this is the
way in which ¢ is determined by the counit .

Similarly, if the category C has coproducts {a,b)>r>allb, they
define the coproduct functor C x C — C which is a left adjoint to 4:

Clall b,c)=(Cx C){a, b, Ac).

All the other examples of limits (when they always exist) can be similarly
read as examples of adjoints. In many further applications, it turns
out that proving universality is an easy way of showing that adjoints
are present.
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On the other hand, part (v) of the theorem describes an adjunction
by two simple identities

F—f1 LFGF GFG1—G
N JnF GnJ y (9)
F G

on the unit and counit of the adjunction. These triangular identities
make no explicit use of the objects of the categories A and X, and so are
easy to manipulate. As we shall soon see, this is convenient for discussing
properties of adjunctions. (For some authors, these identities are said to
make # a “quasi-inverse” to &.)

Corollary 1. Any two left-adjoints F and F' of a functor G: A—X
are naturally isomorphic.

The proof is just an application of the fact that a universal arrow,
like an initial object, is unique up to isomorphism. Explicitly, adjunctions
(F, G, @) and (F', G, ¢") give to each x two universal arrows x—GFx
and x— G F'x; hence there is a unique isomorphism 8 : Fx— F'x with
GO,-n,=n; it is easy to verify that 8: F—= F’ is natural.

Corollary 2. A functor G: A— X has a left adjoint if and only if,
for each x € X, the functor X (x, Ga) is representable as a functor of ae A.
If ¢:A(Fyx,a)= X(x, Ga) is a representation of this functor, then F, is
the object function of a left-adjoint of G for which the bijection ¢ is natural
in a and gives the adjunction.

This is just a restatement of part (ii) of the theorem. Equivalently,
G has a left-adjoint if and only if there is a universal arrow to G from every
xe X.

We leave the reader to state the duals.

Adjoints of additive functors are additive,

Theorem 3. If the additive functor G: A — M between Ab-categories
A and M has a left adjoint F : M — A, then F is additive and the adjunction
bijections
@:A(Fm,a)= M(m, Ga)

are isomorphisfns of abelian groups (for all me M, ac A).

Proof. If n: I GF is the unit of the adjunction, then ¢ may be
written as ¢ f =G fon, for any f: Fm—a. If also f': Fm—a, the ad-
ditivity of G gives

oS+ ) =G+ M= Gf+GCfMu=GC ety +Gfon,=pf+of"
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Therefore ¢ is 2 morphism of abelian groups. Next take g,g’ : m—n
in M. Since # is natural,

GFg+g)em=19+39) =19 +1.9".
On the other hand, since G is additive,
G(Fg+Fg')en,=(GFg+GFgm,=GFgen,,+GFg'en,=n,9+1,9".

The equality of these two results and the universal property of 1,, show
that F(g+¢')=Fg+ Fg'. Hence F is additive.
Dually, any right adjoint of an additive functor is additive.

Exercises

1. Show that Theorem 2 can have an added clause (and its dual):
(vi)} A functor G: 4— X and for each xe X a representation ¢, of the functor
X(x,G —): A—Set.

2. (Lawvere.) Given functors G: 4 — X and F: X — A4, show that each ad-
junction (F, G, ¢) can be described as an isomorphism £ of comma categories
such that the following diagram commutes

g:(FlLi=Ux]G)

L

XxA = Xx4.

Here the vertical maps have components the projection functors P and Q of
11.6(5).

3. For the adjunction {4, x, ¢> — product right adjoint to diagonal — show that
the unité, : ¢— ¢ x cfor each object ¢ € Cis the unique arrowsuch that the diagram

C
/ EAN
.

Cgexepc

commutes. (This arrow &, is often called the diagonal arrow of c.) If C =Set,
show that é,x ={x, x) for xec.

4. (Paré.) Given functors G: 4 — X and K : X — 4 and natural transformations
e:KG—=id,, ¢:idy— GK such that Ge-9G=1;: G->GK GG, prove that
eK - Kg:K->K isanidempotent in AX and that G has a left adjoint if and only if
this idempotent splits; explicitly if ¢eK + Ke splits as o+ with f-a=1 and
B: K- F, then F is a left adjoint of G with unit G - ¢ and counit ¢ - 2 G.

2. Examples of Adjoints

We now summarize a number of examples of adjoints, beginning with
a table of left-adjoints of typical forgetful functors.
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Forgetful functor
U : R-Mod—Set

U : Cat— Grph

U : Grp—Set

U : Ab—Set

U : Ab— Grp

U : R-Mod— Ab

U : R-Mod-S— R-Mod
U : Rng—Mon

(cf. Exercise II1.1.1)
U: K-Alg— K-Mod

U : Fid— Dom,,

(cf. §I11.1)
U : Compmet— Met

Left adjoint F

X—FX

Free R-module, basis X
G—CG

Free category on graph G
X—FX

Free group, generators
xeX

X—F,X

Free abelian group on X
G—G/[G, G]

Factor commutator group
A—R®A

A—A®S

M —Z(M)

(integral) monoid ring
VTV

Tensor algebra on V
D—QD

Field of quotients

Completion of metric space

87

Unit of adjunction

j: X—UFX(cf.§IILY)
“insertion of generators”
G-UCG

“insertion of generators”
X—-UFX

“insertion of generators”

“Insertion of generators”
G—G/[G,G]

projection on the quotient
A—UR®A)

a—~1®a

A—-UA®S)

a—a®1

M—->UZM

m—m

VcTV

“insertion of generators”
DCcUQD

“insertion of D:a+ a/1”

§ L1

There is a similar description of counits. For example, in the free
R-module FX generated by elements jx = (x> for x € X, the elements
may be written as finite sums 2 r;{x;> with scalars r; € R. Then for any
R-module 4 the counit ¢,: FUA— A i1s ¥ {a;>—2 r;a; (linear com-
binations in A). In other words ¢, is the epimorphism appearing in the
standard representation of an arbitrary R-module as a quotient of a
free module (the free module on its own elements as generators).

Next, we list some left and right adjoints (which need not exist in
every category C) for diagonal functors; with the unit when C is Set.

Diagonal Adjoint Unir Counit
Sfunctor
4:C—CxC Left: Coproduct (pair of) injections ~folding” map
O:CxC—C ira—allb cHe—ec
{a,by—>allb jib—allb ixt—>x, jx>x
Right: Product Diagonal arrow (pair of) projec
II:CxC—-C d.ic—cexce p:axb—a

{a,by—~axb x=>{x, x> qg:axb—b
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Diagonal Adjoint Unit Counit
Sunctor
C—1 Left: Initial object s s§—C
Right: Terminal object ¢ c—t
4:C—CH Left: Coequalizer Coequalizing arrow  Identity
(I11.3.6) {f, gy coeq. object e Srogd®5¢e ey 1ic—c
(11L.4.7) Right: Equalizer d Identity Equalizing arro
<f, > +equal. object d,d>—<f, 9>
A:C—C" ™ Left: (Vertex of) pushout
(JI1L.3.7)
Right: (Vertex of) pullback
(111.4.8)
4:C—C’ Left: Colimit object Universal cone
Right: Limit object Universal cone

In the case of limits, the form of the unit depends on the number
of connected components of J. Here a category J is called connected
when to any two objects j, ke J there is a finite sequence of arrows

J=jo—=JiJs—= —jam-1—jn=k (both directions possible)

joining j to k (see Exercises 7, 8).

Duality functors provide further examples. For vector spaces V, W
over a field K, the dual D is a contravariant functor on Vet to Vet,
given on objects by D V = Vet(V, K) with the usual vector space structure
and on arrows h: V—W as Dh: DW— DYV, where (Dh)f = fh for each
f: W—K. A function

@ =@y Yet(V, Vet(W, K)— Vet(W, Vet(V, K)) )

is defined for h: V—DW by [(¢h)w]v=(hv)w for all veV, we W.
Since gy y 9y w is the identity, each ¢ is a bijection. This bijection can be
made into an adjuction as follows. The contravariant functor D leads to
two different (covariant!) functors with the same object function,

D:Vct’®>—>Vet, D°P:Vet—Vet?P,
defined (as usual) for arrows h*?: W—V and h: V- W by
Dh*®*=Dh:DW—DV; D®h=(DhP*:DV—DW.
The bijection ¢ of (1) above may now be written as
Vet’® (D W, VY= Vet(W,DV), (2)

natural in ¥ and W. Therefore D is the left adjoint of D. (Warning:
It is not a right adjoint of D, see § V.5, Exercise 2.) If ky : W— DD W is the
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usual canonical map to the double dual, the unit of the adjunction
(set V= D°®Win (2)) is this map 7y = ry : W— DD°P W, and the counit
is an arrow ¢, : D°*DV—V in Vct®® which turns out to be g, = (k)P
for the same x.

This example illustrates the way in which adjunctions may replace
isomorphisms of categories. For finite dimensional vector spaces, D
and D°P are isomorphisms; for the general case, this is not true, but D is
the right adjoint of D°P.

This example also bears on adjoints for other contravariant functors.
Two contravariant functors § from A to X and T from X to A are “adjoint
on the right” (Freyd) when there is a bijection A(a, Tx)= X(x, Sa),
natural in a and x. We shall not need this terminology, because we can
replace S and T by the covariant functors S: 4°>— X and T: X°°—A
and form the dual $°°: 4— X°P, also covariant: thus the natural bijection
above becomes X°P(S°Pa, x)= A(a, Tx), and so states that S°P is left
adjoint (in our usual sense) to T - or, equivalently, that T°P is left adjoint
to S. It is not necessarily equivalent to say that T and § are adjoint
“on the left”.

The next three sections will be concerned with three other types of
adjoints: A left adjoint to an inclusion functor (of a full subcategory)
is called a reflection; certain other special sorts of adjoints are
~equivalences” of categories. Some other amusing examples of adjoints
are given in the exercises to follow, some of which require knowledge
of the subject matter involved. Goguen [1971] shows for finite state
machines that the functor “minimal realization™ is left adjoint to the
functor “behavior”. The reader is urged to find his own examples as well.

Exercises

1. For K a field and V a vector space over K, there is an “exterior algebra” E(V),
which is a graded, anticommutative algebra. Show that E is the left adjoint
of a suitable forgetful functor (one which is not faithful).

2. Show that the functor U : R-Mod— Ab has not only a left adjoint A—=R® 4,
but also a right adjoint 4+—hom,(R, A4).

3. For K a field, let Liey be the category of all (small) Lie algebras L over K,
with arrows the morphisms of K-modules which also preserve the Lie bracket
operation {a,b) — [a,b]. Let V: Alg,— Lie, be the functor which assigns to each
(associative) algebra 4 the Lie algebra VA on the same vector space, with
bracket [a, b] = ab — bafor a, b € A. Using the Poincaré-Birk hoff-Witt Theorem
show that the functor E, where E L is the enveloping associative algebra of L,
is a left adjoint for V.

4. Let Rng' denote the category of rings R which do not necessarily have an identity
element for multiplication. Show that the standard process of adding an identity
to R provides a left adjoint for the forgetful functor Rng—Rng’ (forget the
presence of the identity).
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10.

11,

12.

Adjoints

. If a monoid M is regarded as a discrete category, with objects the elements

x € M, then the multiplication of M is a bifunctor uy: M xM—M. If M is a
group, show that the group inverse provides right adjoints for the functors
u(x,—) and u(—,y) : M — M. Conversely, does the presence of such adjoints
make a monoid into a group?

. Describe units and counits for pushout and pullback.
. If the category J is a disjoint union {(coproduct) I J, of categories J,, for index

k in some set K, with I, : J,— J the injections of the coproduct, then each functor

F:J—C determines functors F,=F I : J,—C.

(a) Prove that LimF = II, Lim F,, if the limits on the right exist.

(b) Show that every category J is a disjoint union of connected categories
(called the connected components of J).

(c) Conclude that all limits can be obtained from products and limits over
connected categories.

. (a) If the category J is connected, prove for any ce C that LimAc¢=c¢ and

Colim dc¢ = ¢, where Ac¢ : J — C is the constant functor.
(b) Describe the unit for the right adjoint to 4: C—C”.

. (Smythe.) Show that the functor O : Cat — Set assigning to each category C

the set of its objects has a left adjoint D which assigns to each set X the discrete
category on X, and that D in turn has a left adjoint assigning to each category
the set of its connected components. Also show that O has a right adjoint
which assigns to each set X a category with objects X and exactly one arrow
in every hom-set.

If a category C has both cokernel pairs and equalizers, show that the functor
K : C*—C* which assigns to each arrow of C its cokernel pair has as right
adjoint the functor which assigns to each parallel pair of arrows its equalizing
arrow.

If C has finite coproducts and a e C, prove that the projection Q:(a | C)—C
of the comma category (Q(a—c)=c) has a left adjoint, with c+~(@—all ¢).
If X is aset and C a category with powers and copowers, prove that the copower
¢+ X - ¢ is left adjoint to the power c—c¥.

3. Reflective Subcategories

For many of the forgetful functors U: A— X listed in § 2, the counit
e: FU=I, of the adjunction assigns to each ae A the epimorphism

&

F(U a)—a which gives the standard representation of a as a quotient

of a free object. This is a general fact: Whenever a right adjoint G is
faithful, every counit ¢, of the adjunction is epi.

Theorem 1. For an adjunction {F,G,n,e>:X—A: (i) G is faithful

if and only if every component g, of the counit ¢ is epi, (i) G is full if and
only if every e, is a split monic. Hence G is full and faithful if and only
if each ¢, is an isomorphism F Ga=a.

The proof depends on a lemma.
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Lemma. Let f*: A(a, —)—=>A(b, —) be the natural transformation
induced by an arrow f:b—a of A. Then f* is monic if and only if f is epi,
while £* is epi if and only if f is a split monic (i.e., if and only if f has a
left inverse).

Note that f*—>f is the bijection Nat(A(a, —), A(b, —))= A(b, a)
given by the Yoneda lemma.

Observe, also, that for functors S, T: C— B, a natural transformation
7:5->T s epi (respectively, monic) in B¢ if and only if every component
1.:S.— T, is epi (respectively, monic) in B for B ==Set; this follows by
Exercise II1.4.4, computing the pushout pointwise as in Exercise IILS.5.

Proof. For he A(a,¢), f*h=hf. Hence the first result is just the
definition of an epi f. If f* is epi, there is an hy:a—b with
f*hy=hy f=1:b—b, so f has a left inverse. The converse is immediate.

Now we prove the theorem. Apply the Yoneda Lemma to the natural
transformation (arrow function of G followed by the adjunction)

Aa, =S X(Ga, Go)—2——> A(F Ga,c).

It is determined (set ¢ = a) by the image of 1: a— a, which is exactly the
definition of the counit ¢,: FGa—a. But ¢ ! is an isomorphism, hence
this natural transformation is monic or epi, respectively, when every G, .
Is injective or surjective, respectively; that is, when G is faithful or full,
respectively. The result now follows by the lemma.

A subcategory A of B is called reflective in B when the inclusion functor
K:A—B has a left adjoint F: B— A. This functor F may be called a
reflector and the adjunction {(F, K, ¢) = (F, ¢> : B—A a reflection of B
in its subcategory A. Since the inclusion functor K is always faithful,
the counit ¢ of a reflection is always epi. A reflection can be described in
terms of the composite functor R = K F : B— B;indeed, A C B is reflective
in Bifand only if there is a functor R : B— B with values in the subcategory
A and a bijection of sets

A(Rb, a)= B(b, )

natural in be B and ae A. A reflection may be described in terms of
universal arrows: 4 C B is reflective if and only if to each b e B there is
an object Rb of the subcategory A and an arrow 5, : b— Rb such that
every arrow g:b—ae A has the form g= fon, for a unique arrow
f:Rb—a of A. As usual, R is then (the object function of) a functor
B— B (with values in A).

If a full subcategory A C B is reflective in B, then by Theorem 1 each
object a € A is isomorphic to F K a, and hence Ra=a for all a.

Dually, A CB is coreflective in B when the inclusion functor A—B
has a right adjoint. (Warning: Mitchell [1965] has interchanged the
meanings of “reflection” and “coreflection”.)
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Here are some examples. Ab is reflective in Grp. For, if
G/[G, G] is the usual factor-commutator group of a group G, then
hom(G/[G, G], A)=hom(G, A) for A abelian, and Ab is full in Grp.
Or consider the category of all metric spaces X, with arrows uniformly
continuous functions. The (full) subcategory of complete metric spaces
is reflective; the reflector sends each metric space to its completion.
Again, consider the category of all completely regular Hausdorff spaces
(with arrows all continuous functions). The (full) subcategory of all
compact Hausdorff spaces is reflective; the reflector sends each completely
regular space to its Stone-Cech compactification.

A coreflective subcategory of Ab is the full subcategory of all torston
abelian groups (a group is torsion if all elements have finite order);
the coreflector sends each abelian group A4 to the subgroup T4 of all
elements of finite order in A.

Exercises

1. Show that the table of dual statements (§ I1.1) extends as follows:

Statement Dual statement

S, T: C— B are functors S, T: C— B are functors
T is full Tis full

T is faithful T is faithful

n:S— Tis a natural transformation. #: T—>S is a natural transformation.
{F,G, ¢y: X—Ais an adjunction {G,F,9p~'>:A— X is an adjunction
n is the unit of {F, G, ¢). 7 is the counit of (G, F, ¢~ *).

2. Show that the torsion-free abelian groups form a full reflective subcategory of Ab.

3. If {G,F,¢)>: X—A is an adjunction with G full and every unit 5, a monic,
then every 7, is also epi.

4. Show the following subcategories to be reflective:
(a) Thefull subcategory ofall partial ordersin the category Preord of all preorders,

with arrows all monotone functions.

(b) The full subcategory of T,-spaces in Top.

5. Given an adjunction (F, G, ¢) : X — A, prove that G is faithful if and only if ¢ !
carries epis to epis.

6. Given an adjunction {F, G, n, ¢) with either F or G ful], prove that Ge: GF G—G
is invertible with inverse nG: G— GF G.

7. 1f A is a full and reflective subcategory of B, prove that every functor S:J—A4
with a limit in B has a limit in A.

4. Equivalénce of Categories

A functor S: A—C is an isomorphism of categories when there is a
functor T:C — 4 (backwards) such that ST=I:C— C and
TS=1:4— A. In this case, the identity natural transformations
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w:I > ST and ¢: TS 51T make (T, S;n,e>: C — A4 an adjunction.
In other words, a two-sided inverse T of a functor S is a left-adjoint
of S — and for that matter, T is also a right-adjoint of S.

There is a more general (and more useful) notion:

A functor S: A— C is an equivalence of categories (and the categories
A and C are equivalent) when there is a functor T: C— A (backwards)
and natural isomorphisms ST=/:C — Cand TS=I: 4 — A. In this
case T: C— A is also an equivalence of categories. We shall soon see
that T is then both a left adjoint and a right adjoint of S.

Here is an example. In any category C a skeleton of C is any full
subcategory A4 such that each object of C is 1somorphic (in C) to exactly
one object of A. Then A is equivalent to C and the inclusion K: 4A—C'is
an equivalence of categories. For, select to each c e C an isomorphism
0. :c= Tc with Tcan object of A. Then we can make Ta functor T: C— A
in exactly one way so that 8 will become a natural isomorphism §: 7= KX T.
Moreover T K = I, so Kis indeed an equivalence: 4 category is equivalent
to (any one of ) its skeletons. For example, the category of all finite sets
has as a skeleton the full subcategory with objects all finite ordinal
numbers 0, 1, 2, ..., n, .... (Here 0 is the empty set and each
n={0,1,...,n—1})

A category is called skeletal when any two isomorphic objects are
identical; 1.e., when the category is its own skeleton.

An adjoint equivalence of categoriesisanadjunction{T, S;n,&>: C— A4
in which both the unit #:I-S T and the counit ¢: TS—1 are natural
isomorphisms: I=ST, TS=~I. Then ™' and e~! are also natural
isomorphisms, and the triangular identities ¢T-Ty=1, Se-nS=1
can be written as Ty '-¢ ! T=1,5"1S-Se ! =1, respectively. These
identities then state that (S, T,e~!,#7'>: A—C is an adjunction with
¢ ': I TS as unit and n~':ST-=I as counit. Thus in an adjoint
equivalence {T,S, —, —)> the functor T:C—A is the left adjoint of
S :A—C with unit # and at the same time T is the right adjoint of S,
with unit ¢71.

We can now state the main facts about equivalence.

Theorem 1. The following properties of a functor S:A—C are
logically equivalent:

(1) Sis an equivalence of categories,
(i) S is part of an adjoint equivalence (T, S;n,e> : C — A,
(iii) S is full and faithful, and each object ¢ € C is isomorphic to S a for
some object a € A.

Proof. Trivially, (ii) implies (). To prove that (i) implies (iii), note
that S T = I shows that each ce Chas the form ¢~ S(T ¢) forana=T ce 4.
The natural isomorphism 6: TS =1 gives for each f:a—a’ the com-
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mutative square

TSa—fa—q

w

TSa'——a'.
-

Hence f=0,° TS f0;!; it follows that S is faithful. Symmetrically,
ST=1I proves T faithful. To show S full, consider any h:Sa—Sa’
and set =0, Tho8;*. Then the square above commutes also with
S f replaced by h, so TS f = Th. Since T is faithful, S f = h, which means
that S is full.

To prove that (iii) implies (ii) we must construct from S a (left) ad-
joint T. For each c e C we can choose some object a, = Tyce 4 and an
isomorphism #,:

n.ic = S(Tyo)
! Sg. g:Tyc—a.
Sa

For every arrow f:c—Sa, the composite fon ! has the form Sg for
some g because S is full; this g is unique because S is faithful. In other
words, f=Sgo#. for a unique g, so #, is universal from ¢ to S. There-
fore T, can be made a functor T: C— A4 in exactly one way so that
n:I--S T is natural, and then T is the left adjoint of S with unit the
isomorphism 1. As with any adjunction, S¢,*#s,=1 (put c=Sa, f=1
in the diagram above). Thus Se, = (5,) ! is invertible. Since S is full and
faithful, the counit ¢, is also invertible. Therefore (T, S;#n,¢>: C—A4
is an adjoint equivalence, and the proof is complete.

In this proof, suppose that 4 is a full subcategory of C and that
S=K:A—C is the insertion. For objects a € A C C we can then choose
ay,=a=Ka and 5, the identity. Then Ke,=1, hence ¢,=1 for all a.
This proves

Proposition 2. If A is a full subcategory of C and every ce C is iso-
morphic (in C) to some object of A, then the insertion K:A—C is an
equivalence and is part of an adjoint equivalence {T,K;n,1>:C—A
with counit the identity. Therefore A is reflective in C.

This includes in particular the case already noted, when 4 is a
skeleton of C.

A functor F : X — A4 is said to be a left-adjoint-left-inverse of G: A— X
when there is an adjunction {F, G;#, 1> : X— A with counit the identity.
This means (Exercise 4) that G is an isomorphism of A4 to a reflective
subcategory of X. In the case of the Proposition 2 just above, we have
shown that the insertion A— C has a left-adjoint-left-inverse.
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Duality theorems in functional analysis are often instances of equiv-
alences. For example, let CAb be the category of compact topological
abelian groups, and let P assign to each such group G its character group
PG, consisting of all continuous homomorphisms G-—R/Z. The
Pontrjagin duality theorem asserts that P : CAb— Ab°P is an equivalence
of categories. Similarly, the Gelfand-Naimark theorem states that the
functor C which assigns to each compact Hausdorff space X its abelian
C*-algebra of continuous complex-valued functions s an equivalence
of categories (see Negrepontis [19717).

Exercises

1. Prove: (a) Any two skeletons of a category C are isomorphic.

(b} If 4, is a skeleton of A and C, a skeleton of C, then A and C are equivalent
if and only if 4, and C, are isomorphic.

2. (a) Prove: the composite of two equivalences D—C, C— A is an equivalence.
(b) State and prove the corresponding fact for adjoint equivalences.

3. If S: A—C is full, faithful, and surjective on objects (each ce C is c=Sa for
some ae A), prove that there is an adjoint equivalence {T,S§;1,e):C—A4
with unit the identity (and thence that T is a left-adjoint-right-inverse of S).

4, Given a functor G:A— X, prove the three following conditions logically
equivalent:

(a) G has a left-adjoint-left-inverse.

(b) G has a left adjoint, and is full, faithful, and injective on objects.

(c) There is a full reflective subcategory Y of X and an isomorphism H: A=Y
such that G = K H, where K: Y— X is the insertion.

5. 1f J is a connected category and 4 : C— C’ has a left adjoint (colimit), show that
this left adjoint can be chosen to be a left-adjoint-left-inverse.

5. Adjoints for Preorders

Recall that a preorder P is a set P={p, p’, ...} equipped with a reflexive
and transitive binary relation p < p’, and that preorders may be regarded
as categories so that order-preserving functions become functors. An

order-reversing function L on P to Q is then a functor L:P—Q°®.

Theorem 1 (Galois connections are adjoint pairs). Let P, Q be two
preorders and L:P-—Q°®, R:Q°®—P two order-preserving functions.
Then L (regarded as a functor) is a left adjoint to R if and only if, for all
pePand geQ,

Lp=q in Q ifandonlyif p<Rq in P. 1)

When this is the case, there is exactly one adjunction ¢ making L the left
adjoint of R. For all pand q,p < RLp and LRq=q; hence also

LpzLRLpzLp, Rgs<RLRg=Rgq. 2
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Proof. Recall that P becomes a category in which there is (exactly)
one arrow p—p’ whenever p < p’. Thus the condition (1) states precisely
that there is a bijection homgep(L p, g) = homp(p, Rq); singe each hom-
set has at most one element, this bijection is automatically natural.
The unit of the adjunction is the inequality p < RLp for all p, while
the counitis L Rq = g forall g. The two Egs. (2) are the triangular identities
connecting unit and counit. In the convenient case when both P and Q
are posets (i.e, when both the relations £ are antisymmetric) these
conditions become L= LR L, and R= R LR (each three passages reduce
to onel).

A pair of order-preserving functions L and R which satisfy (1) is
called a Galois connection from P to Q. Here is the fundamental example,
for a group G acting on a set U, by {(g,x>+—a-x for 6eG, xeU.
Take P =2(U), the set of all subsets X C U, ordered by inclusion, while
Q =2(G) is the set of subsets S C G also ordered by inclusion (S if
and only if SCS'). Let LX ={o|xe X impliess 6 x=x}, RS={x|0€eS
implies ¢+ x = x}; in other words, L X is the subgroup of G which fixes
all points x € X and RS is the set of fixed points of the automorphisms
of . Then LX=2SinQifandonlyif 6-x=xforallge S and all xe X,
which in turn holds if and only if X <R S in P. Therefore, L and R form
an adjoint pair (a Galots connection). The original instance is that with
G a group of automorphisms of a field U, as in the classical Galois theory.

If U and V are sets, the set 2(U) of all subsets of U is a preorder
under inclusion. For each function f: U— V the direct image f,, defined
by f.(X)={f(x)| xe X} is an order-preserving function and hence a
functor f,: P(U)—2(V). The inverse image f*(Y)={x|fx=y for
some y € Y} defines a functor f*: 2(V)— 2(U) in the opposite direction.
Since f, X CY if and only if X C f*Y, the direct image functor f, is
left adjoint to the mverse image functor f*,

Certain adjoints for Boolean algebras are closely related to the basic
connectives in logic. We again regard #(U) as a preorder, and hence as a
category. The diagonal functor 4 : Z(U)-—»2P(U) x (U) has (as we have
already noted) a right adjoint n, sending subsets X, Y to their inter-
section XY, and a left adjoint U, with (X, Y>> XU Y, the union.
If X is a fixed subset of U, then intersection with X is a functor
Xn—:2(U)—>2(U). Since XnY<Z ifand only if Y X'UZ, where
X' is the complement of X in U, the right adjoint of Xn— is X'U —.
Thus the construction of suitable adjoints yields the Boolean operations
N, U, and ' corresponding to “and”, “or”, and “not”. Now consider
the first projection P: U x V-—U from the product of two sets U and V.
Each subset SCU xV defines two corresponding subsets of U by

P.S={x|3y,yeV and {x,y>eSt,
P.S={x|Vy,yeV  implies {x,¥>e St
they arise from (x,y>eS by applying the existential quantifier 3y,
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“there exists a y”* and the universal quantifier V y, “for all y”, respectively
to {x,y> € S. Also P.S is the direct image of S under the projection P.
Now for all subsets X = U one has

SEP*X+P S<X; P*X<S«<X<ZPRS,

where “<” means “if and only if”. These state that P*, which is the in-
verse image operation, has both a left adjoint P, and a right adjoint P,,.
In this sense, both quantifiers 3 and V can be interpreted as adjoints.

There i1s also a geometric interpretation: P*X is the cylinder
X x ¥V CUxVover the base XCU, P, S is the projection of SC U x V on
the base U, and P, S is the largest subset X of U such that the cylinder on
X is wholly contained in S. This analysis has revealed several basic con-
cepts of logic (and, or, not, ¥ y, 3 y) to be adjoints. This illustrates the
slogan “adjoints are everywhere”.

Exercises

1. Let H be a space with an inner product (e.g., Hilbert space). If P =Q is the set
of all subsets S of H, ordered by inclusion, show that LS = RS = the orthogonal
complement of S gives a Galois connection.

2. In a Galois connection between posets, show that the subset {p|p=RLp} of
P equals {p|p=Rq for some ¢} and give a bijection from this set to the subset
{qlg = LRq} of Q. What are these sets in the case of a group of automorphisms
of a field? Does this generalize to an arbitrary adjunction?

3. For C a category with pullbacks, each arrow f:a—a defines a functor
(Clf)=f,:(Cla)—(Cla’) which carries each object x—a of (Cla) to the
composite x—a—a’. Show that f, has a right adjoint f* with f*(x'—a)=y—a,
where y is the vertex of the pullback of a—a'«x".

6. Cartesian Closed Categories

Much of the force of category theory will be seen to reside in using
categories with specified additional structures. One basic example will
be the closed categories (§ VII. 7); at present we can define readily one
useful special case, “cartesian closed”.

To assert that a category C has all finite products and coproducts is to
assert that products, terminal, initial and coproducts exist, thus the func-
tors C — 1and 4 : C — C x C have both left and right adjoints. Indeed,
the left adjoints give initial object and coproduct, respectively, while the
right adjoints give terminal object and product, respectively.

Using just adjoints we will now define “cartesian closed category”.
A category C with all finite products specifically given is called cartesian
closed when each of the following functors

C—1, C-Cx(C, Cc=5C,

c—0, c—<c, ¢y, a—axb,
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has a specified right adjoint (with a specified adjunction). These adjoints
are written as follows

t<40, axb<i{a, by, cP<ic.

Thus to specify the first is to specify a terminal object ¢ in C, and specifying
the second is specifying for each pair of objects a, b e C a product object
axb together with its projections a«—a x b—b. These projections
determine the adjunction (they constitute the counit of the adjunction);
as already noted, x is then a bifunctor. The third required adjoint
specifies for each functor — x b: C-—C a right adjoint, with the corre-
sponding bijection

hom(a x b, ¢) = hom(a, ¢’

natural in a and in ¢. By the parameter theorem (to be proved in the next
section), ¢b, ¢>+c” is then (the object function of) a bifunctor C°® x C— C.
Specifying the adjunction amounts to specifying for each c and ban arrow e

e xb—oc

which is natural in ¢ and universal from — x b to ¢. We call this e = e5,
the evaluation map. It amounts to the ordinary evaluation {f,x>+f x of
a function f at an argument x in both of the following cases:

Set is a cartesian closed category, with ¢® = hom(b, c).

Cat is cartesian closed, with exponent C¥ the functor category.

A closely related example of adjoints is the functor

— ®gB: K-Mod— K-Mod

which has a right adjoint homg(B, —); the adjunction is determined by
a counit homg (B, A) ®x B— A given by evaluation.

Exercises

1. (@) If U is any set, show that the preorder 2(U) of all subsets of U is a cartesian
closed category.
(b) Show that any Boolean algebra, regarded as a preorder, is cartesian closed.

2. In some elementary theory T, consider the set S={p,q,...} of sentences of T
as a preorder, with p<q meaning “p entails g” (i.e, g is a consequence of p
on the basis of the axioms of T). Prove that S is a cartesian closed category,
with product given by conjunction and exponential ¢° given by “p implies ¢”.

3. In any cartesian closed category, prove ¢'=c¢ and ¢®*¥ = (c?)®"

4. In any cartesian closed category obtain a natural transformation ¢®x b*—c?
which agrees in Set with composition of functions. Prove it (like composition)
associative,

5. Show that A cartesian closed need not imply 4’ cartesian closed.
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7. Transformations of Adjoints
We next study maps comparing different adjunctions. Given two
adjunctions

<Fa Gy (p9’19£>:X_‘A7 <F,y G,a(p,anly£,>:X,_‘A, (1)

we define a map of adjunctions (from the first to the second adjunction)
to be a pair of functors K : A— A’ and L : X — X’ such that both squares

A—L8x F 4

R
A—— X e A’

G F

of functors commute, and such that the diagram of hom-sets and
adjunctions

A(Fx, a) @ X(x, Ga)

K=KFrx,a L=Lx, Ga

A'(KFx, Ka) X'(Lx, LGa) (3)
il i
A'(F'Lx, Ka)—%— X'(Lx, G'Ka)
commutes for all objects xe X and ae A. Here K , is the map f—~K f

given by the functor X applied to each f : Fx — a.

Proposition 1. Given adjunctions (1) and functors K and L satisfying (2),
the condition (3) on hom-sets is equivalent to Ly =y'L and also to ¢’ K = K.

Proof. Given (3) commutative, set a=Fx and chase the identity
arrow 1 : Fx — F x around (3) to get the units #, ' and the equality

(Ly:L—LGF>={qyL:L—GFL,

where LGF = G'F'L by (2). Conversely, given the equality Ly=n'L of
natural transformations, the definition of the adjunctions ¢ and ¢’ by
their units gives (3). The case of the counits is dual to this one.

Next, given two adjunctions

(F,G,o,n,6), <(F,G,0,n,e>:X—=4 4
between the same two categories, two natural transformations

. F-»F, 1.G>G
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are said to be conjugate (for the given adjunctions) when the diagram
A(F'x,a) 2 X (x, G a)

(0x)* = Alox,a) X(x,%a)={ta)y (5)
A(Fx,a) = X(x, Ga)

commutes for every pair of objects xe X, ae 4.

Theorem 2. Given the two adjunctions (4), the natural transformations
o and t are conjugate if and only if any one of the four following diagrams
(of natural transformations) commutes

G— G Feeo—2 L F

[ PR

GFG' ——~ GF G, FG'F'———~»> FGF',

FrF
FG— 0 FG Iy—™ > GF

Jac' Jc ln' 19" (N
FG——1,, G F —— GF'.

Also, given the adjunctions (4) and the natural transformation o: F—=F/,
there is a unique t: G'~> G such that the pair {a,1) is conjugate. Dually,
given (4) and t, there is a unique o with {a,t) conjugate.

Proof. First, (5) implies (6) and (5) implies (7). For, put x=G'a in (5),
start with the identity arrow 1: G'a— G’a in the upper right and use the

description of ¢ and ¢’ by unit and counit to chase this element 1 around
the diagram as follows

€
J
&g°

’
O-G’ai_>G8aC GO’G’aO Ng'a=Ta-

,1216'

a

The result (lower right) is the first equality of (6). A slightly different
chase yields
g 1

8:10 0Ga=¢&q° FTaHTa .

The resulting equality is the first diagram of (7). The second halves of (6)
and (7)'are duals.
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Next, suppose o but not 7 given. Then the Yoneda Lemma applied
to the composite transformation @< (6,)* > ¢’ ~* (three legs of (5)) shows
that there is a unique family of arrows 7, for which (5) commutes, and this
family is a natural transformation. Since each ¢,: FGa—a is universal
from F to a, there is also a unique family of arrows 7, : G'a — Ga for
which the first of (7) commutes. Since (5) implies (7), 7, = 7;. In other
words, if T = 7 makes the first square of (7) commute, it also makes (5)
commute. Therefore the first square of (7) implies (5). Given o, there is
immediately a unique natural transformation 7: G’ = G for which the
first of (6) commutes; since (5) implies (6), 7, = 7,, and hence the solu-
tions 7, of (5) are necessarily natural; moreover (6) implies (5).

The reader may also show that (6) implies (5) or (7) by constructing
suitable diagrams of natural transformations.

We now regard a conjugate pair {g, t) of natural transformations as a
transformation (or morphism) from the first to the second adjunction.
The “vertical” composite of two such

<F, G, , 8> {a,1) <F’,‘G,, 7’],, £/><‘T'J'> <F", G”, 7’]”, E”> (8)

is evidently (say by condition (5)) a transformation {¢’,7t'><{c,1)
={¢’ - 0,71y from the first to the third adjunction. For the two given
categories X and A4 we thus have a new category A®4"X, the category of
adjunctions from X to A; its objects are the adjunctions {F,G;n,&>;
its arrows are the transformations (conjugate pairs) {o,t), with the
composition just noted. Also there are two evident “forgetful” functors
to the ordinary functor categories, as follows:

AX‘_A(adj)X’ [A(adj)X]op_>XA ,

Fe—F, G nep—GC

. J J“"” I

F/ — <F’, G,,r],, s/> _— Gr .

A typical example for Set is the bijection
hom(S x T, R)=hom(S, hom(T, R)) 9

discussed in § 1 as an example of an adjunction (for each fixed set T). If
t: T—T is a function between two such sets, then — xt is a natural
transformation of functors — x T—=» — x T". Its conjugate is the natural
transformation hom(t, —): hom(T’, —)=>hom(T, —); this is, as it should
be, in the reverse direction, corresponding to the fact that Sx T is
covariant and hom (7, R) contravariant in the argument 7. We may call
(9) an adjunction with a “parameter” TeSet. For a commutative ring



102 Adjoints

K the adjunction Modg (A ® B, C) = Modg(A, Homg(B, C)) has a para-
meter B e Modg. Here 1s general statement:

Theorem 3 ( Adjunctions with a parameter). Given a bifunctor
F:X x P— A, assume for each object pe P that F(—,p): X—A4 has a
right adjoint G(p, —): A— X, via an adjunction

hom(F (x, p), a) = hom(x, G(p, a)), (10)

natural in x and a. There is then a unique way to assign to each arrow
h:p—p' of P and each object ae 4 an arrow G(h,a): G(p', a)— G(p, a) of
X so that G becomes a bifunctor P® x A~ X for which the bijection of
the adjunction (10) is natural in all three variables x,p, and a. This
assignment of arrows G(h, a) to {h,a> may also be described as the unique
way to make G(h, —) a natural transformation conjugate to F(—, h).

Proof. The condition that the adjunction (10) be natural in pe P is
the commutativity of the square

hom(F (x, p), a) = hom(x, G(p, a))

Fix, by Gha
hom(F(x, p), @) = hom(x, G(p', a)).

This commutativity (for all a) states precisely that G(h,—) : G(p',—)- G(p,—)
must be chosen as the conjugate to F(—, h): F(—, p)=>F(—, p'). By the
previous theorem, there exists a unique choice of G(h,—) to realize this —
and the condition of conjugacy may be expressed in any of the five
equivalent ways stated there. For a second arrow h':p'—p", the
uniqueness of the choice of conjugates shows for A'h that G(h'h, —)
= G(h, =)o G(I, —), so that G(—,a) is a functor and G a bifunctor, as
required.

Dually, given a bifunctor G: PP x 4— X where each G(p, —) has a
right adjoint F(—, p), there is a unique way to make F a bifunctor
X x P— A,

Exercises

1. Interpret the definition C(X -a,c)=Set(X, C(c, a)) of copowers X -a in C as
an adjunction with parameter q.

2. Let 31,:x—G(p, F(x,p)) be the unit of an adjunction with parameter. It is
natural in x, but what property of 5 corresponds to the naturality of the adjunction
(10) in p?

3. In the functor category 4* let S be that full subcategory with objects those
functors F: X — A which have a right adjoint RF : 4— X. Make R a functor
§°— X4 by choosing one RF for each F, with R the conjugate of o.
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4. (Kelly.) An adjoint square is an array of categories, functors, adjunctions, and
patural transformations

X—<£G6® 4 g:FH=-KF,

H K

X LE.Ghed 4 1:HG-GK,
such that the following diagram of hom-sets always commutes

A(Fx,a) —z— A'(KFx, Ka) -5 A'(F Hx, Ka)
4 P

X(x, Ga)—2— X'(Hx, HGa) 2+ X'(Hx, G'Ka).

Express this last condition variously in terms of unit and counit of the ad-
junctions and prove that each of ¢,7 determines the other. (The case
H = K =identity functor is that treated in the text above.)

5. (Palmquist.) Given H, K, and the two adjunctions as in Exercise 4, establish a
bijection between natural transformations «:F'HG->K and natural trans-
formations f: H-—G'KF.

8. Composition of Adjoints

Two successive adjunctions compose to give a single adjunction, in
the following sense:

Theorem 1. Given two adjunctions
(F,G,n,ed: X—=A, (F Gne:A-=D
the composite functors yield an adjunction
(FF,GG,GHF -n,-FeGY: X—D.
Proof. With hom-sets, the two given adjunctions yield a composite
isomorphism, natural in xe X and de D:
D(FFx,d)= A(Fx, Gd)= X(x, GGd).

This makes the composite FF left adjoint to GG. Setting d = FFx, and
applying these two isomorphisms to the identity 1:FFx—FFx, we
find that the unit of the composite adjunction is x-= GFx%¥% GGFFx,
so is G7F -, as asserted. By the dual argument, the counit is - FeG,
g.ed. One can also calculate directly that these last formulas give
natural transformations I->GGFF and FFGG-I which satisfy the
triangular identities.
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Using this composition, we may form a category Adj, whose objects
are all (small) categories X, A, D, ... and whose arrows are the adjunctions
(F,G,n,e): XA, composed as above; the identity arrow for each
category A is the identity adjunction A —A4.

This category has additional structure. Each hom-set Adj(X, A4)
may be regarded as a category; to wit, the category A% ¥ of adjunciions
from X to A as described in the last section. Its objects are these ad-
junctions and its arrows are the conjugate pairs <, 1), under “vertical”
composition defined in (7.8).

Theorem 2. Given two conjugate pairs

{0,1) : {F,G,n,e>>{(F,G,n,e>: X—A,
(G, %) :(F,G ey (F,G,7,8>: A=D

the (horizontal) composite natural transformations Go and 7T yield a
conjugate pair 6o: FF=F'F,17: G'G'=>GG of natural transformations
Jor the composite adjunctions.

The proof may be visualized by the diagram of hom-sets

D(FFx,dy=A(F'x,Gd)= X (x,G'G'd)

J(iqx)“ J(dx]‘(fd). J(tfd)‘

D(FFx,d) = A(Fx,Gd) = X (x, GGd) .

Moreover, this operation of (horizontal) composition is a bifunctor
Adj(4, D) x Adj(X, A)— Adj(X, D). (D

This means that Adjis a “two-dimensional” category, as is Cat (see § [1.5).
There is additional discussion in Chapter XII.

Exercises

1. Prove that horizontal composition is a bifunctor, as in (1), and that this implies
an interchange law between horizontal and vertical composition of conjugate
pairs.

2. Show that the adjunction with right adjoint the forgetful functor Rng—Set can
be obtained as a composite adjunction in two ways, Rng— Ab—Set and
Rng— Mon— Set.

3. Let R, S, and T be rings.

(a) For a bimodule REg, show that — ® z E : Modz— Modg has a right adjoint
homg(E, —).

(b) Show that this is an adjunction with parameter E € R-Mod-S.

(c) Describe the composite of this adjunction with a similar adjunction
Modg— Mod,.
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9, Subsets and Characteristic Functions

The characteristic function of a subset S < X is the two-valued function
W, : X — {0,1} on X with the values
Yyx=0 ifxeS; yYyx=1 ifxeXbutxe¢Ss. (1)

Put differently, {0} = {0, 1} represents the simplest non-trivial subset. An
arbitrary subset S < X can be mapped into this simple subset by ¥, as
defined. This map produces a pullback square

S — {0}
| | @
x . 0,1).

Such characteristic functions are often used in probability theory; in
logic, {0, 1} is the set of two “truth values” with 0 the value “truth”. One
says that the monomorphism (the typical subset) z: {0} — {0,1} is a
“subobject classifier” for the category of sets.

It turns out that there are similar classifiers for subobjects in other
categories. In general, a subobject classifier for a category C with a ter-
minal object 1 is defined to be a monomorphism z : 1> Q2 such that every
monomorphism m in C is a pullback of ¢ in an unique way. In other
words, for each m there exists a unique pullback square

S — 1

1

In the resulting pullback square (3), the top horizontal arrow is the
unique map to the terminal object 1, the lower horizontal arrow acts
as the “characteristic function” of the given subobject S, while the
“universal” monomorphism ¢ : 1 — £ may be called “truth”.

For example, take C to be the category of functions f : X — Y. Here,
a monomorphism g »» f is a function g : S — T between a pair of subsets
S < X and T < Y such that g(s) = f(s) for all s € S. This means that the
diagram

s, T
X—f—>Y

commutes. In this case, there are three types of elements of X: those x in
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S, those x not in S but with g x in 7, and, finally, those x not in S with g x
not in 7. We may then define a characteristic function with three values
by setting

Yyx=0 ifxe§,

Yyx=1 ifx¢ ShutfxeT,

Yx=2 iffx¢ T(and hence,x¢S).
Again this prescription provides a pullback

S —— {0}

NN

T————>{0}

X—Q—» {0,1,2}

NN

Y —— {0,2}
vr

of objects X — ¥ and j: {0,1,2} — {0, 1} in the category of functions,
where the function j on the right is given by j0 = 0, j1 = 0, j2 = 2. Thus,
in this case, the inclusion j on the right is a subobject classifier for the
category of functions.

There are many other examples of subobject classifiers. First, recall
that the arrow category 2 is the category with only two objects 0 and 1
and only one non-identity arrow @ : 0 — 1. Thus, an ordinary function f
is the same thing as a functor 2 — Sets. Hence, we have constructed
above the subobject classifier for the functor category Sets®. For any
category C, there is a subobject classifier (find it!) for the functor category

Sets®.

10. Categories Like Sets

An (elementary) topos is defined to be a category E with the following
properties:

(1) E has all finite limits;
(ii) E has a subobject classifier;
(ili) E is cartesian closed.

We recall that requiring E to be cartesian closed means requiring that
each functor “product with b’ (i.e., a —a x b) has for all b in E a right
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adjoint ¢ c?, so that
hom(a x b, ¢) = hom(a, &) .

In other words, E has exponentials.

The category Sets of all (small) sets is a topos and so is the category
Sets“” of all set-valued contravariant functors on a small category C.
Such a functor F : C°P > Sets is also called a presheaf. This is in refer-
ence to topology, where C is the set of all open sets U of a topological
space X. In this case, a presheaf F assigns to each open set U a set F(U),
with functorial properties for continuous maps U — V. For example,
F(U) might be the set of all continuous real-valued functions on U. In
this case, F is said to be a sheaf (think of the sheaf of coefficients for a
cohomology theory!). This and other categories of sheaves play a central
role in algebraic geometry and in algebraic topology; the word “topos™ is
evidently a derivative of the word “topology”, suggesting that a topo-
logical structure is essentially described by its topos of sheaves of Sets.

This study of categories of sheaves on topological spaces and their
generalization has led to the study of toposes (see Mac Lane-Moerdijk
[1992]). In particular, various logical properties are reflected in the sub-
object classifiers 2 of a topos. Under many circumstances, a topos pro-
vides an alternative view of the foundations of mathematics; for example,
the use of ““forcing” to prove the independence of the continuum hypoth-
esis can be well organized in terms of constructions on toposes. (see Mac
Lane-Moerdijk [1992], Chapter VI). Also, suitable toposes can replace
the category of sets as a foundation for mathematics.

The axioms for a topos have many useful consequences. For exam-
ples, every topos has all finite colimits.

Notes.

The multiple examples, here and elsewhere, of adjoint functors tend to show that
adjoints occur almost everywhere in many branches of Mathematics. It is the
thesis of this book that a systematic use of all these adjunctions illuminates and
clarifies these subjects. Nevertheless, the notion of an adjoint pair of functors was
developed only very recently. The word “adjoint” seems to have arisen first (and
long ago) to describe certain linear differential operators. About 1930 the concept
was carried over to a Hilbert space H, where the adjoint 7* of a given linear
transformation 7" on H is defined by equality of the inner products

(T*x,y)=(x, Ty)

for all vectors x, y € H. Clearly, there is a formal analogy to the definition of adjoint
functor.

Daniel Kan in [1958] was the first to recognize and study adjoint functors.
He needed them for the study of simplicial objects, and he developed the basic
properties such as units and counits, limits as adjoints, adjunctions with a parameter,
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and conjugate transformations, as well as an important existence theorem (the
Kan extension — see Chapter X). Note that his discovery came ten years after
the exact formulation of universal constructions. Initially, the idea of adjunctions
took on slowly, and the relation to universal arrows was not clear. Freyd in his
1960 Princeton thesis (unpublished but widely circulated) and in his book [1964]
and Lawvere [1963, 1964] emphasized the dominant position of adjunctions. One
must pause to ask if there are other basic general notions still to be discovered.

One may also speculate as to why the discovery of adjoint functors was so
delayed. Ideas about Hilbert space or universal constructions in general topology
might have suggested adjoints, but they did not; perhaps the 1939-1945 war
interrupted this development. During the next decade 1945-55 there were very
few studies of categories, category theory was just a language, and possible workers
may have been discouraged by the widespread pragmatic distrust of “general
abstract nonsense” (category theory). Bourbaki just missed ([1948], Appendix III).
His definition of universal construction was clumsy, because it avoided categorical
language, but it amounted to studying a bifunctor W : X°® x 4—Set and asking
for a universal element of W(x, —) for each x. This amounts to asking for objects
Fxe A and a natural isomorphism W(x,a) = A(Fx,a); it includes the problem
of finding a left adjoint F to a functor G: A— X, with W(x, a)=homy(x, Ga). It
also includes the problem of finding a tensor product for two modules 4 and B,
with W ({4, B}, C) taken to be the set of bilinear functions 4 x B— C. Moreover,
the tensor product A® B is not in this way an example of a left adjoint (though it
is an example of our universal arrows). In other words Bourbaki’s idea of universal
construction was devised to be so general as to include more — and in particular,
to include the ideas of multilinear algebra which were important to French Mathe-
matical traditions. In retrospect, this added generality seems mistaken; Bourbaki’s
construction problem emphasized representable functors, and asked “Find Fx
so that W(x, a) = A(Fx, a)”. This formulation lacks the symmetry of the adjunction
problem, “Find Fx so that X (x, Ga) =~ A(Fx, a)” — and so missed a basic discovery;
this discovery was left to a younger man, perhaps one less beholden to tradition or
to fashion. Put differently, good general theory does not search for the maximum
generality, but for the right generality.



V. Limits

This chapter examines the construction and properties of limits, as
well as the relation of limits to adjoints. This relation is then used in the
basic existence theorems for adjoint functors, which give universals and
adjoints in a wide variety of cases. The chapter closes with some indic-
ations of the uses of adjoint functors in topology.

1. Creation of Limits

A category C is called small-complete (usually just complete) if all
small diagrams in C have limits in C; that is, if every functor F:J—C
to C from a small category J has a limit. We shall show that Set, Grp, Ab,
and many other categories of algebras are small-complete.

The construction of limits in Set may be illustrated by considering
the limit of a functor F : @°®—Set; here w, the linearly ordered set of all
finite ordinals, is the free category generated by the graph

(0—15253.2).

The functor F: @P—Set is just a list of sets F, and of functions f,,
as in the first row of the diagram below:

FoetoF Lt Foemii e FedoF e

[//\\L\:J_/ W

{xoaxly ~-'lxnan}H{x0?x1, -“[fnxn+1 =xnan} .

Given F, form first the product set II;F;; it consists of all strings
x={xg, X, X, ...} of elements, with each x, € F,, and it has projections
pn: II,F; — F,, but the triangles formed by these projections need not
commute (f,p,+; Fp,)- A limit must be at least a vertex of a set of
commuting triangles (a cone). So take the subset L of those strings x
which “match” under f, in that f,x,., =x, for all n. Then functions
i, : L—F, are defined by u,x = x,; since the string x matches, f,u,+; = I,

109
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for all n, so u:L—>F is a cone from the vertex LeSet to the base F.
If z: M= F is any other cone from a set M as vertex, each me M de-
termines a string {r,m} which matches and hence a function g: M — L,
with gm = {t,m}, so with g = . Since g is the unique such function this
shows that 4 is a universal cone to F, and so that L is the limit set of F.

A string x which “matches” is the same thing as a cone x:*--F to
F from the one point set . Hence the limit L above can be described as
the set L= Cone (%, F) of all such cones. The same construction applies
for any domain category (in place of @°").

Theorem 1 (Completeness of Set). If the category J is small, any
Sfuncror F:J—Set has a limit which is the set Cone (x, F) of all cones
og:*xF from the one point set * to F, while the limiting cone v, with

v;: Cone(s, F)—>F;, or>0;, 2
is for each j that function sending each cone o to the element o; € F;.

For example, if J is discrete, the set Cone(x, F) of J-cones is just the
cartesian product I7;F;.

Proof. Since J is small, Cone (*, F) is a small set, hence an object of
Set. If u:j—k is any arrow of J, then F,0;=0, because ¢ is a cone;
hence v as defined in (2) is a cone to the base F. To prove it universal,
consider any other cone 7: X< F to F from some set X. Then for
each x€ X, txis a cone to F from one point, so there is a unique function
h: X—Cone (*, F) sending each x to tx, g.e.d.

The crux of this proof is the (natural) bijection

Cone (X, F) =Set(X, Cone(x, F)) 3

given by 7—h, as above. Since a cone is just a natural transformation,
this may be rewritten as an adjunction

Nat(4 X, F) = Set(X, Cone(s, F)).

By the very definition of limit, this proves that Lim F = Cone(*, F).

Limits in Grp and other categories may be constructed from the set
of all cones in much the same way. For example, if F: o°®— Grp, as
displayed in (1), then each F, is a group, the set L of all cones (all matching
strings x) is also a group under pointwise multiplication ((xy), = x,V,)
and, the projection u,: L—F, with x+>x, is a group homomorphism,
so that u: L= F is a limiting cone in Grp.

The p-adic integers Z, (with p a prime) illustrate this construction.
Take F : w*®— Rng with F,=Z/p"Z, the ring of integers modulo p", and
with F,,,—F, the canonical projection Z/p"*'Z—Z/p"Z. Then
Zp=I(£13F exists. An element A of Z, is a cone from * to F; that is,
A can be written as a sequence A= {1, 4, ...} of integers with
Ays1 =4, (modp”) for all n, where A=2" holds when 4, =1, (modp")
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for all n. Two p-adic integers A and p can be added and multiplied “term-
wise”, by the formulas

A+ w,=A 4, (Aw,=Au,.

These operations make Z, = Lim F a ring, the ring of p-adic integers, and
this description completely determines Z,. This description is quicker
than the classical one, which first defines a p-adic valuation (and thus a
topology) in Z, and then observes that each p-adic integer £ is represented
by a Cauchy sequence in that topology.

Formal power series rings also can be described as limits (Ex. 7).

Again, in Top, take each object F, to be a circle S, and each arrow
f.:S'—S! to be the continuous map wrapping the domain circle S’
uniformly p times around the codomain circle. The inverse limit set L
then becomes a topological space when we introduce just those open
sets in L necessary to make all the functions u,: L—S' continuous.
This L is the limit space in Top; it is known as the p-adic solenoid.

Here is the general construction for groups.

Theorem 2. Let U : Grp—Set be the forgetful functor. If H:J— Grp
is such that the composite U H has a limit L and a limiting cone v: L->UH
in Set, then there is exactly one group structure on the set L for which
each arrow v;: L— U H; of the cone v is a morphism of groups; moreover,
this group L is a limit of H with v as limiting cone.

Proof. By Theorem 1, take L = Cone (*, U H); define the product of
two such cones o, 7€ Cone (x, UH) by (o1);=0,71; (the product in the
group H)) and the inverse by (67'); =07 * (the inverse in H}). These defin-
itions make L a group and each component of v a morphism of groups;
conversely, if v given by t+>1; is to be 2 morphism of groups for each j,
then the product of g, T € L must be given by this formula.

Now if G is any group and 1: G- H any cone in Grp (consisting of
group morphisms A;: G—H; for je J), then UA: UG- UH is a cone in
Set, so by universality UA= (Uv)h for a unique function h: UG— L.
For any two group elements g, and g, in G,

(h(g,9.));= 491 92) = (4;9:) (A;92) = (hgy); (hg,); = ((hg,) (hg));

because A is a morphism of groups, so is h, and therefore L is indeed the
limit in Grp.

This argument is just a formalization of the familiar termwise con-
struction of the multiplication in cartesian products of groups, in the
p-adic numbers, etc. The conclusion of the Theorem constructs limits in
Grp from the limits in Set in a unique way, using U. The same argument
will construct all small limits in Rng, Ab, R-Mod and similar algebraic
categories, using the forgetful functors U to Set. In other words, each
forgetful functor “creates” limits in the sense of the following definition:
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Definition. A functor V: A— X creates limits for a functor F: J— A if

(i) To every limiting cone t:x~>VF in X there is exactly one pair
{a, o) consisting of an object ae A with Va= x and a cone ¢ :a=F with
Vo =1, and if, moreover,

(ii) This cone o:a—>F is a limiting cone in A.

Similarly, we may define “V creates products” (the above, with J
restricted to be discrete); “V creates finite limits” (the above, with J
finite), or “V creates colimits” (the above with the arrows in all cones
reversed). Note especially that “V creates limits” means only that V
produces limits for functors F whose composite V F already has a limit.

In this terminology, Theorem 2 now reads

Theorem 3. The forgetful functor U : Grp— Set creates limits.

Exercises

1. Prove that the projection (x | C) — C of the comma category creates limits.

2. If Comp Haus C Top is the full subcategory of all compact Hausdorff spaces, show
that the forgetful functor Comp Haus—Set creates limits.

3. For any category X, show that the projection X2— X x X which sends each
arrow f:x—y in X to the pair {x, y) creates limits.

4. Prove that the category of all small finite sets is finitely complete (i.e., has all
finite limits).

5. Prove that Cat is small-complete.

6. Show that each p-adic integer 4 is determined by a string of integers a; with all
a;€{0,1,..,p~1}, witheach }, =ay+a,p+ - +a,_,;p""! (mod p"). Show that
addition and multiplication of p-adic integers correspond to the usual operations
of addition and multiplication of infinite “decimals” ... a, ... a, (with base p,
the decimals extending infinitely to the left).

7. Let K [x] be the usual ring of polynomials in x with coefficients in the commutative
ring K, while F:o°®—Rng is defined by F,=K[x]/(x"), with the evident
projections, and (x") the usual principal ideal. Prove that Lim F is the ring of
formal power series in x, coefficients in K.

8. Show that the category of sets is cocomplete.

2. Limits by Products and Equalizers

The construction of the limit of F : J — Set as the set of all cones
Cone(x, F)CII;F;

can be made in two steps: Each cone ¢ is an element x of the product
I1;F; with projections p;; to require that an element x of the product be a
cone is to require that (Fu)x;=x, for every arrow u:j—k in J; this
amounts to requiring that x lie in the equalizer of (Fu) p;and p, : II,F,—F,.
Here is the general formulation of this process in any category.
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Theorem 1. For categories C and J, if C has equalizers of all pairs
of arrows and all products indexed by the sets obj(J) and arr (J), then
C has a limit for every functor F:J—C.

The proof constructs the following diagram in stages, with i denoting
an object and u:j—k an arrow of the index category J. By assumption,
the products II; F; and I1,F;, and their projections exist, where the second
product is taken over all arrows u of J, with argument at each arrow u the
value F, =F, 4, of F at the codomain object of u. Since I, F, is a product,
there is a unique arrow f such that the upper square commutes for
every u and a unique arrow g such that the lower square commutes for
every u. By hypothesis,

Foauw = Foau F,
S
11,5k F = Hchodu(_:g——H{E«-——‘*———---z;i (1)
lpu lpdomu
Frgue——Fyornu

there exists an equalizer e for f and g¢. Its composite with the projections
p: give arrows y; = pse : d — F; for each 1. Since e equalizes f and g and
the two squares above commute, one has F,u; = 4 for every u:j — k;
hence 4 : 4d = F is a cone from the vertex d to the base F. If t is any
other such cone, of vertex ¢, its maps 7; combine to yield a unique map
h:c — II;F; to the product; v a cone implies f4 = gh. Hence & factors
uniquely through e and therefore the cone 7 factors uniquely through the
cone . This proves that d and the cone x4 provide a limit for F. For the
record, much as in the case of Sets:

Theorem 2 (Limits by product and equalizers, continued). The limit
of F:J—C is the equalizer e of f,g:II,F,—IlF,,, (ucarrJ,iel),
where pufzpcodw pug=Fu°pdomu; the hmlt"ng cone U is lJ'j:pje? fOT
jeJ, all as in (1).

This theorem has several useful consequences and special cases.

Corollary 1. If a category C has a terminal object, equalizers of all
pairs of arrows, and products of all pairs of objects, then C has all finite
limits.

Here a finite limit is a limit of J— C, with the category J finite.

Corollary 2. If C has equalizers of all pairs of arrows and all small
products, then C is small-complete.

For example, this gives another proof that Set is small-complete.
The concept of completeness is useful chiefly for large categories and
for preorders. In a preorder P, a product of objects a;, j € J, is an object d
with d < a; for all j and such that ¢ < q; for all j implies ¢ < d; in other
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words a product is just a greatest lower bound or meet of the factors a;
(dually, a coproduct is a least upper bound or join).

Proposition 3 (Freyd). A small category C which is small-complete
is simply a preorder which has a greatest lower bound for every small
set of its elements.

Proof. Suppose C is not a preorder. Then there are objects a,be C
with arrows f=g:a—b. For any small set J form the product II;b
of factors b; all equal to b. Then an arrow h:a—II;b is determined
by its components, which can be f or g. There are thus at least 2’ arrows
a — II;b. If the small set J has cardinal larger than arrC, this is a con-
tradiction.

Exercises

1. (Manes.) A parallel pair of arrows f, g : @ — b in C has a common left inverse h
when there is an arrow h:b—a with hf =1=hg.

(a) Prove that a category C with all small products and with equalizers for all
those parallel pairs with a common left inverse is small complete. (Hint:
The parallel pair used in the proof of Theorem 1 does in fact have a common
left inverse.)

(b) In Set, show that a parallel pair of arrows f,g: X— Y has a common right
inverse if and only if the corresponding function (f, g): X — Y x Y has image
containing the diagonal {{y, y>{ye Y}.

2. Prove that C,;,C, complete (or cocomplete) imply the same for the product
category C; x C,.

3. (@ and Lim as functors.) If F, F': J— C have limiting cones , ji'(or colimiting
cones v, V), show that each natural transformation f:F--»F determines
upiquely arrows limf or limfB such that the following diagram commutes,
where 4 : C—C’ is the diagonal functor:

ALimF —%—F —* A(Lim F)
— —_—

1
1

4(Hmp) g il 1 4(limp)
<« 3 , R ¥ md
A L<‘i_mF’——“—> F———ALimF).
Conclude: If C is complete, Lim (or Lim) is a functor ' —C.
4. (Limits of composites.) Given composable functors
JHIECEC
and limiting cones v for F, v for HF W, observethatA;.(He)=Heo A;ce W: J'—>C,
and show that there is a unique “canonmical” arrow ¢t: HeLimF—LimHFW
such that the following diagram commutes:
4,(HoLimF) HFW —*— 4 ,(Lim HFW)
45 (‘)l fi l Aye(s)
4, (LimHFW)—— HFW -2 4 ,(H Lim F).
Dually, construct s: LIMNHFW— H o LimF as indicated at the right.

Hvw
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5. (Limit as a functor on the comma category of all diagrams in C.)

(a) Interpret W of Ex. 4 as an arrow in (Cat|C) to show (for C complete) that
Lim is a functor (Cat| C)*—C.

(b) Let (Cat]C) be the (“super-comma”) category with objects F : J—C, arrows
{B, W) : F'—F those pairs consisting of a functor W:J'—J and a natural
transformation f§:FW-»F. Combine Exercise 3 and Exercise 4 to show
(for C complete) that Lim is a functor (Cat <} C)°*— C. Dualize.

3. Limits with Parameters

Let T:J x P—X be a bifunctor, and suppose for each value pe P of
the “parameter” p that T(—,p):J—X has a limit. Then these limits
for all p form the object function p—Lim;T(j, p) of a functor P—X.

Instead of proving this directly, we replace functors P— X by objects
of the functor category X¥. This replaces T:J x P—X by its adjunct
§:J— X7, under the adjunction Cat(J x P, X)= Cat(J, XF). Recall that
for each object pe P there is a functor E,: XF—X, “evaluate at p”,
given for arrows (natural transformations) ¢ : H- H' of X as

E,H=H,, E,0=0,:H,—H,. 68)]

Theorem 1. If S: J— X7T is such that for each object p € P the composite
E,S:J—X has a limit L, with a limiting cone 1,: L,~>E_S, then there
is a unique functor L: P— X with object function p—L, such that p—>1,
is a natural transformation v : AL = A;L—>S; moreover, this T is a limiting
cone from the vertex L e XY to the base S:J— XF.

Proof. Let h:p—q be any arrow of P. Then, writing E,S as S,
the given cones 7, and 7, for a typical arrow u : j—k of J have the form

The triangles commute because 7, and 7, are cones and the parallelogram
because S is a functor. Since the inside cone is universal there is a
unique arrow L,: L,— L, such that t,jo L, = S,jo,j for all jeJ. The
assignment h—L, makes L a functor (Proof: put another cone outside)
and 7 a natural transformation 4L-S (a cone from the object Le X?
to the functor S:J— X7%). It is a limiting cone; for if 6: M—>S is any
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other cone there are unique arrows M,— L, because L, is a limit; they
combine to give a unique natural transformation M- L.
The conclusion may be written

E,(Lim §) = Lim (E, $):

In a functor category, limits may be calculated pointwise (provided the
pointwise limits exist).

Corollary. If X is small-complete, so is every functor category XF.

This theorem becomes a case of “creation” of limits, if we write |P|
for the discrete subcategory consisting of all objects and identity arrows
of P.

Theorem 2. For any categories X and P, the inclusion functori: [P|]— P
induces a functor i* = X' : X¥— X'Pl which creates limits.

4. Preservation of Limits

A functor H:C—D is said to preserve the limits of functors F:J—C
when every limitingconev : b— F in C forafunctor F yields by composition
with H a limiting cone Hv: Hb—> HF in D; this requires not only that
H take each limit object which exists in C to a limit object in D but
also that H take limiting cones to limiting cones. A functor is called
continuous when it preserves all small limits.

Theorem 1. For any category C with small hom-sets, each hom-
functor C(c, —): C—Set preserves all limits; in particular, all small
limits.

The same proof will give a more general result: If C has hom-sets
in Ens, any category of sets in which Ens (X, Y) consists of all functions on
X to Y, then each hom-functor C(c, —): C— Ens preserves all limits
which exist in C.

Proof. Let J be any category and F : J— C a functor with a limiting
cone v: LimF-F in C. Apply the hom-functor C(c, —); there results a
cone v, =C(c,v), as in the diagram

C(c, LimF)—2—C(c,F), ielJ

k I

ey

X— % ,C(c,F)

in Set. For any other cone t to the same base from a vertex set X, each
element xe X gives a cone 7;x:c—F; in C and hence, because v is
universal, a unique arrow h,:c—LimF with v;h, =1,x. Then setting
kx=h, for each x defines a function, and hence an arrow k in Ens as
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shown, with v, ;k = t; for all i. Since k is clearly unique with this property,
v, is a limiting cone in Set, as required.

The same proof, differently stated, might start by noting that the
definition of the functor C(c, F —):J—Set shows that a cone A:c=F
in C is the same thing as a cone 1:x—=>C(c, F—) in Set, with vertex
a point *. Then, because Cone(X, —)=Set(X, Cone(x, —)) as in (1.3),

Cone(X, C(c, F—)) = Set(X, Cone(x, C(c, F-)))
= Set(X, Cone(c, F)) = Set(X, C(c,Lim F)) ,

where “Cone” means J-cone and where the last step uses the definition of
Lim F. But Lim S, for each S:J — Set, is defined by the adjunction
Cone(X, S) = Set(X,Lim S). Therefore the above equations determine
this Lim .S (together with the correct limiting cone) as

LimC(c, F-)=C(c,LimF). (1)

Some authors use this equation to define limits in C in terms of
limits in Set; for example, the product of objects @; in Cis defined by

H C(Ca ai) = C(C7 H ai) . (2)

1

The contravariant hom-functor may be written as
C(—,c)=C(c, —): C®"—Set;

hence the theorem shows that this functor C(—, ¢) carries small colimits
(and their colimiting cones) in C to the corresponding limits and
limiting cones in Set. For example, the definition of a small coproduct
provides an isomorphism (coproduct to product):

C(La;,c) =[] C(a;, ).

More generally, the colimit of any F : J— C is determined by
C(ColimF,c)=LimC(F—,c). (3)
Creation and preservation are related:

Theorem 2. If V: A— X creates limits for F : J— A and the composite
VF:J—X has a limit, then V preserves the limit of F.

In particular, if V creates all small limits and X is small-complete,
then A is also small-complete, and V is continuous.

Proof. Let 1:a-=F and ¢:x—>VF be limiting cones in A and X,
respectively. Since V creates limits, there is a unique cone g : b= F in A
with Vg: Vb= VF equal to ¢: x> VF; moreover, g is a limiting cone.
But limits are unique up to isomorphism, so there is an isomorphism
f:b=a with 10=9. Thus VO0:Vb=x=Va, with Vi-VO=Vp=a,
so Vais a limit and V preserves limits, as desired.
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In any category an object p is called projective if every arrow h: p—c
from p factors through every epi g:b—c, as h=gh’ for some '

W Jh
k’/

b—g—c

It is equivalent to require that g epi implies hom(p,g):hom(p,b)—hom(p,c)
epi in Set. In other words, p is projective exactly when hom(p, —)
preserves epis. Dually, an object g is injective when hom(—, g) carries
monics to epis. These notions are especially useful in R-Mod and other
Ab-categories; in R-Mod the projectives are the direct summands of
the free modules.

Exercises

1. Prove that the composite of continuous functors is continuous.

2. If C is complete, and H : C— D preserves all small products and all equalizers
(of parallel pairs) prove that H is continuous.

3. Show that the functor F :Set— Ab sending each set X to the free abelian group
generated by the set X is not continuous.

4. For any small set X, show that the functor (product with X) X x — :Set—Set
preserves all colimits.

5. (Preservation of Limits.) Given H:C—C’' and a functor F:J—C such that F
and HF have limits, prove that H preserves the limits of F if and only if the
canonical arrow He Lim F—Lim HF of Exercise 24 is an isomorphism (This
is a natural way to describe the preservation of limits when both categories C
and C' are given with specified limits).

5. Adjoints on Limits

One of the most useful properties of adjoints is this: A functor which
is a right adjoint preserves all the limits which exist in its domain:

Theorem 1. If the functor G: A—X has a left adjoint, while the
Sfunctor T:J— A has a limiting cone t:a-T in A, then GT has the
limiting cone Gt1: Ga-GT in X.

Proof. By composition, Gt is indeed a cone from the vertex Ga in X.
If F is a left adjoint to G, and if we apply the adjunction isomorphism
to every arrow of a cone ¢:xGT, we get arrows (g,)° : Fx— Ti for
i e J which form a cone ¢” : Fx— T'in 4. But 1 : a-- T is universal among
cones to T in A, so there is a unique arrow h:Fx—a with th=¢".
Taking adjuncts again, this gives a unique arrow #*:x—Ga with
Grt-h = (rh)u = (ab)” = ¢. The uniqueness of the arrow A states pre-
cisely that Gt : Ga — T is universal, g.e.d.
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The proof may be illustrated by the following diagrams (where
u:i—j is any arrow of J).

in A in X
Ti<—Y%—a GTi—%—Ga
Wtj ? ‘\0'1 ?

Tu ih GTu th{hﬂ
Tj«—F—Fx, GTje——x.

This proof can also be cast in a more sophisticated form by using
the fact that Lim is right adjoint to the diagonal functor 4. In fact,

given an adjunction
(F,G,ney:X—A4

and any index category J, one may form the functor categories (from J)
and hence the diagram
(FLG 0 e X~ A7,

where F’(S)= FS for each functor S : J— X, and #/S =S : S=> GFS§, etc.
The triangular identities for # and ¢ yield the same identities for 7’ and &’,
so the second diagram is indeed an adjunction (in brief, adjunctions
pass to the functor category). Now we have the diagram of adjoint pairs

FJ
X.I T A.I

I 1

X«—G——"’A‘

The definitions of the diagonal functors 4 show at once that F/4 = AF,
so the diagram of left adjoints commoutes in this square. Since compositions
of adjoints give adjoints, it follows that the composites Lime G’ and
G- Lim are both right adjoints to F/> 4= 4¢ F. Since the right adjoint
of a given functor is unique up to natural isomorphism, it now follows
that Lime G’ = G- Lim. This proves again for each functor T:J— A4
with limit a (and limiting cone t:a--T in A) that Ga=GLimT
=Lim G’(T)= Lim GT. The reader should show that the same argument
proves that G preserves limiting cones (put units and counits in the
square diagram above, and recall that the limiting cone 7:a-- T is just
the value of the counit of the adjunction {4, Lim,...>: A— A’ on the
functor T).

The dual of the theorem is equally useful: Any functor P which
has a right adjoint (i.e., which is a left adjoint) must preserve colimits
(coproducts, coequalizers, etc.). This explains why the coproduct (free
product) of two free groups is again a free group (on the disjoint union of
the sets of generators).
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Similarly (by the original theorem) all the typical forgetful functors
in algebra preserve products, kernels, equalizers, and other types of
limits. Typically, the product of two algebraic systems (groups, rings,
etc.) has as underlying set just the (cartesian) product of the two under-
lying sets. This, and other similar facts, are immediate consequences of
this one (easy) theorem. The theorem can also be used to show that
certain functors do not have adjoints.

Exercises

1. Show that, for a fixed set X, the functor X x — :Set—Set cannot have a left
adjoint, unless X is a one-point set.

2. For the functor D : Vet®®— Vet of (IV. 2.2) show that D has no right adjoint (and
hence, in particular, is not the left adjoint of D°P).

3. If C is a full and reflective subcategory of a small-cocomplete category D, prove
that C is small-cocomplete.

4. Prove that Set°® is not cartesian closed.

6. Freyd’s Adjoint Functor Theorem

To formulate the basic theorem for the existence of a left adjoint to a
given functor, we first treat the case of the existence of an initial object
in a category and then use the fact that each universal arrow defined by
the unit of a left adjoint is an initial object in a suitable comma category.

Theorem 1 ( Existence of an initial object). Let D be a small-complete
category with small hom-sets. Then D has an initial object if and only
if it satisfies the following

Solution Set Condition. There exists a small set I and an I-indexed
Samily k; of objects of D such that for every de D there is an iel and
an arrow k;—d of D.

Proof. This solution set condition is necessary: If D has an initial
object k, then k indexed by the one-point set realizes the condition, since
there is always a (unique) arrow k—d.

Conversely, assume the solution set condition. Since D is small-
complete, it contains a product object w=IIk; of the given I-indexed
family. For each d € D, there is at least one arrow w—d, for example, a
composite w=ITk;— k;—d, where the first arrow is a projection of the
product. By hypothesis, the set of endomorphisms D(w, w) of w is small
and D is complete, so we can construct the equalizer e: v—w of the set
of all the endomorphisms of w. For each de D, there is by v—>w—d
at least one arrow v—d. Suppose there were two, f,g:v—d, and take
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their equalizer e, as in the figure below

By the construction of w, there is an arrow s:w—u, so the composite
ee, s s, like 1, an endomorphism of w. But e was defined as the equalizer
of all endomorphisms of w, so

ee;se=1,e=el, .

Now e is an equalizer, hence is monic; cancelling e on the left gives
e,se=1,. This states that the equalizer ¢; of f and g has a right inverse.
Like any equalizer, e, is monic, hence is an isomorphism. Therefore,
[ =g; this conclusion means that v is initial in D.

This proof will be reformulated in § X.2.

Theorem 2 (The Freyd Adjoint Functor Theorem). Given a small-
complete category A with small hom-sets, a functor G: A— X has a left
adjoint if and only if it preserves all small limits and satisfies the following

Solution Set Condition. For each object xe X there is a small set I
and an I-indexed family of arrows f;:x—Ga; such that every arrow
h:x—Ga.can be written as a composite h=Gto f; for some index i
and some t : a,(—a.

Proof. If G has a left adjoint F, then it must preserve all the limits
which exist in its domain A; in particular, all the small ones. Moreover,
the universal arrow #,:x— GFx which is the unit of the adjunction
satisfies the solution set condition for x, with I the one-point set.

Conversely, given these conditions, it will suffice to construct a uni-
versal arrow x— Ga from each x € X to G; then G has a left adjoint by
the pointwise construction of adjoints. This universal arrow is an initial
object in the comma category (x| G)=D, so we need only verify the
conditions of the previous theorem for this category. The solution set
condition for G clearly gives the condition of the same name for (x| G) = D.
Since A has small hom-sets, so does D. To show D small-complete we
need only arbitrary small products and equalizers of parallel pairs in D.
They may be created as follows:

Lemma. If G: A— X preserves all small products (or, all equalizers)
then for each x € X the projection

Q:(x]G)—4, (x5Garsa

of the comma category creates all small products (or, all equalizers).
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Proof. Let J be a set (a discrete category) and f;: x— Ga; a J-indexed
family of objects of (x| G) such that the product diagram p;:ITa;—a;
exists in A. Since G preserves products, Gp;: GIla,—Ga; is a product
diagramin X, so thereis a unique arrow f: x— GIla;in X with(Gp)) f = f;
for all j:

Ia; Glla;
Ed
e
le L JGW
//
L
aj, x———f7—> Gaj

This equation states that p;: f— f; is a cone of arrows in (x| G); indeed,
it is the unique cone there which projects under Q to the given cone
p;:IIa;—a;. One then verifies that this cone p; is a product diagram in
(x| G); these two results show that Q creates products.

Similarly, we “create” the equalizer of two arrows-s, t: f—g in (x| G).
As in the figure below, we are given the equalizer e of Qs, Qr; ~ that
is, of s and ¢ as arrows in A. Since G preserves equalizers, Ge is then the
equalizer of Gs and Gt. But Gseo f=g=Gtof, so there is a unique
arrow h: x— Ga making Ge- h= f, as below. In other words e: h— f in
(x| G) is the unique arrow of (x| G) with Q-projection e : a—b.

Xty Ga -Gl Gd  aetd

x—=i— Gb x
H GleGt S}Jvz
x—2 - Ge c

It remains to show that the arrow e is an equalizer in (x}G). Sc
consider another object k:x— Gd of (x|G) and an arrow r:k—f
of (x| G) with sr=t¢r in (x| G). Then sr=tr in 4, so there is a unique r
in A with r = er’. It remains only to show r" an arrow k—h of (x| G); but
Ge(Gr' e k)= G(er)o k= Gro k= f,so by theunique choice of h, Gr'ck = h,
which states that r' is an arrow of (x | G).

This line of argument applies not just to products or equalizers, but
to the creation of any limit (Exercise 1).

Theorem 3 (The Representability Theorem). Let the category D be
small complete with small hom-sets. A functor K : D—Set is representable
if and only if K preserves all small limits and satisfies the following

Solution Set Condition. There exists a small set S of objects of D
such that for any object d e D and any element x e Kd there exist an s€ S,
an element y e Ks and an arrow f:s—d with(Kf) y=x.
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Proof. This is another reformulation of the existence Theorem 1 for
initial objects. Indeed, a representation of K is a universal arrow from the
one-point set * to K (Proposition II11.2.2), hence an initial object in the
comma category (| K), which is small-complete because K is assumed
continuous. Conversely, if K is representable, it is necessarily continuous.

The solution set condition (or something like it) is requisite in all
three theorems. For an example, let Ord be the ordered set of all small
ordinal numbers a, §, ...; it is a category with hom-set Ord(z, ) empty
or the one-point set according as o> f or o < . The category Ord®® is
small-complete, because the product of any small set of ordinals is
their least upper bound. The functor K : Ord°*—Set with Ko ==# the
one-point set for every « is clearly continuous. However K is not
representable: Were Ko = Ord®®(f, ) for some f§, then a <f for all a,
so f would be a largest small ordinal, which is known to be impossible.

Complete Boolean algebras provide another example to show that
some solution set condition is requisite. For a given denumerable set
D one can construct an arbitrarily large complete Boolean algebra
generated by D (Solovay [1966]); this implies that there is no free complete
Boolean algebra generated by D, and hence that the forgetful functor
Comp Bool—Set has no left adjoint—though it is continuous and
Comp Bool is small-complete.

The adjoint functor theorem has many applications.

Forexample,it givesaleft adjoint to the forgetful functor U : Grp—Sat.
Indeed, we already know that U creates all limits (Theorem 1.3), hence
that Grpis small-complete and U continuous. It remains to find a solution-
set for each X eSet. Consider any function f: X— UG for G a group,
and take the subgroup S of G generated by all elements fx, for xe X.
Every element of S is then a finite product, say (fx,) 5! (fx,)=! - (fx,)*!,
of these generators and their inverses so the cardinal number of S is
bounded, given X. Taking one copy of each isomorphism class of such
groups S then gives a small set of groups, and the set of all functions
X —US is then a solution set.

This left adjoint F:Set— Grp assigns to each set X the free group
FX generated by X, so our theorem has produced this free group
without entering into the usual (rather fussy) explicit construction of the
elements of F X as equivalence classes of words in letters of X. To be sure,
the usual construction also shows that the universal arrow X — U F X is
injective (different elements of X are different as generators of the free
group). However, we can also obtain this fact by general arguments and
the observation that there does exist a group H with two different ele-
ments 4 + k. Indeed, for any two elements x & y in X we then take a
function f: X — UH with fx=~h and fy=k. Since f must factor
through the universal X — U F X, it follows that this universal must be
an injection.
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This construction applies not just to Grp but to the category of all
small algebraic systems of a given type 7. The type t of an algebraic
system is given by a set Q of operators and a set E of identities. The set Q
of operators is a graded set; that is, a set 2 with a function which assigns
to each element w e Q a natural number n, called the arity of w. Thus
an operator w of arity 2 is a binary operator, one of arity 3 a ternary
operator, and so on. If S is any set, an action of Q on S is a function A
which assigns to each operator w of arity n an n-ary operation w , : S"— S
(Here S"= S x --- x §, with n factors). From the given operators 2 one
forms the set A of all “derived” operators; given w of arity n and n derived
operators Ay, ...,4, of arities my,...,m,, the evident “composite”
(4, ..., A,) is a derived operator of arity m, + --- + m,; also, given A
of arity n and f:n—m any function from {1,...,n} to {1,...,m},
“substitution” of fin A gives a derived operator £ of arity m, described
in terms of variables x; as 0(x;, ..., X,,) = A(xy, ..., X;,). (This description
by variables refers implicitly to the action of Q on a set; for the abstract
formulation of this and of composition, we refer to the standard treatments
of universal algebra such as: Cohn [1965], or Gritzer [1968]). At any rate,
each action 4 of Q on a set S extends uniquely to an action of the set A of
derived operators on S.

The set E of identities for algebraic systems of type 7 is a set of ordered
pairs {4, u> of derived operators, where 1 and u have the same arity n.
An action A of Q on S satisfies the identity <A, u)> if A, =p,:S"—>S.
An algebra 4 of type © — an (Q, E)-algebra — is a set S together with
an action 4 of Q on S which satisfies all the identities of E; so we call S
the underlying set of the algebra and often write [4|=S. A morphism
g: A— A" of {Q, Ey-algebras is a function ¢g:S— S’ on the underlying
sets which preserve all the operators of Q (and hence of A) in the sense
that

golay, ... a,)=w,9ay, ....ga,) (1)

for all a,e A. The collection of all small {Q, E)-algebras, with these
morphisms as arrows, is a category {Q, E) — Alg, often called a variety
or an equational class of algebras. This description includes the familiar
cases such as Grp, Rng, Ab and many others less familiar (e.g. nilpotent
groups of specified class). For example, to describe Grp, take three
operators in £, the product, the inverse, and the assignment of the
identity element e, of arities 2, 1, and 0, respectively, and take in E the
axioms for the identity (ex=x=xe), the axioms for the inverse
(xx~! =e=x"1x), and the associative law.

For any variety of algebras, the adjoint functor theorem will yield a
left adjoint for the forgetful functor (@, E>-Alg— Set; the solution set is
obtained just as in the case of groups (see also §7 below). Thus this
theorem produces for any set X the free ring, the free abelian group,
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the free R-module, etc. generated by the elements of the given set X.
It does not produce free fields: In defining a field, the inverse to multi-
plication is not everywhere defined, so fields are not algebraic systems
in the sense considered (and, for that matter, free fields do not exist).
Another illustration of the adjoint functor theorem is the construction
of the left adjoint to
V: Comp Haus— Set, (2)
the forgetful functor which sends each compact Hausdorff space to the
set of all its points. Given compact Hausdorff spaces X,, the usual
product topology on the cartesian product set Y =II,V X, is Hausdorff
and compact (the latter by the Tychonoff theorem); hence Comp Haus
has all small products and V preserves them. For that matter, V creates
these products: The product topology is chosen with the fewest open
sets to make all the projections p;: Y— X, continuous, so any other
compact topology Y’ with all p; continuous would be the same set Y
topologized with more open sets; then id: Y'—Y is a continuous
injection from a compact to a Hausdorff space, hence an isomorphism. By
a similar argument, V creates all equalizers, hence all small limits. It
remains to find for each set S a solution set of arrows f: S— V X where
each X is compact Hausdorff. Since X may be replaced by the closure
fScCX, it is enough to assume fS dense in X. To each point x e X,
consider the set Lx={D|DCS and x e fD}; thus Lx is a non-void set
of subsets of S. If x=x" are separated in X by disjoint open sets U
and U’, then f~'UeLx but f~'U is not in Lx, so Lx= Lx". Thus L is
an injection X —P2PS from X to the double power set of S. If we take
all subsets X of 228, all topologies on each set X and all functions
f:S—VX we obtain a small solution set for S. The adjoint functor
theorem then provides a left adjoint to V; it assigns to each set S the
Stone-Cech compactification of the discrete topology on S.

Exercises

1. For G: A— X continuous, show that the projection (x | G)— A creates all small
limits.

2. Use the adjoint functor theorem to find a left adjoint to each of the forgetful
functors Rng— Set, Rng— Ab, Cat— Grph. Compare with the standard explicit
construction of these adjoints.

3. Given a pullback diagram in Cat,

H

A—H 4

G J JG
XA ,x,
if H creates limits and G preserves them prove that H' creates them.

4. Use Exercise 3 and the fact that (x| X)— X creates limits to give a new proof
of the result of Exercise 1.
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7. Subobjects and Generators

Concepts such as subring, subspace, and subfield will now be treated
categorically, using arrows instead of elements. For instance we will
regard a subgroup S of a group G not as a set of elements of G, but as
the monomorphism S— G given by insertion.

Let A be any category. If u:s—a and v:t—a are two monics with
a common codomain a, write u <v when u factors through v; that is,
when u=ovu’ for some arrow u’' (which is then necessarily also monic).
When both u<v and v=<u, write u=v; this defines an equivalence
relation = among the monics with codomain a, and the corresponding
equivalence classes of these monics are called the subobjects of a. It is
often convenient to say that a monic u: s—a is a subobject of a — that is,
to identify u with the equivalence class of all v=uf, for 6:5'—s an
invertible arrow. These subobjects do correspond to the usual subobjects
(defined via elements) in familiar large categories such as Rng, Grp, Ab,
and R-Mod, but not in Top.

Lemma. In any square pullback diagram
A

h '
cZIZZ3Qp———t

o

§———a

7
S monic implies f' monic (and g monic implies g' monic).
Briefly, pullbacks of monics are monic.

Proof. Consider a parallel pair h, k, as shown, with f"h= f'k. Then
gf'h=gf'k, so fg'h= fg'k Since f is monic, this gives g'h=g'k. But
we also have f"h= f'k; these two equations, since p is a pullback, imply
h = k. Therefore f’ is monic.

The set of all subobjects of each a e A is partly ordered by the binary
relation u<v. If u: s—a and v: t—a are two subobjects of g, and 4 has
pullbacks, the pullback of these two arrows gives (Lemma above) another
monic w : p—a with codomain a and with w < u, w < v; it is the intersection
(= meet or greatest lower bound) of the subobjects u and v in the partly
ordered set of all subobjects of a € 4. Similarly, if J is any set and u;:s;—a
for i e J any J-indexed set of subobjects of a € A, the pullback of all
these arrows, if it exists, gives the intersection of the'subobjects u; of a.
The union (=join or least upper bound) of subobjects can be found
under added hypotheses.

Dually, two epis r, s with domain a are equivalent when r=0s for
some invertible . The equivalence classes of such epis are the quotient
objects of a, partly ordered by the relation r <s, which holds when r
factors through s as r=r's. This definition of quotients by duality is



Subobjects and Generators 127

simpler than the usual definition of quotient algebras by equivalence
classes, and agrees with the usual definition in those categories where
epis are onto. This latter is the case, for example, in Grp. Hence every
quotient object of a group G in Grp is represented by the projection
p: G— G/N of G onto the factor group G/N of G by some normal subgroup
N of G,and G/M = G/N holds if and only if M D N (in general, the relation
r = s for quotients mean that in r “more” is divided out!).

A set S of objects of the category C is said to generate C when to
any parallel pair h, b’ : c—d of arrows of C, h# ' implies that there is an
se S and an arrow f : s — ¢ with Af = / f (the term “generates” is well
established but poorly chosen; “separates” would have been better).
This definition includes the case of a single object s generating a category
C. For example, any one-point set generates Set, Z generates Ab and
Grp, and R generates R-Mod. The set of finite cyclic groups is a generator
for the category of all finite abelian groups (or, of all torsion abelian
groups).

Dually, a set Q of objects is a cogenerating set for the category C
when to every parallel pair h = h': a—b of arrows of C there is an object
geQ and an arrow g:b—g with gh+gh. A single object
g is a cogenerator when {q} is a cogenerating set. For example,
any two-point set is a cogenerator in Set.

In terms of subobjects we can examine further the construction of
solution sets. Given any functor G: A— X an arrow f: x— Gais said to
span a when there is no proper monomorphism s—a in 4 such that f
factors through Gs—Ga.

Lemma. In the category A, suppose that every set of subobjects of
an object ae A has a pullback. Then if G: A— X preserves all these pull-
backs, every arrow h: x— Ga factors through an arrow f:x— Gb which
spans b.

Proof. Consider the set of all those subobjects u; : 5; — a such that 2
factors through Gu; as h = Gu;o h;. Take the pullback v: b—aofall the u;.
Then, as in the commutative diagrams

Gv: Gb— Gaisstill a pullback (for the Gu)), so h factors through Gu via f,
as shown. It follows from the construction that f spans b.

This lemma states that a solution set for x can be the set of all arrows
from x which span.
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As an application consider the category of algebras of given type 1.
Given an arrow f:S— G A, the algebra A has a subalgebra consisting
of all elements obtained from elements of f(S) by iterated applications
of operators we 2. The cardinal number of this subalgebra A, is then
bounded by the cardinal of § and that of Q. Since f factors through
S—GA,, these latter arrows from the set S form a small set which is a
solution set for G: Alg.— Set. They are spanning arrows in the sense
of the lemma, provided a subobject of a is redefined to be a morphism
u:s—a for which Gu is injective in Set.

Another example of the use of this lemma with the adjoint functor
theorem is the proof of the existence of tensor products of modules.
Given modules A and B over a commutative ring K, a tensor productisa
universal element of the set Bilin (4, B; C) of bilinear functions
B: A x B—C to some third K-module C. This set is (the object function
of) a functor of C. To get a solution set for given A and B, it suffices to
consider only those bilinear § which span C (do not factor through a
proper submodule of C). Then C consists of all finite sums 2f(a;, b;),
so the solution set condition holds; since K-Mod is small-complete
and Bilin: K-Mod— Set is continuous, a tensor product ® : 4 x B—A® B
exists. The usual (more explicit) construction is wholly needless, since
all the properties of the tensor product follow directly from the uni-
versality.

Exercises

1. Use the adjoint functor theorem to construct the coproduct in Grp (the co-
product GHH in Grp is usually called the free product). Using the product

G x H, show also that the injections G— GUH and H— GUH of the coproduct
are both monic, and that their images intersect in the identity subgroup.

2. Make a similar construction for the coproduct of rings.

3. If Ris a ring, 4 a right R-module and B a left R-module, use the adjoint functor
theorem to construct 4 ®gB (this tensor product is an abelian group, with a
function {a, by+a®be AQxB which is biadditive, has ar®@b=a®rb for all
ae A,re R,and be B, and is universal with these properties). Prove that A®zB
is spanned (as an abelian group) by the elements a®b. If S—R is a morphism
of rings, examine the relation of A ®sB to A®zB.

4. Construct coequalizers in Alg, by the adjoint functor theorem.

8. The Special Adjoint Functor Theorem

We now consider another existence theorem for adjoints which avoids
the solution set condition by assuming a small set of objects which
cogenerates.

Theorem 1 (Special Initial-Object Theorem). If the category D is
small-complete, has small hom-sets, and a small cogenerating set Q, then D
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has an initial object provided every set of subobjects of each d € D has an
intersection.

Proof. Form the product g = II,_oq of all the objects in the small
cogenerating set Q and take the intersection r of all subobjects of g,. For
any object d € D, there is at most one arrow r—d, for if there were two
different arrows, their equalizer would be a proper monic to r, hence a sub-
object of g, smaller than the intersection r.

To show r initial in D, we thus need only construct an arrow r—d
for each d. So consider the set H of all arrows h:d—gq € Q and the (small)
product II,_pq. Take the arrow j:d—II,_gq with components h
(i.e., with p,oj=h for each projection p,). Since the set Q cogenerates,
j is monic. Form the pullback

i

] Jv

| k
}

+

d_—j—*HhEHq’

where k is the arrow with components p, o k = p, for each h:d— g. Then
J’» as pullback of a monic j, is monic, so c is a subobject of g,. But r was
the intersection of all subobjects of g, so there is an arrow r—c. The
composite r— c—d is the desired arrow.

Theorem 2 (The Special Adjoint Functor Theorem). Let the category
A be small-complete, with small hom-sets, and a small cogenerating set Q,
while every set of subobjects of an object ae A has a pullback (and hence has
an intersection). Let the category X have small hom-sets. Then a functor
G:A— X has a left-adjoint if and only if G preserves all small limits and
all pullbacks of families of monics.

Proof. The conditions are necessary, since any right adjoint functor
must indeed preserve all limits (in particular, all pullbacks). Conversely, it
suffices as usual to construct for each x € X an initial object in the comma
category D = (x| G). We shall show that this category satisfies the hypothe-
ses of the previous theorem for the construction of an initial object.
First we verify that subobjects in (x]G) have the expected form.

Lemma. Anarrowh:{f:x—Ga,a)—<{f":x—Ga',a’) inthe comma
category (x| G) is monic if and only if h:a—d’ is monic in A.

Proof. Trivially, h:a—a’ monic implies h: f— f’ monic. For the
converse, observe that h monic means exactly that its kernel pair (the
pullback of h with h) is 1,,1,:a=3a. On the other hand, by the lemma
of § 6 the projection

(x]G)—A, <{f:x—Gaa)r>a
of the comma category creates all limits, and in particular, creates kernel
pairs. Moreover, 4 has all kernel pairs. Therefore (Theorem 4.2), the
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projection of the comma category preserves all kernel pairs, in particular,
the kernel pair 1,,1,, and consequently carries monics (in(x|G)) to
monics in A4, as desired.

Now return to the theorem. We are given a small cogenerating set Q
in 4. Since X has small hom-sets, the set Q' of all objects k: x —» Ggq
with ge @ is small. It is, moreover, cogenerating in (x| G). Given s=+1¢:
{f:x—>Ga,ad—>{f :x—Gd,a) in (x|G), there is a g, @ and an
arrow h:a'—q, with hs = ht, and this h can be regarded as an arrow

h:{f":x—Gd,ay—{fo: x—Gqo,90) »

where fo=Ghe f', with hs=+ht in (x]G). Therefore Q' cogenerates
(x| G).

Since A small-complete and G continuous imply (x| G) small-complete
it remains only to construct an intersection in (x| G) for every set of
subobjects h;: {f;: x—Ga;, a;>—{f:x— Ga,a), where ieJ. By the
lemma, the corresponding arrows h; : a,— a are monics in A. By hypothe-
sis, they then have a pullback h:b—ain 4

a; X = X = X

kS ' H
’ H
s;// X 4 Sfo lfx lf
/ v
h

b—-tsa, Gb—%s Ga,— 5 Ga.

The functor G preserves pullbacks, so Gh: Gb— Ga with Gh= Gh;° Gs;
is a pullback of the Gk; in X. Since also Gh;o f;= ffor allieJ, thereisa
unique f,: x—Gb with f;= Gs;° f, ; the resulting arrow h: { fo,b)—{ f, a)
is then a pullback in (x| G) of the given h; (again, because the projection
of the comma category creates pullbacks). This pullback is the required
intersection of the h,.

There is another form of this theorem. Define a category to be well-
powered when the subobjects of each object ae A can be indexed by a
small set; that is, when there is to each a a small set J, and a bijection
from J, to the set of all subobjects of a. Many familiar large categories —
Top, Grp, R-Mod, etc. — are well powered; the dual notion is called
co-well-powered. If A is well-powered and small-complete, then any
set of subobjects of an ae 4 has an intersection, formed by the usual
pullback. Therefore the special adjoint functor theorem specializes as
follows:

Corollary. If A is small complete, well-powered, with small hom-sets,
and a small cogenerating set, while X has small hom-sets, then a functor
G: A— X has a left adjoint if and only if it is continuous. In particular,
any continuous K : A— Set is representable.

This classical form of the special adjoint functor theorem (sometimes
called SAF T) often appears without an explicit “small hom-set” hypothe-
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sis — in sources which consider only categories with small hom-sets.
Some authors use “locally small category” to mean “well-powered”;
others use it to mean “has small hom-sets”, so we avoid this term!

The classical form of SAF T can be deduced directly from the adjoint
functor theorem by constructing a solution set (as in Freyd [1964, p. 897,
or Schubert [1970, p. 88]).

A typical example is the inclusion functor

G : Comp Haus C Top 8))

of the full subcategory of compact Hausdorff spaces in Top. As already
noted, Comp Haus is small complete; it also has small hom-sets. The
Urysohn lemma states that to any two points x & y in a compact Hausdorff
space X there is a continuous function f: X—1I to the unit interval I
with fx=0, fy=1. It follows that I is a cogenerator for Comp Haus.
Hence the special adjoint functor theorem gives a left adjoint for the
inclusion G above. This left-adjoint (or sometimes, its restriction to the
full subcategory of completely regular spaces) is called the Stone-Cech
compactification. This includes the case of a discrete space, as done in § 6.

Watt’s Theorem [1960] is another example. Any ring R is a generator
in the category R-Mod, hence a cogenerator in (R-Mod)*®. It follows that
any contravariant additive functor T on R-Mod to Ab which takes
small colimits to limits is representable by a group isomorphism
T=~homg(—, C) for some R-module C. Indeed, by the special adjoint
functor theorem T': (R-Mod)°®— Ab has a left adjoint F; since Tis additive,
the adjunction

Ab(G, TA)=hompg(4, FG), GeAb, AeR-Mod,
is an isomorphism of additive groups; set G=1Z to get

TA=Ab(Z, TA) = homg(4, FZ).

Exercises

1. Let K : A—Set be any functor. If K has a left adjoint, prove that it is representable.
Conversely, if 4 has all small copowers and K is representable as K~ 4(a, —)
for some ae A prove that K has a left adjoint (which assigns to each set X the
small copower X - a).
2. For A a left R-module, B a right R-module and G an abelian group, establish
adjunctions
(a) homg (4, homy(B, G)) = homz(B®zA4, G) = homg(B, homy(4, G)), where
homyg (B, G) has a suitable (left or right) R-module structure, and where hom,
denotes the hom-set in R-Mod, hom, that in Ab.

(b) The additive group Q/Z of rational numbers modulo 1 is known to be an
injective cogenerator of Ab. Use (a) to prove that homg(R, Q/Z) is an injective
cogenerator of R-Mod (“injective” object as defined in § 4).
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3. Use Exercise 2(b) and the special adjoint functor theorem to prove that any
continuous additive functor T: R-Mod— Ab is representable. (Watt’s theorem).

4. (Stone-Cech compactification.) If X is a completely regular topological space,
show that the unjversal arrow X —GF X for the left adjoint to (1) is an injection.
(Use the Urysohn lemma: For x+y in X completely regular there exists a
continuous f:X—J with fx= fy and I the unit interval)) Classical sources
describe this compactification only when X is completely regular. This restriction
is needless; it arose from the idea of considering just universal injections, not
universal arrows.

9. Adjoints in Topology

Top is the category with objects all (small) topological spaces X, Y, ...
and arrows all continuous maps f:X—Y. The standard forgetful
functor (usually a nameless orphan!)

G : Top—Set,

sends X to GX, the set of points in X, is faithful, and has a left adjoint
D which assigns to each set S the discrete topology on S (i.e., all subsets of
S are open). Therefore G preserves all limits which may exist in Top
(this is why the underlying set of the product of spaces is the cartesian
product of their underlying sets). The forgetful functor G also has a
right adjoint D', which assigns to each set S the indiscrete topology
on S (with only S and @ open). Therefore G preserves all colimits which
may exist in Top — and this is why the coproduct of two spaces is formed
by putting a topology on the disjoint union of the underlying sets.

Next consider the subspace topology on a set SCGX.

If X is a fixed topological space, G induces a functor

Gl X :(Top} X)—(Set!GX)
Yy L 5Xx 6Yy—-06X
th It = Jth It (1)
y—Lsx 6Yy—SL56X,

here f and f’ are objects and h an arrow of the comma category (Top} X).
This functor G | X has a right adjoint L. Indeed, an object t: S—G X in
(Set} GX) is a set S and a function t on S to GX. Put on S the topology
with open sets all : U for U open in X, and call the resulting space
LS; then t is a continuous map Lt:LS— X. (For example, if S is a
subset of GX, then LS is just S with the usual “subspace topology.”)
This topology on LS has the familiar universal property: Any continuous



Adjoints in Topology 133

map f: Y—X which factors through ¢t as Gf =teos, in Set,

GY—SL,GX
s ! Gf=tos,
S ———GX,

has s:Y— LS continuous. This property just restates the desired
adjunction: hom(G f, t) = hom(f, Lt). Observe that (G| X)o L=1d; L is
a “right-adjoint-right-inverse” to (G | X).

Note especially that the universal property of the subspace topology
on a subset SC GX refers not only to the other subspaces of X, but to
other spaces Y and any continuous f:Y— X which factors through
the inclusion z: S— GX (i.e., has image contained in the subset S).

This adjoint may be used to construct (the usual) equalizers in Top
by the following general process:

Proposition 1. If G: C— D is a faithful functor, if D has equalizers,
and if, for each xeC, (G|l x):(C|lx)—(D | Gx) has a right-adjoint-
right-inverse L, then C has equalizers.

Proof. To get the equalizer of a parallel pair f, f': x—y, apply G,
take the equalizer ¢t :s— Gx of Gf, Gf” in D and apply L; the universal
property of the adjunction shows Lt: Ls—Xx an equalizer in C.

This argument is just an element-free version of the usual definition
of the equalizer: Given two continuous maps f, f': X — Y, take the set S
of points x of X with fx= f'x and impose the subspace topology. The
adjunction explains why the subspace topology.

Now Top is well known to be complete: To prove this one needs
only equalizers (of parallel pairs) and products. The product of any
family X, ie J, of spaces is constructed by taking the product IIGX; of
the underlying sets and putting on it the (universal) topology in which
all projections p;: IIGX;— GX,,ie J, are continuous. The general fact
that to spaces X, a set S, and functions z; : S— G X there is a “universal”
topology with exactly those open sets on S required to make all ¢; con-
tinuous can be expressed categorically (Exercise 3).

Colimits may be treated in dual fashion. For any space X the functor

(X1G): (X | Top)—(GX |Set)

has a left adjoint M. Indeed, an object of (GX |Set) is a functiont: GX— S
to a set S. Put on S the topology with open sets all subsets V' C S with
t7'V open in X and call the resulting space MS. (If t:GX—S is a
surjection, this is the familiar “quotient topology” or “identification
topology” on S.) Then the function ¢ is a continuous map Mt: X—MS.
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Moreover, f: X — Y continuous and G f =kt for some function k,

/N /N

MS - > S-—sGY,

implies that k£ : M' S — Y is continuous. Thus k+k is an adjunction
(X1 Top) (M, [)=(GX |Set) (1, G f)

with unit the identity map, so M is left-adjoint-right-inverse to X|G.

Now Proposition 1 was proved just from the axioms for a category,
so its dual is also true. This dual proposition and the above adjunction
prove that Top has coequalizers.

Similar constructions yield coproducts (= disjoint unions) and
general colimits in Top. Such colimits appear often, usually under other
names, as for instance in the basic process of constructing spaces by
gluing pieces together. For example, let {U;]i € J} be an open cover of a
space X. Each continuous f: X — Y determines a J-indexed family of
restrictions f|U;: U.—Y; conversely, a familiar result states that a
J-indexed family of continuous maps f;: U;— Y determines a map f
continuous on all of X if and only if f;|(U;nU,)= f;|(UinU) for all
i and j. This result may be expressed by the statement that the following
diagram is an equalizer

Top(X,Y) - II; Top(U;, Y) 3 IT; ; Top(Ui n U, Y)

where the arrows are given by restriction, as above. This result may
equally well be expressed by the statement that X is the colimit in Top,
with colimiting cone the inclusion maps U;— X, of the functor U : J'— Top,
where J' is the category with objects the pairs of indices (i, j), the single
indices (i}, and the (non-identity) maps {i,j>—<i), {i,j>—{j>, while U
is the functor with U (i, j> = U;nU;, U<i) = U, with U on (non-identity)
arrows the inclusion maps.

Another coequalizer is the space X/4 obtained from the space X
by collapsing the subset A to a point. It is the coequalizer

a
—

x - X—>X/A

— a —

of the set of all the arrows sending the one point space * to one of the
points a € A. It is used in homotopy theory. If we consider the category
Top'® whose objects are pairs (X, 4> (a space X with a subset 4) and
whose arrows (X, A>— (X', A’) are continuous maps X — X' sending
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A to A', then the definition of X/A4, for Y a pointed topological space,
reads:
Top,(X/4, Y)=Top*({X, 4, (Y, *)).

Thus (X, A>+— X/A is left adjoint to the functor Y=<, x> which sends
each pointed space to the pair (Y, *).
There are many familiar subcategories of Top.

Proposition 2. Haus, the full subcategory of all Hausdorff spaces in
Top, is complete and cocomplete. The inclusion functor Haus—Top has a
left adjoint H, as does the forgetful functor Haus—Set.

Proof. The left adjoint H will be obtained by the adjoint functor
theorem. First, any product of Hausdorff spaces or subspace of a Haus-
dorff space is also Hausdorff, hence Haus is complete and the inclusion
functor is continuous (i.e., it preserves small limits). It remains only to
verify the solution set condition for every topological space X. But any
continuous map of X to a Hausdorff space Y factors through the image,
a subspace of Y, hence Hausdorff. This image is a quotient set of X with
some topology, so there is at most a small set of (non-isomorphic) sur-
jections X— Y to a Hausdorff Y. This is the solution set condition.
The resulting left adjoint H assigns to each space X a Hausdorff space
HX and a continuous map # : X — H X, universal from X to a Hausdorff
space. Now 5 universal implies that » is a surjection, so HX may be
described as the “largest Hausdorff quotient” of X. If X is already
Hausdorff, we may take HX =X and n=1, so H is a left-adjoint-left-
inverse to the inclusion.

Since H is a left adjoint, it preserves colimits. It follows that Haus
has all small colimits (is cocomplete). In particular, the coproduct in
Haus is the coproduct in Top (because a coproduct of Hausdorff spaces
is Hausdorff), while a coequalizer in Haus is the largest Hausdorff
quotient of the coequalizer in Top.

The full subcategory of compactly generated Hausdorff spaces is
especially convenient because it is cartesian closed (§ VIL.8).

Exercises

1. For the full subcategory L conn of locally connected spaces in Top, prove that
D :Set—L conn has a left adjoint C, assigning to each space X the set of its
connected components, but show that this functor C can have no left adjoint
(because of misbehavior on equalizers).

2. Show that the right adjoint D’ : Set — Top to the forgetful functor has no right
adjoint (misbehavior on coproducts).

3. (Categorical construction of the usual products in Top.)

(a) For diagonal functors 4:C—C’, 4/:D—D’, and Te C’, each G:C—D
defines G, : (4| T)—(4'| GT) by {zr:c=-T) = {G1:GcGT).If G, hasa
left adjoint and GT a limit in D, prove that T has a limit in C.
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(b) For G the forgetful functor Top—Set and J discrete, construct a left adjoint
for G, showing that it constructs on a set S the weakest topology making
a given J-indexed family of functions f;: S— GX; continuous.

(c) Conclude that Top has all (the usual) products.

4. Construct left adjoints for each of the inclusion functors Top,,; —Top,,
n=0,1,2,3, where Top, denotes the full subcategory of all T,-spaces in Top,
with T, = Normal, T3 =Regular, T, = Hausdorff, etc.

5. Show that the inclusion Haus— Top has no right adjoint, by showing that a
coequalizer in Top of Hausdorfl spaces need not be Hausdorff. Conclude that
the forgetful functor Haus—Set has no right adjoint.

Notes.

Instances and special cases of the adjoint functor theorem abound; there have
been many partial discoveries or rediscoveries. One version is Bourbaki’s condition
[1957] for the existence of universal arrows; this version clearly formulated a
solution set condition, but was cumbersome because Bourbaki’s notion of
“structures” did not make use of categorical ideas. The present version of the
adjoint functor theorem was formulated and popularized by Freyd [1964], who
also formulated SAFT. Our version of the special initial-object theorem is due
to G.M. Kelly (private communication).



VI. Monads and Algebras

In this chapter we will examine more closely the relation between uni-
versal algebra and adjoint functors. For each type © of algebras (§V.6),
we have the category Alg, of all algebras of the given type, the forgetful
functor G : Alg, — Set, and its left adjoint F, which assigns to each set .S
the free algebra FS of type  generated by elements of S. A trace of this
adjunction {F, G, ¢) : Set— Alg_ resides in the category Set; indeed, the
composite T=GF is a functor Set—Set, which assigns to each set §
the set of all elements of its corresponding free algebra. Moreover, this
functor T is equipped with certain natural transformations which give
it a monoid-like structure, called a “monad”. The remarkable part is then
that the whole category Alg, can be reconstructed from this monad in Set.
Another principal result is a theorem due to Beck, which describes
exactly those categories 4 with adjunctions {F, G, ¢)>: X—A which
can be so reconstructed from a monad T in the base category X. It then
turns out that algebras in this last sense are so general as to include the
compact Hausdorff spaces {§ 9).

1. Monads in a Category

Any endofunctor T: X—X has composites T72= ToT: X—X and
T?=T%T:X—X. If p:T*>T is a natural transformation, with
components g : T2x— Tx for each xe X, then Tu: T3 T? denotes
the natural transformation with components (Ty), = T{u,): T?x— T2x
while uT: T3~ T? has components (uT),=ur,. Indeed, T and uT
are “horizontal” composites in the sense of § IL.5.

Definition. A monad T={T,n, u) in a category X consists of a
functor T: X— X and two natural transformations

n:Li=T, w:T>=T (1)
which make the following diagrams commute
T3 #) TZ IT nT TZ Tn TI
“TJ Ju I Ju I (2)
T>—£ T, T = T = T

137
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Formally, the definition of a monad is like that of a monoid M in
sets, as described in the introduction. The set M of elements of the monoid
is replaced by the endofunctor T: X— X, while the cartesian product x
of two sets is replaced by composite of two functors, the binary operation
©:Mx M—M of multiplication by the transformation u: T2 T and
the unit (identity) element #:1—M by #n: Iy~ T. We shall thus call 5
the unit and p the multiplication of the monad T; the first commutative
diagram of (2) is then the associative law for the monad, while the second
and third diagrams express the left and right unir laws, respectively.
All told, a monad in X is just a monoid in the category of endofunctors
of X, with product x replaced by composition of endofunctors and unit
set by the identity endofunctor.

Terminology. These objects (X, T,n, 1> have been variously called
“dual standard construction”, “triple”, “monoid”, and “triad”. The
frequent but unfortunate use of the word “triple” in this sense has achieved
a maximum of needless confusion, what with the conflict with ordered
triple, plus the use of associated terms such as “triple derived functors”
for functors which are not three times derived from anything in the world.
Hence the term monad.

Every adjunction {(F,G,n,¢&>:X—A gives rise to a monad in the
category X. Specifically, the two functors F: X— A4 and G: A— X have
composite T=GF an endofunctor, the unit n of the adjunction is a
natural transformation #:I->T and the counit ¢: FG= I, of the ad-
junction yields by horizontal composition a natural transformation
u=GeF:GFGF—-GF=T. The associative law of (2) above for this p
becomes the commutativity of the first diagram below

GFGFGFEES 5, GFGF FGFG-L%LFG
GeFGF l l GeF jeFG ls
GFGF—%f _,GF, FG—F—1,.

Dropping G in front and F behind, this amounts to the commutativity
of the second diagram, which holds by the very definition (§ I1.4) of the
(horizontal) composite ee=¢- (FGe)=¢ - (¢ F G) (ie., by the “interchange
law” for functors and natural transformations). Similarly, the left and
right unit laws of (2) reduce to the diagrams

IyGF-E ,GFGF<2 _GF Iy
GF
which are essentially just the two triangular identities

1=Ge-nG:G->G 1=¢F-Fn:F=F
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for an adjunction. Therefore {(GF,n,GeF) is indeed a monad in X.
Call it the monad defined by the adjunction {F, G,n, &).

For example, the free group monad in Set is the monad defined by
the adjunction (F, G, ¢) :Set— Grp, with G:Grp—Set the usual
forgetful functor.

Dually, a comonad in a category consists of a functor L and trans-

formations
L:A—A, e LI, 6:L=I? (1°7)

which render commutative the diagrams

«{ jw I [6 I
J R IL—E 2Lt ).

Each adjunction (F,G,n,&)>: X— A defines a comonad (FG,s,FnG) in A.

What is a monad in a preorder P? A functor T: P— P is just a function
T: P— P which is monotonic (x<y in P implies Tx =< Ty); there are
natural transformations n and p as in (1) precisely when

x=Tx, T(Tx)<Tx (3)

for all xe P; the diagrams (2) then necessarily commute because in a
preorder there is at most one arrow from here to yonder. The first equation
of (3) gives Tx < T(Tx). Now suppose that the preorder P is a partial
order (x £y < x implies x = y). Then the Egs. (3) imply that T(Tx)= Tx.
Hence a monad T in a partial order P is just a closure operation t in P;
that is, a monotonic function t: P— P with x <tx and t(tx)=tx for all
xeP.

We leave the reader to describe a morphism (T, u, y>—<T, ', ')
of monads (a suitable natural transformation T--T') and the category
of all monads in a given category X.

2. Algebras for a Monad

The natural question, “Can every monad be defined by a suitable pair
of adjoint functors?” has a positive answer, in fact there are two positive
answers provided by two suitable pairs of adjoint functors. The first
answer (due to Eilenberg-Moore [1965]) constructs from a monad
{T,n,1) in X a category of X7 of “T-algebras” and an adjunction
X—XT which defines (T,#, > in X. Formally, the definition of a
T-algebra is that of a set on which the “monoid” T acts (cf. the introduc-
tion).
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Definition. If T=<{Tn,p) is a monad in X, a T-algebra {x,h) is
a pair consisting of an object x € X (the underlying object of the algebra)
and an arrow h: Tx—x of X (called the structure map of the algebra)
which makes both the diagrams

T2x—T* , Tx X2 Tx

| | | \l (1

Tx ———Xx

commute. ( The first diagram is the associative law, the second the unit law.)
A morphism f:{x, h>—<X', k"> of T-algebras is an arrow f:x—Xx" of
X which renders commutative the diagram

xe— Tx

J’J JTI 2)

x—r —Tx'

Theorem 1 (Every monad is defined by its T-algebras). If {T,n,u>
is a monad in X, then the set of all T-algebras and their morphisms form
a category XT. There is an adjunction

CFT,GT5 nh,e™y : X—XT

in which the functors GT and FT are given by the respective assignments

{x, h) ———>x X+——>Tx, ft»
GT: lf Jf FT: lf ITI (3)
<xls h,>['_—-'x, s X <TX’, lux'> H

while n"=n and e"{(x,h) =h for each T-algebra {x,h). The monad
defined in X by this adjunction is the given monad {T,n, u).

The proof is straightforward verification. If f:{x, hD—<{x, h">
and g:<{x,K>—<{x", k"> are morphisms of T-algebras, so is their
composite g f; with this composition of arrows, the T-algebras evidently
form a category X7, as asserted. The functor G': XT— X is the evident
functor which simply forgets the structure map of each T-algebra. On
the other hand, for each xe X the pair {Tx,u.: T(Tx)—»Tx) is a T-
algebra (the free T-algebra on x), in view of the associative and (left)
unit laws for the monad T. Hence x+—{Tx, u,> does indeed define a
functor FT: X— X7, as asserted. Then GTFTx=G"(Tx,u,>=Tx, so
the unit # of the given monad is a natural transformation =47 : I, GTF”
On the other hand, FT G"<{x, h) = <{Tx, >, while the first square in the
definition (1) of a T-algebra {x, k) states that the structure maph: Tx—x
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is a morphism {(Tx, u,>—{x, h) of T-algebras. The resulting trans-
formation
ey =h: FTGT{x, h)—{x,h)>

is natural, by the definition (above) of a morphism of T-algebras. The
triangular identities for an adjunction read

Tx—TI1= TTx x—I—Tx
> J#x > Jvh
Tx b

The first holds by the (right) unit law for T, the second by the unit law
(see (1)) for a T-algebra. Therefore n™ and & define an adjunction, as
stated.

This adjunction thus determines a monad in X. The endofunctor
GT FT is the original T, its unit #7 is the original unit, and its multiplica-
tionu" = GTe" FThas u"x=GTe"(Tx, pu,> = G'p, = u,sois the original
multiplication of T. The proof is complete.

We now give several examples which show that the T-algebras for
familiar monads are the familiar algebras.

Closure. A closure operation T on a preorder P is a monad in P
{see § 1); a T-algebra is then an xe P with Tx < x (the structure map).
Since x< Tx for all x, a T-algebra is simply an element xe P with
xS TxZx. If P is a partial order, this means that x= Tx, so that a
T-algebra is simply an element x of the partial order which is closed,
in the usual sense.

Group actions. If G is a (small) group, then for every (small) set X
the definitions

TX=GxX, XGxX, Gx(GxX)—GxX,
XH<u? X> s <gls <92’x>>*—"<glgz’x>

forxe X, g,,g, € G and u the unit element of G, define a monad <{T, , u)>
on Set. A T-algebra is then a set X together with a functionh:Gx X — X
(the structure map) such that always

h(g,92, X) =h(g;. kg, %)), h{u,x)=x.

If we write g-x for h(g, x), these are just the usual conditions that
{g,x>r>g+x defines an action of the group G on the set X. That T-
algebras for the monad T are just the group actions is not a surprise,
since our definition of T-algebras was constructed on the model of
group actions.
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Modules. If R is a (small) ring, then for each (small) abelian group 4
the definitions

TA=R®A, A—R®A, R RRA)—-DR®A,
a—1®a, n®r®arrr,®a,

forae A4, ry,r, € R, define a monad on Ab. Much as in the previous case,
the T-algebras are exactly the left R-modules.

Exercises

1. Complete semi-lattices (E. Manes; thesis). Recall that a complete semi-lattice is

a partial order Q in which every subset S C Q has a supremum (least upper bound)

i Q. Let 2 be the covariant power set functor on Set so that 2 X is the set of all

subsets S C X, while for each function f: X—Y, (2 f)S is the direct image of S

under f. For each set X, let ny: X—2X send each xe X to the one point

set {x}, while uy: 2P X — P X sends each set of sets into its union.

(a) Prove that (&, n, u> is a monad £ on Set.

(b) Prove that each P-algebra (X,h) is a complete semi-lattice when x<y
is defined by h{x, y} =y, and supS=hS for each SC X.

(¢c) Prove conversely that every (small) complete semi-lattice is a P-algebra
in this way.

(d) Conclude that the category of #-algebras is the category of all (small)
complete semi-lattices, with morphisms the order and sup-preserving
functions.

2. Show that GT: XT— X creates limits.

3. (@) For monads<T,#, u»and {T,#, > on X, define a morphism 8 of monads
as a suitable natural transformation 8: T T, and construct the category
of all monads in X.

(b) From 6 construct a functor 8*: XT— X7 such that G 6*=G" and a
natural transformation F7-8*o FT'

3. The Comparison with Algebras

Suppose we start with an adjunction X— A, construct the monad T
defined in X by the adjunction and then the category X7 of T-algebras;
we then ask: How is this related to the original category A? A full answer
will relate not only the categories, but the adjunctions, and is provided
by the following comparison theorem.

Theorem 1 ( Comparison of adjunctions with algebras). Let
{F,Gne): X—A

be an adjunction, T= (G F,n, G¢ F) the monad it defines in X. Then there
is a unique functor K: A— X" with G'TK=G and KF =F".
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Proof. The conclusion asserts that we can fill in the arrow K in the
following diagram so that both the F-square and the G-square commute

A K XT
e ol g
X = X.

Now the counit ¢ of the given adjunction defines for each a € 4 an arrow
Ge,: GFGa— Ga. This arrow may be considered as a structure map h
for a T-algebra structure on the object Ga = x, for the requisite diagrams
(cases of (2.1)) are

GFGFGa-tf%GFGa Ga—%=GFGa

“Gﬂ=Gf:FGa’[ ’[Gca \ JGS,1

GFGQ—T%—’G(Z 5 Ga.
They commute (the first is the definition of Gee, the second is one of the
triangular identities for the given adjunction). Therefore for any f:a—ad’
in A we define K by

Ka=(Ga,Ge,>, Kf=Gf:{(Ga,Ge>—(Gd,Ge>; (2

since ¢ is natural, the proposed arrow K f commutes with Ge and so is
a morphism of T-algebras. It is routine to verify that K is a functor with

KF=F", GT'K=G. 3)

It remains to show K unique. First, each Ka must be a T-algebra,
and the commutativity requirement G7 K = G means that the underlying
X-object of this T-algebra Ka is Ga. Therefore K a must have the form
Ka={Ga,h) for some structure map h; moreover G' K=G means
that the value of K on an arrow fin A must be K f = G f, exactly as in (2)
above. It remains only to determine the structure map h. Now (1) com-
mutes, and the two adjunctions (F, G, ...> and (FT,G7,...) have the
same unit u, so the two functors K: 4— X7 and the identity I: X—X
define a map of the first adjunction to the second, in the sense considered
in §IV.7. Proposition IV.7.1 for this map then states that Ke=¢TK.
But K on arrows is G, so Kg,= G, for each ae A, while the definition
of the counit &7 of an algebra gives " Ka=¢"{(Ga, h) =h. Thus Ke=¢"K
implies Ge, = h, so the structure map h is determined and K is unique.

For many familiar adjunctions {F, G, ... this comparison functor K
will be an 1somorphism; we then say that G is monadic (tripleable). For
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other authors (Barr-Wells [1985]), “triplable” means only that K be an
equivalence of categories. However, here is an easy example when K is
not an isomorphism, and not even an equivalence. The forgetful functor
G : Top— Set has a left adjoint D which assigns to each set X the discrete
topological space (all subsets open in X), for the identity arrow 7y : X —
G D X is trivially universal from the object X to the functor G. This ad-
junction (D, G,#,... > : Set— Top defines on Set the monad I = {I,1,1)
which is the identity (identity functor, identity as unit and as multi-
plication). The I-algebras in Set are just the sets, so the comparison
functor Top— Top’ = Set is in this case the given forgetful functor G.

4, Words and Free Semigroups

The comparison functor can be illustrated explicitly in the case of
semigroups. A semigroup is a set S equipped with an associative binary
operation v:Sx S—S. The free semigroup WX on a set X is like the
free monoid on X (§ I1.7). It consists of all words {(x,) ... {x,> of positive
length n spelled in letters x; € X, where we write {x) to distinguish the
word (x> in WX from the element xe X. Words are multiplied by
juxtaposition,

(x> o KDYy oo YD) =D oo KD Y1 oo Y s

this multiplication v is associative, so makes FX = (W X, v) a semigroup,
with the set WX the disjoint union I1 X" n=1,2,.... If G:Smgrp— Set
is the forgetful functor from the category of all small semigroups (forget
the multiplication), then the arrow #y: X—GF X defined by x—{x)>
(send each x to the one-letter word in x) is universal from X to G. There-
fore F is a functor, left adjoint to G, and # defines an adjunction

{F,G,n,¢&>:Set—Smgrp .

If S is any semigroup (set S with an associative binary operation S x S— 8§,
written as multiplication) the counit g of this adjunction is by definition
that morphism ¢g: FGS—S of semigroups for which the composite
Gegongs: GS—GFGS—GS is the identity; in other words, ¢ is the
unique morphism of semi-groups which sends each generator {s) to s.
This means that

es({81 ... {s,0)=s; ... s, (productin S) (1

for all 5, S: The counit ¢ removes the “pointy bracket” { >.

Proposition 1. The monad on Set determined by the adjunction
Set—Smgrp is
W=(W:Set—Set, n:I->W, u: W= W)
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where WX = [[ X", nyx={x) for each x € X, while py is

n=1

px (x> <x1n1>> e Xy e <xknk>>)
=Xy o Xy e X1 s X

for all positive integers k, all k-tuples ny, ..., n, of positive integers, and
all x;;€ X.

Proof. By definition, 7 x = (x), while y = Ge F : W3- Wis determined
by the formula above for g, where we have written each element of
W2 X asa word (of length k) in k words of the respective lengths n,, ..., n,.
More briefly, uy applied to a word of words removes the outer pointy
brackets.

Note that this description allows direct verification of the unit and
associative laws for the monad W, without overt reference to the notion
of a semi-group. For example, the associative law for u amounts to an
observation on three layers of pointy brackets, that removing first the
middle brackets and then the outer brackets gives the same result as
removing first the outer brackets and then the (newly) outer brackets.

Proposition 2. For the above word-monad W in Set, the W-algebras
have the form (S, vy, v,,...>: A set S equipped with one n-ary operation
v,:S"— S for each positive integer n, such that v, =1 while for every
positive k and every k-tuple of positive integers ny, ..., n, one has the identity

VeV, X oo XV Y= Vo g S ST IR (2)

A morphism f:{S,vy,...0—= (S, V},...> of W-algebras is a function
f:S—S' which commutes with each v,, so that fv,=v,f":5"—§".

Proof. Consider a W-algebra (S, h: WS— S). Since WS =1 ", the
structure map h is a list of n-ary operations v,: S"— S, one for each n.
The unit law for the algebra requires that hny = 1, hence that v, be the
identity. On the other hand, since the product of sets is distributive over
the coproducts of sets,

WX)_H (HX")"~H [Txmx . xXnk)_f_:IkH"JX..H...W,

where n at the middle and the right runs over all k-tuples {(n;,...,n).
With this notation, the associative law for the structure map 4 takes the
stated form (2).
The simplest case of this identity (2), for 3=2+1=1+2 and v, the
identity, is
Va(vy x Dy=v3=v,(Ixv,): SXxSxS—S.

If we write the binary operation v, as multiplication, this states that the
ternary operation vy satisfies, for all elements x, y,ze S,

(xy)z=v3(x,y,2)=x(y2).
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Similarly, v, must be the n-fold product. An easy induction proves

Corollary. The system {S,vy,v,,...> is a W-algebra, as above, if
and only if vi=1, v,: SxS—S is an associative binary operation on S,
and for all n=2, v,y =v,{v, x1): S"T1 =S

Thus, if we start with semigroups, regarded as sets {S,v)> with one
associative binary operation, define the resulting monad W on Set, and
then construct the category of W-algebras, we get the same semigroups,
now regarded as algebraic system (S, v, v,,...>, where v, =1, v,=v,
and v,,, is v, iterated. The comparison functor K :Smgrp—Set” is
the evident map {S,v> (S, 1,v,,...,v,,...) where v, is the iterate of
the binary v. In other words, K is an isomorphism, but it replaces the
algebraic system <S, v) with one associative binary operation by the same
set with all the iterated operations derived from this binary operation.

A similar description applies to algebras over other familiar monads
(Exercises 1, 2).

Exercises

1. Let W, be the monad in Set defined by the forgetful functor Mon— Set. Show
that a W,-algebra is a set M with a string v, v;, ... of n-ary operations v,, where
v : *— M is the unit of the monoid M and v, is the n-fold product.

2. For any ring R with identity, the forgetful functor G: R-Mod—Set from the
category of left R-modules has a left adjoint and so defines a monad (Tg, 7,1
in Set.

(a) Prove that this monad may be described as follows: For each set X, T;X
is the set of all those functions f: X — R with only a finite number of non-
zero values; for each functiont: X — Y andeachy e Y, [(Tot)f ), = 2' f.,
with sum taken over all x € X with tx = y; foreachxe X, nx: X — R is
defined by (7, x)x = 1, (5. x)x’ = 0; foreachk € Tr(Tr X), .k : X — Ris
defined for x € X by (i, k). = 3 k; f,, the sum taken over all f e Ty X.

(b) From this description, verify directly that {Tg,, > is 2 monad.

(c) Show that the (Tg,n, ud-algebras are the usual R-modules, described
not via addition and scalar multiple, but via all operations of linear combina-
tion (The structure map h assigns to each f the “linear combination with
coefficients f; for each x € X))

3. Give a similar complete description of the adjunction defined by the forgetful
functor CRng— Set, noting that T X is the ring of all polynomials with integral
coefficients in letters (ie., indeterminates) x € X.

4. The adjunction (F, G, ®)> : Ab— Rng with G the functor “forget the multiplica-
tion in a ring” defines a monad T in Ab.

(a) Give a direct description of this monad, like that in the text for W, with X"
replaced by the n-fold tensor power and coproduct II by the (infinite) direct
sum of abelian groups.

(b) Give the corresponding description of T-algebras and show that the com-
parison functor from rings to T-algebras is an isomorphism.
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5. Free Algebras for a Monad

Given an adjunction
(F,G,p): X—A4,

any full subcategory BC A which contains all the objects Fx for xe X
leads to another adjunction

<FBa GBa ¢B>X—_‘B

where the functor Fy is just F with its codomain restricted from A4 to
B, Gg is G with domain restricted to B, while for xe X and be B the
given adjunction leads to a bijection @p

hompg(Fyx, b)=hom 4(F x, by~ homy(x, Gb)=homy(x, Ggb),

which is manifestly natural in x and b. Moreover, this second adjunction
¢y defines in X the same monad as did the first. This observation shows
that one and the same monad in X can usually be defined by many
different adjunctions. The “smallest” such adjunction will be the one
where B 1s FX, the full subcategory of A with objects all the “free”
objects Fx € 4. The familiar properties of arrows Fx— Fy between such
free objects do suggest a way of constructing this subcategory FX and
the adjunction ¢y directly from the monad. Here is the suggested con-
struction, which really gives this category directly and not as a sub-
category (cf. Exercise 3).

Theorem 1 (The Kleisli category of a monad, [1965}.) Given a monad
{T,n, u> in a category X, consider to each object xe X a new object x1
and to each arrow f:x— Ty in X a new arrow f°: x;p— yr. These new
objects and arrows constitute a category when the composite of f" with
g": yr— zy is defined by

g of =eTgef). 1)

Moreover, functors Fr: X— Xy and Gr: Xr— X are defined by
Fr: k:x—+yl—>(r]y°k)b:x-,-—+y-,-, 2
Gr: f*:xp—yrrpe Tf: Tx—T?y—Ty (3)

respectively, so that Gpx;= Tx on objects. Then the bijection f"+ f
gives an adjunction {Fr, Gy, 1y : X — Xy which defines in X precisely the
given monad {T,n, u>.

Sketch of proof. The definition of the arrows f* amounts to a bi-
jection Xp(xr, yr)= X(x, Ty) on hom-sets, while the definition of the
composite in Xy refers to the composite

x—L > Ty—T¢ T2, ¥ ,T;
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in X. A suitable large diagram shows the new composition associative:
Other diagrams prove that (1,)": x;— Xy is a left and right unit for this
composition. Another calculation shows that F; and Gy as described
are indeed functors. By construction, f"+f is a bijection

Xp(Frx, yp) = Xp(xp, yr) = X (x, Ty) = X(x, Gry1);

it is natural in x and yr, so yields the desired adjunction @ . Its unit
is n, and its counit er is given by (er)yr =(11,) : (Ty)r— yr. The resulting
multiplication in X is Grep Fr, which by the definition of Gy is exactly
the given multiplication u. Therefore the adjunction does define the
original monad T.

Theorem 2 (The comparison theorem for the Kleisli construction).
Let (F,G,n,e): X— A be anadjunctionand T=<GF,n, Ge F) the monad
it defines in X. Then there is a unique functor L: Xp— A with GL=Gy
and LF.=F.

We leave the proof to the reader, noting that the uniqueness of L re-
quires another (and somewhat different) application of Proposition IV.7.1
on maps of adjunctions.

The two comparison theorems may be summarized as follows:

Theorem 3. Given a monad {T,n, u> in X, consider the category with
objects all those adjunctions {F, G,n,¢e>: X—A which define {T,n, u>
in X, and with arrows those maps of adjunctions (§ IV.7) which are the
identity on X. T his category has an initial object — the Kleisli construction —
and a terminal object (FT,GT,n,e7>: X — XT with the comparison
Sfunctor:

Xp-Es 4K XT

Exercises

1. Construct the Kleisli comparison functor L, prove its uniqueness, and show
that the image of X7 under L is the full subcategory FX of A with objects all
Fx, xeX.

2. Show that the restriction of L gives an equivalence of categories X;— FX.

3. Construct an example of an adjunction where F is not a bijection on objects.
Deduce that the equivalence X7 — F X in Exercise 2 need not be an isomor-
phism. (Suggestion: S — T(S) = the one-point-set defines a monad in Set.)

4, In the summary comparison Theorem 3, does the category of all adjunctions
really exist?

5. If (F, G,n, &) : X— Bdefines the monad (T, 7, ) in X, while a second adjunction
(L,R,n,¢>: B—A defines the identity monad in B (ie, RL=1Iy, n'=1, and
R¢' L=1), prove that the composite adjunction X — A4 defines in X /the same
monad {T,n, u>.
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6. Split Coequalizers

We need certain special types of coequalizers. By a fork in a category C

we mean a diagram

a_—%"zb——e—w (1)

in C with ed, =ed,. A fork 1s thus just a cone from the diagram a=3b
to the vertex c. Recall that an arrow e is a coequalizer of the parallel
pair of arrows &, and &, if it is a fork and if any f: b—d with f 3, = f ¢,
has the form f = f'e for a unique f':c—d. An arrow e is called an
absolute coequalizer of 8, and &, in C if for any functor T: C— X (to any
category X whatever) the resulting fork

Tdo T
Ta__,—a—“’ Th——=—-Tc
1

still has Te a coequalizer (of Td, and T3,). In particular, an absolute
coequalizer is automatically a coequalizer. In the same way one can
define absolute colimits (or absolute limits) of any other type (Paré
[1971a]).

A split fork in C is a fork (1) with two more arrows

ae—t _pe—S ¢ i)
which satisfy with the arrows (1) the conditions
edy=ed;, es=1, Jgyt=1, Jit=se. (3)

We say that s and ¢ split the fork (1). These conditions imply that ¢ is
a split ept, with right inverse s. A split fork can also be represented as a
pair of commutative squares

b—" g% ,p

Je Ja, Jve
c——b——c
such that both horizontal composites are the identity. Put differently:
The arrows J, and e are objects in the functor category C? and
{8y, €>: 0, —e is an arrow between them which has {t,s):e— 3, as its
right inverse: {d,, &> (t,s>={1, 1D.
Lemma. In every split fork, e is the coequalizer of 8, and 0.
Proof. For any arrow f:b—d with f3,= f0,, take f'=fs:c—d.
Then, using the Egs. (3) defining a split fork,
fle=fse=fojt=fost=1,

so f factors through e. On the other hand, f=ke for some k:c—d
implies fs=kes =k, so k is necessarily f'= fs, and f’ is unique.
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By a split coequalizer of 9, and 0, we shall mean the arrow e of such
a split fork on 8, and &,. It is possible to characterize those parallel
pairs 8,, 6, for which any (and hence every) coequalizer is split (Exercise 2).

Since a split fork is defined by equations involving only composites
and identities, it remains a split fork under the application of any functor.
Hence,

Corollary. In every split fork, e is an absolute coequalizer of 8, and 0,.

Here 1s an example of a fork in Cat, for C any category:
=3 C— 1.
C? is the category whose objects are the arrows of C; d, and 9, are
the functors assigning to each arrow its domain and its codomain,
respectively, while e is the functor which sends every object of C to the
unique object of 1. If C has a terminal object a,, this fork is a split by
the functor s which sends the unique object of 1 to a,, and the functor ¢
which sends each ceC to the unique arrow c—a,.

Here is an example of a fork in Grp. Let N<1 G be any normal sub-
group of G and form the semidirect product G x o N, which has elements
the pairs {x,n) for xe G, ne N with the (evidently associative) multi-
plication <{x, n)> {y,m)> =<xy, (y 'ny)m). Then

G x ON$G—P—»G/N

is a fork, where p is the usual projection to the quotient group G/N,
while d,<x, n) =x, 0, <{x, n) = xn. Moreover, in this fork p is clearly the
coequalizer of 9, and d,. This fork is not in general split, but if we apply
the standard forgetful functor U : Grp—Set, the resulting fork in Set is
split. Take s to be a function sending each coset (element of G/N) to a
representative element in G, while tx = {x,x !(spx)>. This example,
incidentally, gives one way in which any quotient group can be regarded
as a coequalizer in the category of groups.

Exercises

1. In Rng give a similar construction to show that every quotient R/4 of a ring R
by an ideal A can be represented as a coequalizer, and show that the resulting
fork is split after the application of the forgetful functors to sets.

2. A parallel pair dq, 6, : a3 b is said to be contractible (Beck) if there is an arrow
t:b—awith 6gt=1 and 8,t0,= 0,1 d,.

(a) In any split fork (1), prove d,, 6, contractible;
(b) If a contractible pair has a coequalizer, prove that this coequalizer is split.
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7. Beck’s Theorem

A basic construction in familiar categories of algebras is the formation
of coequalizers - in Grp, via factor groups, in R-Med via quotient modules,
and the like. Beck’s theorem will characterize the category of T-algebras
for any monad T as a category with an adjunction in which the “forgetful”
functor creates suitable coequalizers. We recall (§ V.1) that a functor
G: A— X creates coequalizers for a parallel pair f,g:a=3b in A when
to each coequalizer u: Gb—z of G f, Gg in X there is a unique object ¢
and a unique arrow e: b—c with G¢=2z and G e=u and when moreover
this unique arrow is a coequalizer of f and g.

Theorem 1 ( Beck’s theorem characterizing algebras). Let
(F,G,n,e>: X—A (0

be an adjunction, {T, n, u> the monad which it defines in X, X7 the category
of T-algebras for this monad, and

(FT,GTon",eT) X —XT 2

the corresponding adjunction. Then the following conditions are equivalent :
(i) The (unique) comparison functor K : A— X" is an isomorphism;
(i) The functor G: A— X creates coequalizers for those parallel
pairs f, g in A for which G f, Gg has an absolute coequalizer in X ;
(1il) The functor G: A— X creates coequalizers for those parallel
pairs f, g in A for which G f, Gg has a split coequalizer in X.

Proof. We first show that (i) implies (1i). Consider two maps
do
Y= (k>

of T-algebras for which the corresponding arrows in X have an absolute
coequalizer i
xd: y—2sz,

1
To create a coequalizer for this parallel pair we must first find a unique
T-algebra structure m: Tz—z on z such that e becomes a map of T-
algebras, and then prove that this e is, in fact, a coequalizer of d,, 4, in

the category X7 of T-algebras. But on the left side of the diagram

Tdp T
Ix—3Ty—*—Tz

Td, !
jh Jk im
do M

xd:y—-"—az
1

both the upper square (with d,) and the lower square (with d;) commute,
because d, and d, are maps of algebras; it follows that ek has equal
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composites with Td, and Td,. But e is an absolute coequalizer, so Te
is still a coequalizer: Therefore there is a unique vertical map m, as
shown, which makes the right square commute.

We now wish to show that this m is a structure map for z. The
associative law for m (outer square below) may be compared with the
associative law for the structure map k (inner square below) by the diagram

T2z Tm Tz

AN

T?y—Ty

Hz “yl lk m (3)

Ty-—5—y

Tz — zZ.
The left hand trapezoid commutes since u is natural, and the other three
trapezoids commute by the definition of m above in terms of k and e.
Therefore

mo Tmo T?e=mo yo T?e.

But e is an absolute coequalizer, so T?e is a coequalizer and thus is epi;
cancelling T?e gives the associative law for m. The same style of argument
will prove that m satisfies the unit law mon,=1:z—z.

We have found the desired unique T-algebra structure m on z, with
e a map of T-algebras by the construction of m. To show that e is a
coequalizer in X7, consider any other map f:<{y,kd>—<w,n)> of T-
algebras with fd, = fd;. Then f: y—wis an arrow in X with fd,= fd,,
while e is an (absolute) coequalizer of d,,d; : x=3y. Therefore there is
amap f': z—w with f = f’e. An argument just like that for the diagram
(3) shows that f” is in fact a map of T-algebras. Since it is unique with
f = f"e, this completes the proof that e is a coequalizer in X7, and hence
that (i) implies (ii).

Next, every split coequalizer is an absolute coequalizer, hence condi-
tion (ii) of the theorem requires more creativity of G than does condition
(iii). Therefore (ii) implies (iii).

It remains to prove that (iii} implies (i). As a preliminary, consider
a T-algebra (x, h); the conditions that h: Tx—x be a structure map
of an algebra are exactly the conditions that

sz:—_:_,-’:Tx———"—m (4)
be a fork in X split by T?x <= Tx<=x. Indeed, the fork condition
hou,=hoTh for (4) is just the associative law for h, the composite
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hon,is 1 because of the unit law for {x, h), while the equations
Heofipe=1,  Thenp.=noh

hold by the unit law for the monad T and the naturality of #.
For each object ae A4, the adjunction (F,G,¢,n): X—A provides
a fork

FGFGa%FGaL»a (5)
FGea

in A which we call the “canonical presentation” of a. It does correspond
to a familiar presentation if A = Grp; then ¢, 1s just the projection on the
group a of the free group generated by all the elements of a. If the functor G
is applied to the fork (5) we get a split fork in X; indeed, that special
case of the split fork (4) when {x, h) is the T-algebra {Ga, G¢,> used
in the comparison theorem.,

Now consider any other adjunction {F’,G’,n,&¢>:X—A" which
defines the same monad in X. By a comparison (of F' to F) we mean a
functor M : A'—> A with M F'=F and GM = G'; as already noted, such a
comparison is a morphism of adjunctions and hence satisfies M¢' =& M.

Lemma. If G satisfies hypothesis (iii) of the theorem on the creation
of coequalizers, then there is a unique comparison M : A'— A.

Since G” is now known to satisfy this hypotheses, this lemma will
incidentally provide a new proof of the comparison theorem (§3).

Proof. If M exists,then FGM =MF' G and M¢ =¢eM, so M must
carry the canonical presentation of @' to the canonical presentation
of M d'. In other words, the object M a’ must fit in a fork

in A4, and moreover k must be Mg}, = g,,,. Map this fork to the category
X by the functor G. The result is the fork

GeFGrar [
GFGFGd—3GFGad——5Ga
TG eqr

in X which is split — since T=GF, it is a case of the fork (4) above, for
x = G'd'. But the hypothesis (iii) ensures that G creates coequalizers in
this case. Therefore there is exactly one possible choice for k and Ma’
above; (moreover, once M a’ is chosen, ¢, has the property required of
k, so must be k.) This shows that the comparison M is unique if it exists.
Now choose kand M a' in this way. To show M a functor consider any
f:d'—b' in 4. In the diagram
FGFGad—=33FGad—~>Ma
J FG'F'G'f lFG’f Mf

1
+

FGFGbh—=FGb—2 oMb
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both left-hand squares commute, so k,o FG'f must factor though the
first coequalizer k by a unique arrow M a’—» M b’ as shown. Taking this
arrow to be M f clearly makes M a functor A'— A, just as required for
the lemma.

By this lemma we construct both the original comparison functor
K:A—X" and a comparison functor M:XT-—A. The composite
MK:A— A is then a comparison (of the adjunction F... to itself),
hence must be the identity, again by the lemma. Similarly, KM : XT— X7
is a comparison of FT to F”, hence must be the identity. Now MK =1
and KM =1 prove K an isomorphism, as required for (i).

The construction of M in this theorem may be further analyzed,
using for parallel pairs the following notion of “reflection” of colimits:

Definition. A functor G: A— X reflects colimits of T:J— A when
every cone A:T-a from T to ae A for which GA:GT=Ga is a co-
limiting cone in X is already a colimiting cone in A.

In particular, G reflects coequalizers when every fork in A which be-
comes a coequalizer in X is already a coequalizer in 4. Similarly, G
reflects isomorphisms when, for all arrows ¢ of A, Gt an isomorphism
implies ¢t an 1somorphism.

Beck’s theorem has an acronym PTT for “precise tripleability
theorem”. There are many other versions: A “weak” version, easter to
prove, where there are hypotheses on the coequalizers of more pairs
(Exercises 2, 3), an “equivalence” version, which gives conditions that the
comparison functor X : 4 — X T be not an isomorphism but an equiva-
lence of categories (Exercises 2, 6), a “‘constructive” version which anal-
yses the hypotheses (certain hypotheses suffice to give a left adjoint for K
others make this adjunction an equivalence: Exercises 2, 5), a *“‘crude”
version (CT T or VT T) with strong hypotheses which apply well to the
composite of several “forgetful” functors (Exercises 9-11). However,
note that there are more authoritative definitions of VT T and CT T in
Barr-Wells [1985].

Exercises

(Throughout, “coequalizers” means “coequalizers of parallel pairs”.)
1. If G creates coequalizers, prove that it also reflects coequalizers.
2. Weak Tripleability Theorem (Beck’s thesis). Given the adjunction (1) and the
corresponding comparison functor K, give a direct proof of the following:
(a) If 4 has all coequalizers, then K has a left adjoint L.
(b) If, in addition, G preserves all coequalizers, then the unit of this adjunction
is an isomorphism / =~ K L.
(c) If, in addition, G reflects all coequalizers, then the counit of this adjunction
is an isomorphism LK = I.
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3. (Alternative hypothesis for Exercise 2.) If 4 has all coequalizers, G preserves
all coequalizers, and G reflects isomorphisms, prove that G reflects all co-
equalizers.

4. (a) Show that the canonical presentation of a T-algebra {x, h) is

Hx

<T2X, .uTx> _— <TX, .ux> _L" <X, h> .
Th

(b) Show that the comparison functor M : XT— 4 in Beck’s theorem appears
as a coequalizer diagram

Erx

FGFx—= Fx->M(x,h).

Fh

5. Given the data (1), (2), and the comparison functor K, let P be the set of all those
parallel pairs f,g:a=3b in 4 such that Gf, Gg has a split coequalizer. Using
Exercise 4 (b), prove
(a) If 4 has coequalizers of all pairs in P, K has a left adjoint M.

(b) If, in addition, G preserves all coequalizers of pairs in P, then the unit
n: - KM of this adjunction is an isomorphism.

(¢) If, in addition to (a), G reflects coequalizers for all pairs in P, then the counit
M K- of this adjunction is an isomorphism.

6. Use the results of Exercise 5 and Theorem IV.4.1 to prove the following version
of Beck’s theorem, characterizing the category of T-algebras up to equivalence:
Given the data (1) and (2), the following assertions are equivalent:

(i) The comparison functor K : 4— X7 is an equivalence of categories.

(ii) If f, g is any parallel pair in 4 for which G f, Gg has an absolute coequalizer,
then 4 has a coequalizer for f, g, and G preserves and reflects coequalizers
for these pairs.

(i) The same, with “absolute coequalizer” replaced by “split coequalizer”.

The next exercises use certain definitions of properties CTT, VTT, PTT
for a functor G: A— X. Let C; (respectively Sg) be the set of all those parallel
pairs {f,g> in 4 such that (G f, Gg) has a coequalizer in X (respectively, a
split coequalizer). Then G has CT T when G has a left adjoint, preserves and
reflects all coequalizers which exist, and when 4 has coequalizers of all pairs
in Cg. Next, G has V TT when G has a left adjoint, reflects coequalizers of all
pairs in Sg, and when A4 has split coequalizers of all pairs in Sg. Finally, G is
PTTwhen G has a left adjoint, preserves and reflects coequalizers for all pairs
in Sg, and when A4 has coequalizers of all pairs in Sg. Clearly, CTTand VTT
imply PTT.

7. CTT (Crude Tripleability Theorem; Barr-Beck). If G is C T'T, prove that the
comparison functor X is an equivalence of categories.

8. VT T (Vulgar tripleability theorem). If G is V' T'T, prove that the comparison
functor is an equivalence of categories.

9. Given functors G,: 4—X, G,:X—Y, G;:Y—Z with G, CTT, G, PTT,
and G; V TT, prove that the composite functor G;G,G,is PTT.

0. Prove that the composite of two V TT functors is VTT.

1. Prove that the composite of two CTT functors is CTT.
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8. Algebras Are T-Algebras

For semi-groups, monoids, and rings, we already know (§4) that the
comparison functor is an isomorphism. This result holds more generally
for any variety, as defined in §V.6):

Theorem 1. Let Q2 be a set of operators, E a set of identities (on
the operators derived from Q), G the forgetful functor from the category
{Q, E>-Alg of all small {Q, E>-algebras to Set, and T the resulting monad
in Set. Then the comparison functor K:<{Q, E>-Alg—Set” is an iso-
morphism.

The proof will use Beck’s theorem. Consider any parallel pair
f,g: A=2B of morphisms of (€, E)-algebras for which the underlying
functions have an absolute coequalizer e:

GA—3GB—=—X. ()
9

To “create coequalizers” we must show that the set-map e lifts to a unique
morphism B—? of algebras, and then that this map is a coequalizer of the
algebra maps f, g. So consider any n-ary operator w € 2 with its given
actions @, and wg on the sets A and B (as usual, we confuse the algebra 4
with its underlying set |4]). In the diagram below (ignore the right hand
square) rn

w4 IL ’ maJ , ox ch (2)

the two left hand squares (with f and g, respectively) commute because
f and g are morphisms of Q-algebras. The function e is an absolute
coequalizer in Set and therefore its n-th power ¢” is still a coequalizer
{of f* and g"). But
ewpf'=efw,=egu,=ewyg",

so ewy must factor uniquely through this coequalizer as ewp=wye"
This defines the operation wy on X so that the square (2) on e commutes;
that is, so that e is a morphism of Q-algebras. The same diagram applies
to all the derived operators A and defines A, uniquely; it follows that
any identity Az = ug valid in B is also valid in X, so X is a {(Q, E)-algebra.

It remains to show e a coequalizer for algebras. So consider any
morphism h:B—C of algebras with hf =hg. Then hf=hg in Set
(apply the forgetful functor G), so h factors as h=h"e for a unique func-
tion h'. We must show that the right hand square in (2) above commutes
for every operator w. But h is a morphism of algebras, so

Hoye"=hewg=hwg=wch"=wh"e"

and e" a coequalizer means e" epi, hence gives h'wy = w h'™, as required.
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Exercises

1. Prove Theorem 1, using split coequalizers rather than absolute coequalizers,
noting that each wy must be defined in terms of a splitting <s, t)> of the fork (1) as

Wx(Xy, oo Xy =ewp(SXy, ..., $X,), X€X.

(For n=2, observe that this is like the usual definition of the product of cosets of
a normal sfibgroup.)

2. If K is a commutative ring, show that Beck’s theorem applies to the forgetful
functor K-Alg— K-Maod.

9. Compact Hausdorff Spaces

Theorem 1. The standard forgetful functor
G : Cmpt Haus— Set,

which assigns to each (small) compact Hausdorff space its underlying
set, is monadic.

Proof. We already know that G has a left adjoint F; indeed, we may
take each FX to be the Stone-Cech compactification (V+6.2) of the set X
with the discrete topology.

For the remainder of the proof (given in a form due to R. Pare [19717)
it is convenient to regard a topological space as a pair (X, { ™ )y) consist-
ing of a set X and a closure operation S+3S defined for all subsets
S, T C X with the standard properties

G=0, Sc§, S=5, SuT=SuT,

with @ the empty subset. A continuous map f: (X, (7 )x)— (Y, (7 )y) is
then a function f: X— Y such that /S C fS for all SCX. Also a function
f:X—Y is closed if fSDfS for all SCX. We recall the well-known

Lemma. If X is a compact space and Y a Hausdorff space, then every
continuous f:(X, (" Jx)—(Y. (7 )y) is closed.

We must verify that the forgetful functor G,
(X) ( _)X) l_)X >

creates coequalizers for suitable pairs. So let f, g:(X,( T ))=3 (Y, { T)y)
be a pair of continuous maps such that there is a set Wand an absolute
coequalizer e,

I
X;Y-"——»W,

in Set. Let P denote the covariant power set functor Set-—»Set; thus
for each subset SCY, (Pe)SC W is the usual direct image of S under e.
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Since e is an absolute coequalizer, Pe is still a coequalizer, in the diagram
{of sets)

Px—2Lpy—Pe.pw
Pg :

Tix (T C o (1)
Pf P A
PX—_P_‘—),P Y—=—=-PW
q

Since f and g are both continuous maps, both squares on the left (the
square with f, and that with g) are commutative. It follows that

Peo(T)yoPf=Pes(T)yo Pyg.

But Pe is a coequalizer, so Pe-{ )y factors through Pe. This gives a
unique function { 7 ), ~ the dotted arrow in (1) — which makes the right
hand square in the diagram commute. This function may thus be described
as follows: Given a subset T C W, choose any subset SC Ywith (Pe)S=T;
then T =(Pe)S, independent of the choice of S. In particular,ife™* TC Y
is the usual inverse image of T, then T=Pe(e™' T). It is now routine to
verify that this is a closure operation on W, hence that Wis a topological
space.

By the commutativity of the diagram, e is then continuous and closed.
Since Y is compact and e: Y— W is surjective, W is also compact. Since
Y is Hausdorff, each point in Yis a closed set there; since e s a closed map
and is surjective, the points of W are closed. To show W Hausdorff,
consider two points w, =w, e W. They are closed in W, so e~ w,; and
e~ !w, are disjoint closed sets in Y. By a familiar property of the compact
Hausdorff space Y, disjoint closed sets can be separated by disjoint
open sets (every compact Hausdorff space is normal), so there are disjoint
open sets U, U, CY with e™!w, e U, Their complements U; and U}
in Y are then closed sets with UjuU; =Y. Since e is a closed map,
e(U]) and e(U;) are closed sets in W with

(Pe)(Uj)u(Pe)(Uz)=W, wé(Pe)(l).

So take complements again, this time in W:[(Pe) U;]’ and [(Pe) U3’
are disjoint open neighborhoods of w, and w,, respectively, in W.
Therefore W is a Hausdorfl space.

We have produced from the absolute coequalizer e in Set a unique
topology on its codomain W such that e is continuous; moreover, this
topology is compact Hausdorff. It remains to show that the continuous
map e: (Y,( 7 )y)—(W,(7),)is a coequalizer in Cmpt Haus. So consider
any compact Hausdorff (Z,(7 ), and a continuous map h:Y—Z,
such that both composites in

X#.,Y—L»Z
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are equal. Since e is a coequalizer in Set, there is a unique function
W - W—Z withh=he:Y—Z;it remairls' to show K continuous. Take
TCWand SCY with (Pe)S=T. Then T=(Pe¢)S, so
(PH)T=(Ph)(Pe)S=P(h)S=PHh)S
=(Ph)(Pe)S=(Ph)T.

Therefore i’ is continuous (and closed). The proof is complete.

Exercises

1. Show that the topology on W introduced in the proof above is the “quotient
topology” on W defined by e: Y— W (i.e, that a set is open in W if and only if
its inverse image is open in Y).

Notes.

The recognition of the power and simplicity of the use of monads and comonads
came quite slowly, and started from their use in homological algebra (see § VIL6).
Mac Lane [1956] mentioned in passing (his § 3) that all the standard resolutions
could be obtained from universal arrows (i.e., from adjunctions). Then Godement
[1958] systematized these resolutions by using standard constructions (comonads).
P.J. Huber [1961], starting from “homotopy theory” in the Eckmann-Hilton sense,
explored the examples of derived functors which can be defined by comonads and
then in [1962] studied the resulting functorial simplicial resolutions for more
general abelian categories. Then Hilton (and others) raised the question as to whether
any monad arises from an adjunction. Two independent answers appeared:
Kleisli’s constructions in [1965] of the “free algebra” realization and the decisive
construction by Eilenberg-Moore [1965] of the category of algebras for a monad.
Stimulated by this description of the algebras, Barr-Beck in [1966] showed how the
resolutions derived from monads and comonads can be used even in non-abelian
categories — obtaining the surprising result that the free group monad in Set
does lead to the standard cohomology of groups. Subsequent developments in
this direction are sumarized in their paper [1969].

Thus, about 1965, it became urgent to decide how to characterize the category
of algebras over a monad. Linton [1966] treated the case for monads in Set, and
then Beck established his theorem (unpublished, but presented at a conference in
1966). The absolute “coequalizer” form of the theorem, due to Paré [1971], made
possible Paré’s elegant proof (§9) that compact Hausdorff spaces are monadic.
Many other developments in this direction are summarized in Manes’ thesis
(cf. [19697).

The description of algebras by monads is closely related to another description
by algebraic theories (Lawvere [1963], described in Pareigis [1970]).



VII. Monoids

This chapter will explore the general notion of a monoid in a category.
As we have already seen in the introduction, an ordinary monoid in Set
is defined by the usual diagrams relative to the cartesian product x in
Set, while a ring is a monoid in Ab, relative to the tensor product ®
there. Thus we shall begin with categories B equipped with a suitable
bifunctor such as x or ®, more generally denoted by []. These categories
will themselves be called “monoidal” categories because the bifunctor
[J: Bx B— B is required to be associative. Usually it is associative only
“up to” an isomorphism; for example, for the tensor product of vector
spaces there is an isomorphism U®(V® W)= (U® V)® W. Ordinarily
wesimply “identify” these twoiterated product spaces by thisisomorphism.
Closer analysis shows that more care is requisite in this identification —
one must use the right isomorphism, and one must verify that the
resulting identification of multiple products can be made in a “coherent”
way.

Once the coherence question for monoidal categories is settled, we
proceed to define monoids in such categories, the actions of monoids on
objects of the category, and the construction of free monoids. Next, we
introduce the simplicial category 4, which turns out to be the basic
monoidal category because it contains a “universal” monoid and
because of its role in simplicial resolutions and simplicial topology.
Finally, compactly generated spaces are used to illustrate closed monoidal
categories.

1. Monoidal Categories

A category is monoidal when it comes equipped with a “product” like
the direct product X, the direct sum @, or the tensor product ®. We
write this product as [J (many authors write ®) to cover all cases
impartially. We consider first categories equipped with a multiplication []
which is strictly associative and has a strict two-sided identity object e.
In detail, a strict monoidal category (B, [],e)> is a category B with a

161
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bifunctor ] : B x B— B which is associative,

O@x)=0O(x):BxBxB—BHB, (N
and with an object e which is a left and right unit for {7,
Clex ) =idg=[(Ixe). )

In writing the associative law (1), we have identified (B x B)x B with
B x (B x B); in writing the unit law (2), we mean e x 1 to be the functor
c—{e, ¢>: B— Bx B. The bifunctor [] assigns to each pair of objects
a, b e B an object a[]b of B and to each pair of arrows f :a—ad,g:b—b’
an arrow f[1g:ae[1b—a'[]b". Thus [] a bifunctor means that the
interchange law

LOL =1, (SO9)(O9=0"1D'9), 3)

holds whenever the composites f'f and ¢'g are defined. The associative
law (1) states that the binary operation [] is associative both for objects
and for arrows; similarly, the unit law (2) means that e[Je=c=c[Je
for objects ¢ and that 1,1 f=f= f[11, for arrows f.

Any monoid M (in the usual sense, in Set), regarded as a discrete cate-
gory,is a strict monoidal one with [] the multiplication of elements of M. If
X is any category, the category End(X) with objects all endofunctors
S:X—X and arrows all natural transformations 6:S-T is strict
monoidal, with [] the composition of functors.

A (relaxed) monoidal category is a category B with a bifunctor [J,
its multiplication, which is associative “up to” a natural isomorphism o,
and which has an object e which is a left unit for [J up to a natural
1somorphism A and a right unit up to g. Moreover, “all” diagrams in-
volving «, A, and p must commute.

Formally, a monoidal category B= (B, [, e,a, A, 0> is a category B,
a bifunctor [J: BxB— B, an object ee B, and three natural isomor-
phisms «, A, 0. Explicitly,

a=o,;.:adbOg=(@3db)dc 4)
is natural for all a, b, c € B, and the pentagonal diagram
aQl(bO(cOd) —— (ab)(c[1d) —>— (e b)) 04
10a all1 (5)

al((bc)14) . (O ®Oc)d

commutes for all a, b, ¢, d € B. Again, A and p are natural

A.cedaz=a, g,:aJe=a (6)
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for all objects a € B, the triangular diagram

aJ(eQdc)—=2— (ade)dc
ll[}l ngl (7)
allc = al[]c

commutes for all a, c € B, and also
Ae=0.:e[Je—e. (8)

Soon we shall see that these three diagrams imply that all such
diagrams commute. For the moment, we observe (Exercise 1) that they
imply commutativity in the diagrams

edJ(bOc)—=—(eOb)Oc ad(bde)—=— (adb)Oe

i A1 10¢ ¢ (9)
bJc = bOec, a(1b = a[]b.

Any category with finite products is monoidal, if we take a[]b to be
(any chosen) product of the objects a,b and e to be a terminal object,
while «, A, and ¢ are the unique isomorphisms (Prop.IIL 5.1) which
commute with the respective projections. Then the pentagon (5) com-
mutes (both legs commute with the projections of the four fold products),
and so does the triangle (7). Similarly, any category with finite co-
products is monoidal, with [ the coproduct and e an initial object.

The usual “tensor products” give monoidal categories. For example,
the tensor product of two abelian groups A and B is defined by the
condition that there is a function A x B—=A® B, a, b—~a®b, universal
among bilinear functions on 4 % B to abelian groups. By iteration, there
is a universal trilinear A x (B x C)— A®(B® C); by the uniqueness of a
universal, thereisthena uniqueisomorphisma : A ®(B® C)—(A®B)®C
which is natural (because of its uniqueness); the corresponding pentagon
(5) commutes because both legs are the unique comparisons of
universal quadrilinear functions. The isomorphisms 1:Z® A=A,
0: A®Z=A are well known (and used to identitfy Z® A with A).
All told, (Ab, ®, Z, o, 4, ¢) is a monoidal category.

The pentagonal condition (5) for ® in Ab may also be verified
directly on elements ae A, be B, and c e C, by noting that a[a® (b ® ¢)]
=(a®b)®c. This suggests one role of this condition: It avoids the
possible use of the “wrong” associativity; for example, of the isomorphism
o't A®(B® C)—(A®B)® C defined on elements of these abelian groups
as a'[a®@(b®c)]=—-(a®b)®c. For this o/, (5) fails to commute by a
sign.
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There are many other examples. A discussion like that for Ab shows
for each commutative ring K that (K-Mod, ®g, K) is monoidal. The
same holds for graded K-modules and for differential graded K-modules
(=chain complexes of K-modules) under the customary definition of
the tensor product for such objects (Mac Lane [1963]). Similarly, the
category of all K-algebras (or, all differential graded K-algebras) is
monoidal, under the familiar tensor product of algebras. For any ring R,
the category of all R — R bimodules is monoidal under ®g.

A (strict) morphism of monoidal categories.

T:(B,,e0a,1,0—B,0,¢,0,1,0),
is a functor T: B— B’ such that, for all a,b,c, f, and g
T@Ob)y=TaQ’Th, T(Og=Tf0Tg, Te=e, (10
Tty c=0%ra1s1e0 1 4=270s T0a=074- (1n

With these morphisms as arrows, we can form Moncat, the category of
all small monoidal categories. This category has (the obvious)
finite products; in particular 1 with the evident (strict) monoidal structure
is terminal in Moncat. There is also a full subcategory consisting of all
strict monoidal categories; naturally, the definition of morphisms T
for these can omit the conditions (11) on a, 4, and g.

Many useful morphisms between monoidal categories are, however,
not strict in the sense of (10) and (11). For example, the forgetful functor
U . {K-Mod, ®, —>—<Ab, ®, ...) is not strict; indeed, for K-modules
A and B, we have not an equality U(A®xB)=UA® UB nor even an
isomorphism, but just a natural morphism UA® UB--U(A®gB),
expressing the fact that 4 ®g B is a quotient of 4®; B. A similar situation
arises for the forgetful functor (Ab, ®,...>—<Set, x,...>. We shall not
formulate here the properties of these “relaxed” morphisms between
monoidal categories (for this, see § XII.5).

One might be tempted to avoid all this fuss with a, 4, and ¢ by simply
identifying all isomorphic objects in B. This will not do, by the following
argument due to Isbell. Let Set, be the skeleton of the category of sets;
it has a product X x Y with projections p, and p, as usual. If D is a (the)
denumerable set, then D= D x D, and both projections of this product
are epis p;, p, : D— D. Now suppose that the isomorphism o : X x (Y x Z)
=(X x Y)x Z, defined as usual to commute with the three projections,
were always the identity; it is then the identity for X = Y=Z = D; since
o is natural, f x (g x h)=(f x g) x hfor any three f, g, h: D— D. But x on
functions is defined in terms of the projections p, and p, above, so

for=p ([ x(gxm)=p (f xg)x)=(fxg)p; : D—D,
and p, is epi, so f = f xg. The corresponding argument with p, gives
fxg=g, hence f=g for any f,g:D—D, an absurdity. A similar
argument applies to the skeleton of {Ab, ®,...>.
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Exercises

1. Prove that (5) and (7) imply (9). Hint: Take the pentagon (5) with a=b=e
and fill in the inside, adding ¢ in two places, the basic identity (7) twice, and
suitable naturalities to get (A0 )aA=A4:ed(e[J(cOd))—cdd, and hence
(A an isomorphism) (A0 Da= A

2. Construct the product in Moncat of two monoidal categories.

. For B monoidal, show that B°® has the (evident) monoidal structure.

4. For B monoidal and C any category, show that the functor category B¢ is
monoidal, with multiplication S{J T defined by (ST T)c=ScJTcand e: C—B
the constant functor e. Show that the adjunction B€*? = (B%)? is an isomorphism
of monoidal categories.

5. Prove: A strict monoidal category with one object is a set (the set of arrows)
with two binary operationse, [] which satisfy the interchange law and have a
common (left and right) unit id,. Apply Ex. 5 of §IL5.

6. Show by examples that the axioms (5) and (7) are independent.

W

2. Coherence

A coherence theorem asserts: “Every diagram commutes”; more modestly,
that every diagram of a certain class commutes. The class of diagrams at
issue now are the diagrams in a monoidal category which, like the
pentagon (1.5), are built up from instances of a, A, and ¢ by multiplica-
tions [J. However, two apparently or formally different vertices of such
a diagram might become equal in a particular monoidal category, in
such a way as to spoil the commutativity. Hence we prove only that
every “formal” diagram commutes, where a formal diagram is one in
which the vertices are iterated formal [J-products of *“variables”. We
call these formal products “binary words”; they are exactly like the well-
formed formulas and terms used in logical syntax in proof theory.

The precise definition is by recursion. A binary word of length 0 is
the symbol e, (the empty word); a binary word of length 1 is the symbol ( —)
(the variable or the place holder); if v and w are binary words of lengths
m and n, respectively, then the symbol v[Jw= (v)[J(w) is a binary word
of length m+n. For example, ((—{1—)Je,)J— is a binary word of
length 3 — an iterated 4-fold product, with chosen arrangement of
parentheses, and a specified argument set equal to e¢,. For any two
binary words v and w of the same length, introduce one arrow v—w.
These words with these arrows form a category W (a preorder with
every arrow invertible). It is a monoidal category under multiplication
v, w—v[Jw, with unit e,, and with «, 4, and o the appropriate (and
necessarily unique) arrows.

By its very construction (unique arrows v— w) every diagram in W
will commute. Morphisms from W to B then give the desired diagrams
which commute in other monoidal categories B. These morphisms are
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given by the following theorem, which states in effect that W is the free
monoidal category on one generator (— ):

Theorem 1. For any monoidal category B and any object be B, there
is a unique morphism W— B of monoidal categories with (—)—b.

Proof. We write the desired morphism as ww,, to suggest that it
means “Substitute b in all the blanks of the word w”. On objects w we
must set

(eos=6 (=h=b, (OW)=0,0ws; (1)

by induction, these formulas uniquely determine all w,,.

For words of fixed length n we now construct a certain “basic” graph
G,=G, ;. Its vertices are all words w of length n which do not involve e,
while its edges v— w are to be identical with certain arrows v,—w, in B.
Call them the “basic” arrows. Here each instance

oty (v, O wy)— (w, O vp) O w,

of associativity and each instance of o™} is basic, as are all arrows
pO1 or 1JB with 1:v,— v, an identity and B already recognized as
basic. Intuitively, each basic arrow is an arrow such as (1[Je)d(1[11) ~
one instance of «, boxed with identities. Observe then that each basic
arrow is either “directed” (it involves ) or “antidirected” (with «~!). In
the graph G, the paths from u to w are thus the composable sequences
of basic arrows from u, to w,; by composition each path yields an arrow
u,—w, in B. The crux of our proof will be to show that any two paths
from u to w yield by composition the same arrow u,—w, in B — ie.,
that the graph G, is a commutative diagram in B.

First, take w™ to be the unique word of length n which has all pairs
of parentheses starting i front. There is a directed path in G, from any
w of length n to w; indeed, we may choose such a path in a canonical
way, successively moving outermost parentheses to the front by instances
of a. For any two words v and w of length n the two canonical paths
combine to give a path v— w(™ —w; this observation is really just the
known proof of the “general associative law” for a product ab, given the
usual associative law a(bc) = (ab)c.

Define the rank ¢ of a word w by recursion, setting pe, =0, o(—)=0,
and

o(vOw)=g(v)+ o(w)+ length(w)— 1 ;

observe that pw =0 means that all pairs of parentheses in w start at the
front.

Now we show that G, commutes. Along any path from v to w, join
each vertex to the “bottom” vertex w'™ by the canonical directed path.
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A glance at the diagram

v vy Uy Us w
l,(n) — l,(n) — l,(n) = l(n) = win

indicates that it will suffice to show that any two directed paths (all «’s,
no a~') from a v; to w™ are equal. This will be proved by induction on
the rank of v, = v. Suppose it true for all v of smaller rank, and consider
two different directed paths starting at v with (directed) basic arrows
B and v, as in the figure

v=ul]w
% \
’ "
v's_ e’
\“a z k’/
wi = =

Both § and y decrease the rank. Hence it will suffice to show that one
can “rejoin” their codomains v' and v” by directed paths to some com-
mon vertex z in such a way that the diamond from v to z is commutative.
This is done by a case subdivison. If f=17, take z=v'=v". If Sy,
write v as v=u[Jw and observe that  has one of the following three
forms:

B=p'{01,; P acts“inside” the first factor u,
p=1,00p"; P actsinside the second factor,
B=a, . where v =uOJw=u{J(sJ¢).

For y there are three corresponding cases.

Now compare the cases for f and y. If both act inside the same
factor u, we can use induction on the length ». If § acts inside u and y
inside w, use the diamond

ulw

13y

ulw'

o
u'Ow ,

which commutes because [] is a bifunctor. There remains the case when
one of § or y, say B, is f=a=a,, as in the third case above. Since

:\
5 0
723
\
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y = B, y must act inside u or inside w. If y acts inside u, we use a diamond
from u[J(s[J¢) to (u'(Js)1¢, which commutes because « is natural. If y
1s inside w=s{]t and actually inside s or inside t, naturality of o gives
a similar diamond. There remains only the case where y is inside s{]t
but not inside s or t. Then y must be an instance of o, t must be a product
t=p{gq, and our diamond must then start with

v:ul_—_lw:uD(SD(PDq))

yw)

@OsOpeOg uO(sOp)dg).

This we can complete to a “diamond” by taking that diamond to be
the pentagon of (5). This shows that the graph G, is commutative in B;
it completes the coherence proof as far as associativity alone is concerned.

It is trivial to “fold in” to this proof the applications of A and g.
Formally, consider the graph G, with vertices all words of length n,
including words involving e,, and with edges all basic arrows constructed,
just as above, by boxing instances of a, 4, and ¢ (and their inverses)
with identities. This graph G, is infinite, but contains the previous
(finite) graph G, built from o alone. It remains to show G, commutative
in B. For each word w, there is still at least one path w— w™. But the
composite arrow obtained from any such path is equal to that for a
different path which first removes all e’s, then applies a. Indeed, if some
e is removed by A:e[]b=b after some application of a, then that e can
be removed before — either by naturality of &, or by (7), or by (9). Moreover
by (8) it does not matter in e[Je whether e is removed by 4 or by g.
Finally, this reduced path has composite equal to that for a canonical
path in which all the e’s are removed in some specified order (say,
starting with the left-most occurence of e). This process reduces G, to
G, and proves that G, is commutative in B, since G, 1s.

We can now define the morphism W— B required in the theorem.
The category W was constructed with exactly one arrow v—w between
words v and w of the same length #; the morphism will send this arrow
to the composite arrow for any path v,—w, in G,, since we now know
the composite to be unique (independent of the choice of the path). In
virtue of this same uniqueness, this construction does define a functor
W— B. Moreover this functor is a morphism of monoidal categories
because

fOg=f-101-g=(fd1)-(10g)

for any arrows f and g.

The coherence result can be formulated in terms of graphs whose
edges are the natural transformations o, 4, and ¢. To state this, note
first that each word w of length » (in one variable) determines for each
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monoidal category B a functor wy: B"=Bx --- x B— B of n variables,
obtained by replacing each blank (—) in the word w by the identity
functor of B. The explicit definition of this functor, like (1), is by recursion ;
(e0)g: 1— B is the constant functor e € B and (— ) is the identity functor
B— B, while if wy and wy are already determined for words w and w'
of the respective lengths n and #/, then (w[Jw') is the composite functor

(wlw')y: B™*" =B"x B~ *2Xrs, pyp_ B , B, )
With this formulation, the coherence result is as follows:

Corollary. Let B be a monoidal category. There is a function which
assigns to each pair of words v, w of the same length n a (unique) natural
isomorphism

cang(v, w): vg->wg: B"—B, 3

called the canonical map from vy to wg, in such a way that the identity
arrow e—e is canonical (between functors of O variables), the identity
transformation idy:Ig=1Iy is canonical, a,a™ ', A, A7, 0 and ¢~ ! are
canonical, and the composite as well as the [J-product of two canonical

maps is canonical.

This sort of formulation, as will appear from the proof, applies also
to the case considered in the theorem itself: For each be B there is a
function which assigns to each pair of words v, w of the same length a
canonical arrow can,(v, w) : v,— w,, with properties like those stated for
cang.

Proof. From the given monoidal category B we construct a category
It(B) with objects all pairs (n, T>, T any functor T: B"— B, and with
arrows f:{n, T>—<{n, T all natural transformations f:T—-T'". In
this category we define a multiplication by {m, S>[I(n, TY> =<{m+n,SOT),
where S[C]T is the composite

SOT:B"*"~B"xB"—*L,BxB—L B,

we take the unit e to be the functor 1— B constant at e and define
A:e[JT-T for each T and then for each ae B" as the arrow
Arai€[dTa— Ta of B. This 4 is natural in T. Similar pointwise definitions
give ¢ and «; it is routine to verify that It(B) 1s a (relaxed) monoidal
category.

The identity functor I : B— B is an object of It(B). Hence the theorem
above stating that W is free monoidal on (—) gives (for b=1) a unique
morphism W— It(B) of monoidal categories with (— )+ I. In particular,
this morphism sends each word w to the functor wy described in (2)
above, while the unique arrow v—w, for v and w of the same length, is
sent to a natural transformation vz—=> wy which we call cang(v, w), as in (3).
Since the functor is @ morphism, it must preserve «, 4, and p. Thus, using
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our notation for words,
cang(ey, ) =1,:e->e, cang((—),(—))=idg: BB,
cang(— (- 0O-),(-O0-)O-)=w: BOBOB)-(BOB)1B,
CanB(eOD—’(_)):la CanB(_DeOa(—))=Q>
cang(v[Jv, wIw') = cang(v, w)[Jcang(v’, w').

This corollary states that every diagram of the following sort is
commutative:

Vertices. Words w of length n representing functors wy: B"—B.

Edges. Natural transformations 1,,idg, o, 4, g, and their [7] products.
Moreover, the functors in question are e, I, —[J— and their composites,
and each edge isa natural transformation between the functors represented
by the vertices at its ends.

Exercises

1. Draw a diagram showing all canonical maps between binary words of length 5.
(It can be regarded as a polyhedral subdivision of the surface of the sphere
into 19 regions — 16 pentagons (instances of «) and 3 squares (which commute
by naturality).)

2. (Stasheff [1963].) Show that the diagram giving all canonical maps between
words of length n+3 can be regarded as a polyhedral subdivision of the
surface of the n-sphere.

3. Construct the free monoidal category on any set X, and prove for it the ap-
propriate universal property. (Hint: Its objects are words, with any xe X a
word of length 1, and there is a surjection Wy— My from the set Wy of words
to the free monoid on X. There is a (unique) arrow v—w if and only if v and w
are words with the same image in My.)

3. Monoids

Following the ideas suggested in the introduction, we can now define
the notion of a monoid in an arbitrary monoidal category (B, [, e).

A monoid ¢ in B i1s an object ¢ e B together with two arrows
w:cdec—c, n:e—csuch that the diagrams

c(cde) —— (c[]c)[]c-——m—w[]c

m“l l“ (1
c¢e £ ¢,
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are commutative. A morphism f': {c, g, n>—<{c’, &', "> of monoids is an
arrow f :c¢—c' such that

fe=w(fON):c0e—d,  fr=ne—c.

With these arrows, the monoids in B constitute a category Mong, and
{¢c, y,n)y+>c defines a forgetful functor U : Monz— B.

This definition includes a variety of cases; some already noted in
our introduction:

Monoidal Category Monoids Therein

{Set, x,1> (ordinary) Monoids

{Top, x, 4> Topological monoids

{CE, 0, 1d> Monads (cf. Chapter VI)
(Ab, ®,Z> Rings

(K-Mod, ®g, K> K-algebras

{Graded modules, ...> Graded algebras
{DG-K-Mod, ®¢, K> Differential graded K-algebras
{B°®, []°", e> Comonoids in B
(K-Mod, ®g*, K> K-coalgebras

{Cat, x,1> Strict Monoidal categories
{O-Grph, x 4,,0—0) Categories (cf. (II. 7. 3)).

There is a “general associative law” which states that m a monoid
{c,u, > any two n-fold products are equal. Specifically, if w is any
binary word and w, € B the corresponding object of B, as defined in
Theorem 2.1, the w-fold product y,, is an arrow y,, : w.— ¢ defined by the
following recursion: If w=e,, y, :e—cisn;if w=(—), g_y:c—cis the
identity; if w=(—)J(—), &, is # and in general if w=u v, y,q, is the
evident composite

(uDU)c=ucDUc Oy c[_—_]c [m] c. (3)

Proposition 1 (General Associative Law). For {c, i, > a monoid in B,
the iterated products p, and p,, for any two words v and w of the same
length n satisfy

,, © Can, (v, W) = p,: D, C, @

where can (v, w): v.—w, is the canonical arrow of Theorem 2.1.

Proof. The axioms (1) and (2) for a monoid are exactly those cases
of (4) where the canonical arrow in question is a, 4, or g. From these
cases, (4) may be verified by induction, since all canonical arrows are
composites of a’s, A’s, and ¢’s.
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For example, one may define the n-th []-power of every be B to be
br=(bOb)---0Ob (5)

with “all parentheses in front”; thus ° =e, b* = b, b**! = b"[]b. For the
monoid {c, u, n) the n-fold product u™ : ¢"— ¢ is then defined by recursion
as #(0)=n, #(1)=id“ #(2):#’ and ﬂ("H):#(l‘le)' (6)
Then (4) includes the more familiar equation (“general associative law”)

u(")(#(kﬂD.“D#(k")):#(k1+"'+k") (7)
valid for all natural numbers n and k,, ..., k,.

Theorem 2 ( Construction of free monoids). If the monoidal category
B has denumerable coproducts, and if for each a€ B the functors a[] —
and — Ja: B—B preserve these coproducts, then the forgetful functor
U : Mongz— B has a left adjoint.

Note: In many cases (B=Set, B=Ab, ...} the functors a[]— and
— [ a themselves have right adjoints, hence automatically preserve co-
products.

Proof. The distributive law ¢:11,(a[Jb,) = a[J11,b, holds for each
denumerable coproduct 11,b, of objects b, e B because a[] — preserves
coproducts. Indeed, the definition of the coproduct injections i, : b,— 11, b,
and j, shows that there is a unique arrow 0 which makes the diagram

al[b, = aldb,

JlDi" Jj,,

a[J11,b, <% 11,(a1b,)

commute, and “preserves coproducts” means exactly that § is an iso-
morphism. Its inverse is constructed similarly.

For given g, take b,=a" to be the n-th power defined as in (5) and
define a multiplication u on II,a" by “juxtaposition” a™[Ja"=a™" "
Formally, u is the unique arrow defined by the commutative diagram

(,,emJ(,a" 6, I, ,a"Ja" dmn_ gmgn

1

N 3

~. :
L A can

LN H

~ v . "\
i
Hkak n+m am n’

where the vertical map “can” is the canonical map (iterated associativity)
given by the coherence theorem for B, ¢ is that unique map on the
coproduct 11, ,, which makes the square with the coproduct injections
Jmn and iy, commute for all the natural numbers m and n, the map 406
is the composite of two canonical isomorphisms § above (because [] is
distributive over II,, and II,), and the multiplication u is p= (8- 0).
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A large but routine diagram (exercise!) shows this u to be associative,
in the sense (1). A corresponding unit #,:e— 11 a" is defined to be the
injection iy: e=a’—1I a" of the coproduct. All told, <{II,a" u,7,> is a
monoid in B. The injection g, =i, : a=a'— 11 a" of the coproduct is an
arrow
0, a— U, a", p, 1,

to the forgetful functor U : Mong— B.

This arrow is universal from a to U. For let {c, y,, 1) be any monoid
in Band f:a—c=U(c, g, 1n,) an arrow in B. Then we define an arrow
f’:11,a"— c as the composite on the bottom of the commutative diagram

a I " B c

O,a" I1,c" c

constructed as follows. First, take w to be the word of length n with all
parentheses in front, so that w,=>5" by our definition of b"; then
U, c"—c is the n-fold product defined in the general associative law (6),
i, and j, are coproduct injections, and the dotted arrows on the bottom
are constructed, by universality of the coproducts, so as to make the
indicated squares commute (for all n). A routine large diagram will
prove that f’ is a morphism of monoids; by construction f'-g,= f, so
0, 1s indeed universal and therefore 11,4" is a free monoid on a4, as asserted
in the theorem.

The point of this quite formal proof is that it contains many separate
instances of the same sort of formality. If B=(Set, X, 1,...), this is the
standard construction (Corollary IL 7. 2) of the free monoid on the set a;
in this case a” is the set of words of length n spelled in letters of a, and
the free monoid is the disjoint union LI, 4", with product given by com-
position. If B=({K-Mod, ®g, K, ...>, this is the standard construction
(e.g., Mac Lane [1963b], p. 179) of the tensor algebra @,A" on the
K-module A. The same construction also gives “differential graded”
tensor algebras, free topological monoids, etc.

Exercises

1. Prove: if B has finite products, so does Mon.

2. (Coherence for monoids.) Interpret the proposition about the canonical maps
u,, for a monoid {c, u,ny as the following coherence theorem. Consider a
graph with vertices the binary words w and with arrows v—w those arrows
v.—w, which are 1, u, 7, instances a(u), v, w.) of o, instances of A and of ¢, and
all [J-products of such arrows. Prove that any two paths w— (—) in this graph
have equal composites, but show that this would not hold when the ending
is not (—) as above but the word (—)[](—) of length 2.
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3. (a) (Substitution of words in a word.) Each word u of length »# determines a
functor uy: W"— W.Ifv,, ..., v, are n words, show that the word up(vy, ..., v,)
has length the sum of the lengths of the v;, and that it corresponds (intutively)
to substituting v, ..., v,, in order, for the » blanks (—) in the word u.

(b) If w=uw(v1,...,0,), show that the canonical maps u, of Proposition 1
have the property that the composite

pw (Ruy - - Hup) i
s Uy i,y ——

W, = Uy Uy, -

is equal to g : w.— c. Show that this result includes Proposition 1.

4. Actions

Again, we work in a fixed monoidal category B. A left action of a monoid
{c, u, > on an object ae B is an arrow v:c[Ja—a of B such that the
diagram

cO(cda) —2— (cdo)Oa -2 cOa <™= —ea

jvl Ov - lv l}t (1)

ca Y a = a

commutes. For example, ¢ acts on itself by the map u:c[Jc—c; this
is the “left regular representation” of c¢. A morphism f:v—v of left
actions of ¢ is an arrow f : a—a’ in B such that vV(1[J f)= fv:cJa—a"
With these morphisms as arrows, the left actions v for a fixed monoid ¢
form a category Lact. These definitions clearly include familiar cases:
an action of an ordinary monoid on a set, a left R-module regarded as
an action of the ring R on an abelian group, and similarly with rings
replaced by K-algebras, or D G-algebras (D G = differential graded).

There is a forgetful functor JLact— B, defined by {(v:c[Ja—a)a;
it has a left adjoint which sends each b € B to ¢ []b, with action of ¢ on
¢ [ b defined by the composite

cO(cb)—2— (cOc)Ob—2 cOb.

Right actions ¢ : b(Jc—b of ¢ are defined similarly, and commuting
left-and-right actions of ¢ on a may be defined to parallel the usual
bimodules (left and right R-modules).

Exercises

1. (Dubuc [1970], PropII.1.1.) Let {T,#, x> be a monad in a category X. Show
that the monad T has an action on an endofunctor S: X— X if and only if §
can be lifted to the category X7 of T-algebras as S= G”S’, and show that these
actions correspond one-one to the liftings S’ : X — X7. .

2. Let a small strict monoidal category B (as a monoid in {Cat, x,...>) act on a
category C. Define then the action of a monoid in B on an object in C, and use
this to extend the result of Exercise 1 to the case of functors S: 4— X from any
category A.
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3. Describe the actions of a K-coalgebra.

4. If B has coproducts preserved by all functors a[J—, show that Lact has co-
products preserved by the forgetful functor to B.

5. If the base category B has finite products, so does the category JLact, in such
a way that the projections a x @'—a, @ of the product (in B) become morphisms
of actions (in [Lact).

6. (Generalization of the tensor product of a right module by a left module.) If B
has coequalizers, ¢ is @ monoid, ¢: b[J¢—b a right action, and v:c[Ja—a a
left action, construct a “tensor product™ b[J.ae B as the coequalizer of two
maps b[J(cda)—bda given by the actions, and prove [J. a functor
O.:Ract, x Lact— B.

7. (Coherence result for an action.) Given a left action v: ¢c[Ja—a of a monoid c,
describe the properties of canonical maps v : w, ,—a, where w is any word of
length > 1 with “last argument” (—) (define what this means), while w, , results
from substituting g for the last argument and ¢ for all the other arguments in w.

5. The Simplicial Category

We now describe a particular strict monoidal category A4 which plays a
central role in topology and also provides a “universal” monoid.

This category A has as objects all finite ordinal numbers
n={0,1,...,n—1} and as arrows f:n—n all (weakly) monotone
functions; that is, all functions f such that 0<i<j<n implies f; < f;.
In this category, the ordinal number 0 is initial, while the number 1 1s
terminal. Ordinal addition is a bifunctor + :4x A— A, defined on
ordinals n, m as the usual (ordered) sum n+m and on arrows f:n—n/,
g:.m—m as

(f+9) ()= fi, i=0,...,n—1
=n4g(i—-n), i=n,...,n+m—1.

(Thus the function f + ¢ is just f and g placed “side by side”.) Moreover,
{4, +,0) is a strict monoidal category. Since ! is terminal in 4, there
are unique arrows yu:2—1,17:0—1; for the same reason, these arrows
form a monoid {1, y,7> in 4. It is “universal” in the following sense.

Proposition 1. Given a monoid {c, y',n'> in a strict monoidal category
{B, [, &>, there is a unique morphism F . {4, +,0>— (B, (], ) such that
Fl=c, Fu=y' and Fy=1v', as in the figure

0—Fo et -2=1+1 {4, +,0>

| | é 1)
v L , i v

e—"1— ce—E—— e, (B,[O,e>.
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The proof depends on showing that the arrows of 4 are exactly the
iterated formal products (for the binary product p). In detail, write u®
for the unique arrow u®:k—1. Thus p@ =z, 4V is the identity,
B =p:2-1,

p=pp+ )= p(l+p):3-1,
and so on. Since 1 is terminal in 4,
u(n)(#(kx) 4+t #(kn)) =u(k1+ v+ kp) . (2)

(This is the “general associative law”.) On the other hand, if f : m — n is
any arrow of 4, let m; be the (ordinal) number of elements in the subset
f7Yi of m; then

n—1
f=u(mo)+u(m1)+,,,+#(mn—1), Z m=m (3)
i=0

(note that some of the m; may be zero). This shows that any f is a sum
of iterated products constructed froni p and 7.

Now consider the functor F required in the Proposition. Since
F(1)=c and F is to be a morphism of monoidal categories, F must have
Fn=c"; this determines the object function of F. Next, Fu=y' and
Fy=n imply that Fu®™ = p'™; the representation (3) of any arrow f of
A then determines the arrow function Ff of F. Thus F is unique. It
remains only to show that the object and arrow functions so defined
give a functor. But in 4, composites are given by (2), which corresponds
exactly to the general associative law valid in B. g.e.d.

This universal property gives a complete characterization of 4. Its
objects form the free monoid generated (under +) by 1; its arrows are
generated by additions and compositions from u:2—1 and 5:0—1,
using the associative law for yu and the left and right unit laws for 5 and p.

There is another description of the arrows of A4, which starts by
observing that a monotene function f : n—n' can be factored as f=geo h
where h:n—n" is surjective and monotone, g : n’—n’ is monotone and
injective. Moreover, this injective function g will be determined just by
giving the image of g, which is a subset of n” ordinals in the set »n'. In
particular, there are exactly n + 1 injective monotone functions n—n+ 1;
namely, for i=0,...,n, the injective monotone function &?:n—n+1
whose image omits i, thus

8 inon+1, &{0,..,n—1}={0,...,i ..., n}, @)

where i on the right indicates that i is to be omitted. We display. all
these arrows (omitting the superscripts n) as

o_jL91:%%32:::33p“, 8oy b non+l. (5
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On the other hand, a monotone h : n— n” which is surjective is determined
by the subset {j|hj=h(j + 1),0<j< n— 2} of those n— n” arguments j at
which h does not increase. In particular, there are n such arrows n+ 1—n;
fori=0,...,n—1 they are

ol:n+1—-n, ofH=0l(i+1). (6)

We display them (without superscripts) as
O 128234 .., 0, ....,0,_;:n+1-n. ()

These arrows may also be expressed in terms of x4 and . Indeed
80:0—11isn go:2—1is u, and the definitions show that

=1,+n+1,_,:n—>n+1, i=0,...,n, (8)
oi=1+pu+1, ;.y:n+l-on i=0,..,n—1. 9

Lemma. In A, any arrow f:n—n' has a unique representation
f=08,c08, 00,020, (10)

where the ordinal numbers h and k satisfy n—h+ k=n', while the strings
of subscripts i and j satisfy

w>i> >0, 0=Zj<---<jy<n—-1.

Proof. By induction on i€ n, any monotone f is determined by its
image, a subset of n’, and by the set of those jen at which it does not
increase [ f(j)= f(j+ 1)]. Putting i, ..., %, in reverse order, for those
elements of #' not in the image and ji, ..., j,, in order, for the elements j
of n where f does not increase, it follows that the functions on both
sides of (10) are equal.

In particular, the composite of any two é’s or ¢’s may be put into
the canonical form (10). This yields the following list of three kinds of
identities on these binary composities

6;0;=10;.10; i<j (11)
0;0;=0;0;4 i<], (12)
6;0;=06,0;_,, i<],

=1, i=ji=j+1 (13)

=5i—lo-j’ i>j+1.

These identities may be verified directly. For example, (11) asserts that
077187 = 631107 :n—n+2for any j < n; one checks that each side of this
equation is a monotone injection, and that both sides have the same
image.
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Proposition 2. The category A, with objects all finite ordinals, is
generated by the arrows 87 :n—n+1 and oj:n+1—n subject to the
relations (11), (12), and (13).

Proof. These relations suffice to put any composite of &’s and ¢’s
into the unique form (10) of the Lemma.

The category A4 has a direct geometric interpretation by affine
simplices, which give a functor

A:4—Top (14)

representing 4 as a subcategory of Top. On objects n of 4, take 4, to
be the empty topological space, and 4,,; to be the “standard” n-
dimensional affine simplex — the subspace of Euclidean R**! consisting
of the following points

A, .,={p=(tg, ..., t)[tc20,...,1,20,21t,=1};

here the non-negative real numbers t,,...,t, are the barycentric co-
ordinates of thepointped, , .Onarrowsf:n+1—-m+1,4,:4, ,—4, .,

is the (affine) map defined by

Apltos s t)=(S0s oSy 8= 3 ;.
rizj

Note carefully that (in this notation) 4, ; has dimension n and n+ 1
vertices, while 4 is the (unique) affine map which sends the vertex i of
4,4, to the vertex fi of 4, ,; for example, 45 :4,,,—4,,, is that
affine map which sends the n-simplex 4,,, to that n-dimensional face
of 4, .., which is opposite vertex number i. Geometrically, the “boundary”
of a tetrahedron 4, consists of the four triangular faces which are the
images of 4, under é,, é,, 6,, and 6;? Using standard properties of affine
geometry (Mac Lane-Birkhoff [1967], Chap. 12) one may verify (exer-
cise) that 4 as defined is indeed a functor 4— Top.

Note that this functor 4 sends the ordinal number n+1 to the
n-dimensional simplex: 4 is a subcategory of Top, but the geometric
dimension is one less than the arithmetic one used in 4.

By A* we denote the full subcategory of A with objects all the
positive ordinals {1, 2, 3, ...} (omit only 0). Topologists use this category,
call it A, and rewrite its objects (using the geometric dimension) as
{0, 1,2, ...}. Here we stick to our 4, which contains the real 0, an object
which is necessary if all face and degeneracy operations are to be ex-
pressed, as in (3), in terms of binary product uz and unit #.

Contravariant functors on the category A* to Set are traditionally
known as “simplicial sets”.

Thus, a simplicial object S in a category X is defined to be a functor
S:(A4*)PP— X, and a morphism S— S’ of simplicial objects is a natural
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transformation 8: S--S’. If we write this functor S as
n+1e=S,,  o—d;, a5,

so that S, is in geometric dimension n, then a simplicial object in X
may be described in the traditional (and more complicated) way as a
list of So, S, ..., S,,... of objects of X (S,: the object of n-simplices)
with arrows (“face operators”) d;:S,—S,_; for i=0,...,n, and n>0,
and arrows (“degeneracies™) s;:S,—S,,; for i=0,...,n,n=0 which
satisfy the identities dual to (11), (12), and (13).

didje, =dd,  iS) (11°7)
Sj+15;= 55; I<] (12°7)

dis;=s5;_,d; i<j
=1, i=jj+1, (13°7)

=8;d;_, i>j+ 1.

For example, if Y is an affine simplex with its vertices linearly ordered,
then 4;Y is the “i-th face” obtained by omitting vertex i while 5;Y is the
degenerate simplex with vertex i doubled. The rules above then follow.

An augmented simplicial object in X is a functor §':4°—X. A
simplicial object S may be augmented (i.c., extended to a functor S’) by
finding one object S_, X and one arrow ¢:S,—S_; of X with
edo=¢ed, : S;—S_,; thus S'(6y) =& Such an arrow ¢ is (traditionally) an
augmentation of S.

A simplicial object S in an abelian category A (e.g. A= Ab) gives
homology, via a suitable “boundary” operation. Specifically construct
from S the arrows

Spe—t— S et 2 ... (15)

where the boundary homomorphism 0 : S, ,,— S, is the arrow defined as
the alternating sum d=d, —d; +--- +(—1)"*'d, ;. The relations (11°F)
on the faces d; imply that d0 =0. (This means that the diagram (15) is
a chain complex in A). Since 08 =0,

Im{0:S,,;,—S,} =Ker{d:5,—S,_;}
and we can take the quotient object (see Chap. VIII) to be the n-th
homology of S: Ho(S) = So/Tm{d : S, — So}
H,(S)=Ker{0:S, - Sy_1}/Im{0: Spp1 = Su}, n>0.

Each augmentation of the functor S yields an augmentation of this
chain complex; that is, an object S_, of 4 and an arrow ¢:S,—S_,
with 6 =0, hence an arrow H,(S)—S_,.

The singular homology of a topological space is a classical example.

and



Consider the composite functor

A% x Top 2224=2) , Qet— 2 5 AD

where 4 : 4 — Top is the functor described in (14), while Z assigns to
each set the free abelian group generated by the elements of that set.
This composite determines for each topological space X an augmented
simplicial object S=S§(X) in Ab. Each arrow hehom(4,,,,X) is a
singular n-simplex in X, so S, is the free abelian group generated by
all such simplices (all finite linear combinations with integral coefficients
of singular n-simplices). The associated chain complex is the singular
chain complex of the space X, with its homology the singular homology
(see e.g. Mac Lane [1963] Chap. II).

We may summarize the protean aspects of A4 thus:

(a) 4 is the category of finite ordinal numbers, hence a full sub-
category of the category Ord of all (linearly) ordered sets.

(b) 4 is a full subcategory of Cat, if we interpret each ordinal n as
a category (finite preorder); the objects of A are the categories 0,1,2,3, ... .

(c) 4 is the strict monoidal category containing the universal monoid,
its arrows are all “iterated multiplications™ p®™ 4 ... 4 ptm™-v,

(d) 4 is a subcategory of Top, consisting of the standard ordered
simplices (one for each dimension), with order preserving affine mappings.

The simplicial objects defined via 4 provide a means of treating many
questions in algebraic topology, especially those dealing with homology,
C W-complexes, Eilenberg-Mac Lane spaces, and cohomology operations.
This line of development is presented in May [1967], Lamotke [1968],
and Gabriel-Zisman [1967], the last presentation making full use of
categorical techniques.

Exercises

L. In 4, show that an arrow f : n—n’ is monic (or epi) if and only if the function f
is injective (resp., sutjective).
2. (a) Show that the subcategory 4., C 4 of all monics in 4 is generated by the
arrows §;, subject to the relations (11).
(b) Show that every arrow in 4., is uniquely an iterated sum of n:0—1 and
id:1->1.
3. (@) Show that the subcategory 4, C 4 of all epis in 4 is generated by the arrows
o; subject to the relations (12). Show that 4, is a strict monoidal category.
(b) A semigroup {c, u) in a strict monoidal category <C, [J, e} is an object ¢
with an arrow p: c[Jc—c which is associative, in that p(u (1) = u(1.0w).
Show that 2— 1 is a universal semigroup in 4,,;.
4. Show that the category of simplicial objects in Set is small-complete.

6. Monads and Homology

Monads and their duals, the comonads, play via 4 a central role in
homological algebra, as we may now briefly indicate. Let L=<(L,¢, 6>



be a comonad in a category A4; in other words L: A— A is an endo-
functor, and the natural transformations &: L-»1d,, §: L~ I? satisfy

8L-6=L§+6:L~I? eL-§6=1y=Le-5:L-L. 1

These are the duals to the definition of a monad in (2) of §VI.1. This
amounts to saying that {L,&J) is a comonoid in the strict monoidal
category A“ of endofunctors of A, where the functor [] (multiplication)
is composition.

Now 4 contains the universal monoid {1,0—1,1+1—1), so 4°
contains the universal comonoid (1, 1—0, 1 —1+ 1. Thus, by the dual
of Theorem 5.1, any comonoid in a strict monoidal category (B, [], e)>
determines a unique morphism 4°°— B of monoidal categories, carrying
the universal comonoid to the given one. This morphism 4°°— B is an
augmented simplicial object in B (and (4%)*®— B is a simplicial object).

In particular, each comonad {L,e d) in 4, as a comonoid in the
functor category A4, determines an augmented simplicial object (functor)
A°°— A4, with

Ad, el —1+1>

Pl

(L, Ide—t—L -2 L-L).

Thus n—>I'=Lo---s L, g is the augmentation, 6=5,: L—I? is the
degeneracy arrow, and the faces and degeneracies in higher dimensions
are given by the duals of the equations (8) and (9) of § 5 (which express &
and ¢ in terms of u and #):

d'=Lel* [, i=0,..,n, )]
st=r60~ "t Pt i=0,...,n—1. (3)

The whole simplicial object has the form

do
SmpL= (L= =P =="P.; L——[I—=3D )

Now suppose that 4 is an Ab-category (e.g., an abelian category, or
that we have applied to Smp L a functor to some Ab-category). The
simplicial identities on the face operations d; then show that the alter-
nating sums

d=dy—d +dy— -+ (=1)"d,: ''a—I'a

satisfy d0=0, so are the boundary morphisms of a chain complex
called L*q,
L*a:La—2—I?ae—2 —[3q2

with an augmentation ¢, : La— a. This complex is a standard “resolution”
of ae 4 in the sense of homological algebra, and so may be used to
construct derived functors; in particular, various cohomology functors.
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The cohomology of groups provides an example.

The forgetful functor U :Rng— Mon (forget the addition) has (by
the adjoint functor theorem) a left adjoint Z, sending each monoid M
to the monoid ring ZM. In particular, if M =II is a (multiplicative)
group, ZII is the group ring: Its additive group is the free abelian group
generated by the elements x eI, and its multiplication is the unique
bilinear map with {(x, y>— xy, the product in II, for all x,yelIl. Let
I1-Mod denote the category of left IT-modules A.

The forgetful functor U : II-Mod— Ab has a left adjoint Z(I)® -
which assigns to each (additive) abelian group B the left Z(II}-module
Z(II)® B. The unit and counit of this adjunction are the maps

n:B—oZ(IH®B, b—1®b, beB,

e LIH@UA— A, x®ar>xa, aeA.
The composite II-Mod— Ab— II-Mod determinesa comonad {L,&,0)
in the category II-Mod, where L:II-Mod— II-Mod is the functor
L=Z(INH® — (literally, ZUH® U —),e: L--Idis as above,and § : L=» >

is the natural transformation § = Z(II)®nU given explicitly for each
IT-module A as

S LA=Z(IHRA—-Z(INQZLINR®A=I*A
x®ar>x®1®a, xell,aecA,

where 1 is the identity element of the group II. Take the II-module
A =7Z = the abelian group Z regarded as a trivial II-module (x-m=m
for all x e I1 and all integers m). Then Z(I1)® Z = Z(I1), and the simplicial
object (Smp L)Z becomes

ZINHSZID P& ZID™ S 2D -
where Z(IT)™ denotes the n-fold tensor product 4,=Z{II)® -+ & Z(II).

Explicitly, 4,., is the free abelian group with generators all elements

x®x1®"'®xn=x®[xll“'lxn]

(the alternative notation on the right is traditional) for all elements
x, x; € II. The II-module structure is determined (y e IT) by

Yox[xy ool D e yx[xg oo x,]
The face operators d;: Z(II)"*V—Z(II)™, as determined (2) by &, are
di(x[xy |- [x,]) = xx; [x5 ]~ | %], i=0,
=x[x | lexg ) lx], 0<i<n,

=x[xg ] 1%-1 1 i=n.
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The degeneracy operators s;: Z({II)™— Z(II)" V), as determined by &
according to (3), are the II-module maps

Si(x[xy [ I D= x[xp [ [ LX) [x,0y]  O=ZisSn—1.

Since II-Mod is already an abelian category, this (augmented) simplicial
object determines an augmented chain complex in II-Mod of the form

Z(——Z(H)(——Z(H)(Z)(__‘__Z(H)(n)‘__ )

This is a “free resolution” of the trivial II-module Z; it is, in fact, the
standard resolution used to define the homology and cohomology of
the group I1. (Mac Lane [1963], Theorem I[V. 5.1).

The cohomology of I1 is obtained from the resolution as follows. Takea
IT-module 4 and the corresponding functor hompg(—, A):(JI-Mod)°*— Ab,
where homy(—, —) denotes the abelian group of II-module morphisms.
Apply this functor to the chain complex above (dropping the augmentation
Z(II)—Z) to get a “cochain” complex

homy(Z(II), A)—24— homp(Z(I)®, 4)—2>— -

with coboundary 6=hompg(d, 4). The cohomology groups of this
complex are exactly the cohomology groups H"(II, A) of the group I1
with coefficients in A. The formulas for d; above give & explicitly. Thus,
for example, H°(II, A)= {ala€ A and xa=a for all x}; H,(I, 4) is the
group of “crossed homomorphisms® II-—A modulo the principal
crossed homomorphisms, and H2(II, A) is the group of all group ex-
tensions of the additive group A4 by the multiplicative group II, with
operations (conjugation) given by the II-module structure of A (Mac Lane
[1963a], IV.2, TV.3).

The higher cohomology groups of groups appear in obstruction
problems (Mac Lane [1963a], IV.8), in the theory of the K(I1,1) spaces
in topology (Mac Lane [1963a], IV.11), and class field theory (Cassels-
Frohlich [1967]).

The homology of IT with coefficients in a right-II-module C is found
in a similar way: To the standard resolutions apply not the functor
homy(—, A4) but the (covariant, additive) functor C®; — : II-Mod— Ab.
The homology of the resulting chain complex in Ab is the homology
H,(I1, C) of IT with coefficients in C. For example (Mac Lane [1963a],
Prop. X.5.2)

Hy(Ul,Z)=Z, HIZ)y=IJII,11];

the latter is the factor commutator group of IT.
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7. Closed Categories

The ideas broached in this chapter have extensive further developments
which we shall indicate briefly. First, a monoidal category B is said to
be symmetric when it is equipped with isomorphisms

Yap:aldb=b0a, (1)
natural in a, b € B, such that the diagrams
YabVoa=1, @ =4p° Yy b0e=b, 2

a(bdc) —— (@Odb)dc—2L— c[I(a]b)
lle jva (3)
aQ(cb)—2— (al1oOb 2L (ca)Ib

all commute. This selection of conditions suffices (Mac Lane [1963b])
to prove that “all” such diagrams commute, much as in the coherence
theorem of § 2 above. Monoidal categories (B, [, e, ...>, where ] is
the categorical product or coproduct, are automatically symmetric
when y:axb=bxais taken to be the (canonical) isomorphism which
commutes with the projections. These ideas are elaborated in Chapter XI.

A closed category V is a symmetric, monoidal category in which
each functor — [Jb: V—V has a specified right adjoint ( )*: V—V. For
example, (Ab, ®, — > is closed; the adjoint is given for abelian groups A
and B as A® =hom(B, A), the abelian group of all morphisms B— A.
Similarly, (K-Mod, ®y, ...> is closed for any commutative ring K. The
cartesian closed categories, such as Set and Cat, are also closed categories
in this Sense. In all these cases, the functor ( )*: V— Vis a sort of “internal
hom functor”.

An Ab-category (and in particular, an abelian category) has already
been described (§1.8) as a category with “hom-sets” in Ab. Similarly,
one can describe “categories” with “hom-sets” in any monoidal category
B: Aset Rof“objects”r, s, t; to each pair of objects r, s an object R(r, s} € B;
to each ordered triple an arrow (composition!)

R(s, )[OAR(r, s)— R(r, 1)

in B; to each object r, an arrow e— R(r, ) in B (unit!). These data are
subject to the usual associativity and unit axioms on composition. The
result is called a B-category, a B-based category, or a category relative
to B — and often, replacing the letter B by V, a V-category. But observe
that this structure R is not yet a category in the ordinary sense; it has
only hom-objects R(r, s} and not hom-sets. These can be obtained only
applying to the hom-objects R(r,s) a suitable functor U: B—Set, say
U=Bl(e, —), to get hom-sets UR(r, s). When there are such hom-sets,
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one says that the ordinary category UR has been “enriched” by the
objects R(r, s)e B.

Practically all the basic theory of categories applies to enriched cat-
egories, provided that the basic category B is not just monoidal, but
closed. This development (for a presentation, see Dubuc [1970] and Kelly
[1982] and references there) may provide a powerful method of treating at
one time the cases of ordinary categories, additive categories based on
closed categories of chain complexes (for relative homological algebra),
and categories based on a suitable cartesian closed variant of Top.

8. Compactly Generated Spaces

A convenient category of topological spaces should be cartesian closed.
The familiar adjunction which makes Set cartesian closed,

Set(X x ¥, Z) =Set(X, Z¥), ZY=Set(Y,2), (1)

which sends each f:Xx Y—Z to f*: X—2ZY, with (f*x)y=f(x, y)
may be considered also for topological spaces X, Y, and Z. We obtain a
topological space Cop(Y,Z) by imposing on the set Top(Y, Z) of all
continuous maps Y—Z the compact open topology: A subbase for the
open sets consists of the sets N(C, U) where C is any compact subset of
Y, U any open subset of Z, and N(C, U) consists of all those continuous
h:Y—Z for which hCCU. A standard argument (which we will not
need) shows that the basic adjunction f + f* of (1) restricts to give an
adjunction

Top(X x Y, Zy=Top(X, Cop(Y, Z)), (2)

provided Y is locally compact Hausdorff.

There have been many attempts to repair this situation for more
general spaces Y by using a variety of other topologies on the function
space or other topologies on the product space. The best device is to so
restrict the category of topological spaces that the (categorical) product
XX x Y (with its intrinsic topology as a product) does always have
aright adjoint (which will be a function space with a uniquely determined
topology).

A topological space X is compactly generated when each subset AC X
which intersects every compact subset C of X in a closed set is itself
closed. By CGHaus we denote the category with objects all compactly
generated Hausdorff spaces (= Kelley spaces), with arrows all continuous
functions X — X".

Proposition 1. CGHaus is a full coreflective subcategory of Haus.
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It is a full subcategory by definition. To each Hausdorff space Y
we construct a compactly generated space K'Y with the same points as
Y (the “Kelleyfication” of Y) by requiring that AC Y be closed in K'Y
if and only if AnC is closed in Y for all compact sets CC Y. Thus all
closed sets of Y are closed in KY,KY is Hausdorff, and the identity
function &y : KY— Y is continuous. Any continuous map f : X—Y from
a compactly generated Hausdorff space X factors as f=¢ f".

Y—it—sY

™ ]
d /\\ 3)

X V4

where f: X— K Y is the same function (as f) and is continuous because
X is compactly generated. This shows that ¢ is universal from K to Y,
so is the counit of an adjunction which makes CGHaus coreflective in
Haus, as desired.

The description of KY means also (see Fig. (3)) that a function
g : Y— Z to a topological space Z is continuous, on KYasge: KY— Z,
if and only if the original g is continuous on all compact subsets of Y.
Observe also that metrizable spaces and locally compact Hausdorff
spaces are compactly generated.

Proposition 2. CGHaus is (small) complete and cocomplete.

Proof. The category Haus is complete (Proposition V.9.2) and a right
adjoint such as K preserves limits. Hence CGHaus is complete. In
particular, the product (written []) of two spaces X and Yin CGHaus is
obtained from their “ordinary” product X x Yin Haus as

XOY=K(X xY). 4)

In other words, the []-product of Kelley spaces is the product of the
underlying sets, with the Kelleyfication of the usual product topology.

Cocompleteness follows readily. Since any coproduct in Haus
(= disjoint union) of compactly generated spaces is also compactly
generated, it will suffice to construct the coequalizer of a parallel pair f,
g : Y33 X in CGHaus. Take the coequalizer p : X—Q in Haus (Prop. V.9.2)
and form KQ:

YéX—L»K

+
1 ]

4 {

I

Since ¢: KQ—Q is universal, there is a unique continuous p': X—KQ
with ep’=p and p’f =p'g. Since p’ is also a map in Haus, and p is the

£

Q—O
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coequalizer of fand g there, there is a continuous t : Q— K Q with p'=1p.
Then p=¢p’=¢tp,so et =1 and ete = &. But ¢ is monic (in Haus), so te =1,
and ¢ is an isomorphism: The coequalizer in Haus lies in CGHaus.

For example, if A is a subset of a compactly generated Hausdorff
space X, then we get an identification space X//4 as a coequalizer in
CGHaus (collapse all of 4 to a point in CGHaus). It is the largest Haus-
dorff quotient of the space X/A4 (collapsed in Top); its topology is auto-
matically compactly generated.

Theorem 3. CGHaus is a cartesian closed category.
For two compactly generated Hausdorff spaces X and Y define
X¥=K(Cop(Y,X)), (5)

the function space with the Kelleyfication of the compact-open topology.
Define e: X¥[JY—X by evaluation; {f,y>rfy. We claim that e is
continuous; it suffices to prove that e: XY x Y—X is continuous on
compact sets. Since any compact subset of the product space is contained
in the product of its projections, it suffices to show that e is continuous on
any set of the form D x C, where D is compact in Cop(Y,X) and C is
compact in Y. Consider {f,y>eD x C, and let U be an open set of X
containing fy. Since /' : Y— X is continuous, there exists a neighborhood
M of y in C whose closure satisfies f M = U. But N(M, U) as given be-
fore (2) is a set of the subbase for Cop(Y, X) and [N(M,U) n D] x M is
open in D x C, contains {f,y>, and is mapped by e into U. This proves e
continuous.

It remains to show e universal from — [JYto X. So consider any map
h:Z[JY—X in CGHaus. Then we construct k : Z—Set (Y,X) as k = h*;
that is, so that (kz)y = h(z,y) for all zeZ and yeY. A direct proof shows
that kz: Y—X is continuous; thus kze XY. Next, we prove that zi>kz
is continuous Z— X7, Since Z is compactly generated, it is enough to
show Z—Cop(Y, X) continuous. So let N(C, U) be one of the open sets
for the subbase of the compact-open topology, and suppose that
kze N(C, U); thus (A{z} x C) = U. Since U is open, C compact, and A
continuous, there is a neighborhood ¥V of z such that A(V x C) = U. This
implies that kV C N(C, U). Therefore k is continuous.

We now have the commutative diagram

X'gy—e—Xx

217

ZOY ;

by the adjunction in Set, there is at most one k with e (k[J1)=h, and we
have just shown this k continuous. Therefore e is universal, and defines
the desired adjunction

CGHaus(Z[JY,X) =~ CGHaus(Z, X"). 6)
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Since [] designates the product in CGHaus, this category is cartesian
closed.

This adjunction (6) is a bijection of sets. One also wishes the corre-
sponding homeomorphism

XZDYE(XY)Z

of function spaces. This follows from the adjunction (6) for categorical
reasons (Ex. I'V.6.3).

This summarizes the basic properties of the category CGHaus. More
extensive work (Steenrod [1967] and elsewhere) indicates that it is the
convenient category for topological studies; Dubuc and Porta [1971]
show that it is appropriate for topological algebra (extensions of the
Gelfand duality). All told, this suggests that in Top we have been studying
the wrong mathematical objects.

The right ones are the spaces in CGHaus.

Exercises

1. If Yis Hausdorff, show that K Yis the colimit (in Haus) of the compact subspaces
of Y, ordered by inclusion.

2. Prove that a closed (or open) subset of a space X € CGHaus with the usual

subspace topology is itself in CGHaus.

. Prove that the inclusion CGHaus— Haus creates colimits.

. If Z is locally compact Hausdorff and X e CGHaus, prove that Z 0 X =Z x X.

5. Prove that CGHaus is equivalent to the following category: Objects, all Hausdorff
spaces; arrows f : X — Yall functions continuous on compact sets.

oW

9. Loops and Suspensions

For homotopy theory, we consider the category CGHaus, of pointed
compactly generated Hausdorff spaces — with objects the spaces
XeCGHaus with a selected base point, *y, and with arrows the con-
tinuous maps preserving the base point. Let X*'¥ be the subspace of X
consisting of all base-point preserving maps. Since it is a closed subspace,
it is compactly generated. It has a natural base-point (the continuous
function sending all of Y to =y). In the standard adjunction f+— f¥,

CGHaus (Z[]Y,X)=CGHaus (Z,X")
v v
CGHaus,(?,X) = CGHaus (Z,X*7),

consider on the right the indicated subset: Those f*: Z— XY which
preserve base-point. Thus (f¥z)#y =, and (f*#,)y = *y; that is, for all
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zeZand yeY
Sz x)=x=f(xy).

These are exactly the continuous functions f which collapse the “wedge”
ZvY=(ZO*) v (xJY) to a point. The corresponding identification
space is called the smash product

OY/ZO«xvwE=OY)]=ZAY
(or sometimes written as Z 4 ¥). This gives an adjunction
CGHaus, (Z A Y,X)= CGHaus,(Z,X™Y). (1)

The circle S' may be obtained from the closed unit interval
I={t]0<t <1} as the identification space S! = I//{0, 1} ; we regard it as a
pointed space with base point 0 = + 1. The functors X (reduced suspension)
and Q (loop space) on CGHaus, to CGHaus, are defined as

IX=XAS", QX=X%%,

by the bijection above X : CGHaus,— CGHaus, has  as right adjoint.
The points of 2X are the loops in X at the base point; that is, the con-
tinuous maps f : [— X with f(0)=f (1) = *x. On the other hand, X X is the
cylinder X x I with top X x {+ 1}, bottom X x {0}, and generator * x [
all collapsed to a single point, the (new) base point; equivalently it is the
double cone over X (X x I with top and bottom collapsed) and with the

generator over * collapsed, as in the figure

X=_>, IXxX=C x>
X

V4

For example, 8! = S' A S! is the two sphere §2, Z"S! the (n+ 1)-sphere.
The unit X—QXX of the adjunction sends xe X to the function
{(x, —»:I—Z X;ithasa vivid geometric picture; it sends each point x € X
to that generator of the cone which passes through x; this generator is a
loop from north pole to south pole = north pole, hence a point of QX X

By iteration, 2" is the left adjoint of Q": CGHaus,— CGHaus,; this
adjunction has a unit X—0Q"2"X which can be written as a composite

QnzX

XoQIX—"5QQXZX— ---

and §2", as a right adjoint, preserves products: Q"(X1Y)=Q"X[1Q"Y.
These and similar facts can be obtained either by direct topological
arguments, or by application of the properties of adjunctions.
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Exercises

1. Construct a left adjoint for Set, (S, —):Set,—Set,.

2. Show that the smash product in CGHaus,, is commutative and associative up to
natural isomorphisms which make CGHaus, 2 symmetric monoidal category
with unit the two-point space.

3. In Top, show that — x Y does not have a right adjoint (because it does not
preserve coproducts).

4. The Path space functor P: CGHaus— CGHaus has PX = X" where 0 is
taken as the base point of the interval I. For each path fe PX, f— f(1) defines a
natural transformation = : P-»1d. Show that Q can be obtained as the pullback
of a diagram P--Id«—x (Classically, QX is the “fibre” of ny: P X —X).

5. Describe the counit of the Z-Q adjunction.

Notes.

Monoidal categories were first explicitly formulated by Bénabou [1963, 19647,
who called them “catégories avec multiplication” and by Mac Lane [1963b], who
called them “categories with multiplication”; the renaming is due to Eilenberg.
Coherence theorems were initiated by Stasheff in a 1963 treatment of higher
homotopies, by Mac Lane [1963b], and by Epstein [1966], who needed them for a
general definition of Steenrod operations. Coherence theorems are undergoing
active development; Lambek [1968] found a fascinating connection with the
cut-elimination theorems of Gentzen-style proof theory; following his lead, Kelly-
Mac Lane [1970] proved a coherence theorem for closed categories. The simplicial
category, long implicit in the boundary formulas of algebraic topology, became
explicit in the study of Eilenberg-Mac Lane spaces and of the Eilenberg-Zilber
theorem about 1950, and played a role in the development of homological algebra
(see the notes to Chap. VI). Our discussion of monads and homology is only a slight
introduction to the recent proliferation of conceptual schemes for the organization
of homological algebra.

Compactly generated spaces first appeared in John Kelley’s 1955 book on
General Topology; their convenience for topology was emphasized by Steenrod
[1967), Gabriel-Zisman [1967], and others. There are alternative closed categories
convenient for topology, notably the quasi-topological spaces due to Spanier.

The suspension X of a topological space is a tool long used in homotopy theory.
The Cartan-Serre attack (about 1951) on the difficult problem of computing the
homotopy groups of spheres made essential use of loop spaces and. suspension.
These constructions originally seemed thoroughly geometric. Thus the natural
map X —QZXX came from a topological insight, but now appears in conceptual
terms, as the unit of an adjunction.



VIII. Abelian Categories

This chapter will formulate the special properties which hold in
categories such as Ab, R-Mod, Mod-R, and R-Mod-S: They are all
Ab-categories (the hom-sets are abelian groups and composition is
bilinear), all finite limits and colimits exist, and these limits — especially
kernel and cokernel — are well behaved. This leads to a set of axioms
describing an “abelian” category. The axioms suffice to prove all the
facts about commuting diagrams and connecting morphisms which are
proved in Ab by methods of chasing elements. We carry the subject
exactly to this point, leaving the subsequent development of homological
algebra to more specialized treatments.

1. Kernels and Cokernels

Recall (§ 1.5) that a null object z in a category is an object which is both
initial and terminal. If C has a null object, then to any a, b € C the unique
arrows a—z and z—b have a composite 0=05:a— b called the zero
arrow from a to b. It follows that any composite with one factor a zero is
itself a zero arrow. The null object is unique up to isomorphism, and the
notion of zero arrow is independent of the choice of the null.

Let T have a null object. A kernel of an arrow f : a—b is defined to
be an equalizer of the arrows f,0 : a=$b. Put more directly, k:s—aisa
kernel of f :a—b when fk=0, and every h with f h =0 factors uniquely
through k (as h=kh')

ENY

Q

¥

Thus any category with all equalizers (or, more generally, with all pull-
backs or with all finite limits) and with a zero has kernels for all arrows,
and the kernel k : s—a of fis unique, up to an isomorphism of 5. Like all
equalizers, a kernel k is necessarily monic (kg' = kh’ implies g = h’, by the
unique factorization requirement in the definition). Hence it is convenient

1"1
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to think of the kernel k:s-—a as a subobject of a — that is, as an
equivalence class of monics s — a.

For example, in Grp the group I with just one element (the identity
element) is a null object, and for any two groups the zero morphism
G—H is the unique morphism which sends all of G to the identity
element in H. The kernel of an arbitrary morphism f : G— H of groups
1s the insertion N— G of the usual kernel N, (with N = all x in G with
fx=1). Note that N is a normal subgroup of G, so in Grp every kernel is
monic but there are monics which are not kernels.

In the category Set,, of pointed sets (§ 1.7), the one-point set is a null
object and the zero map P— @ is the function taking all of P to the base
point x¢ in Q. For any morphism f : P—Q of pointed sets, the kernel
§— P is the insertion of the subset S of those x € P with fx = x,, where
the base point of S is identical with the base point of P. Much the same
description gives kernels in Top,,. In Grp, an epimorphism is determined
(up to isomorphism) by its kernel, but this is by no means the case in Set,
or in Top,.

In any Ab-category A, all equalizers are kernels. Indeed, in such
a category each hom-set A(b,c) is an abelian group. Hence, given a
parallel pair f,g:b—c, a third arrow h:a—b satisfies fh=gh if and
only if (f — g)h = 0. Therefore the universal such h can be described either
as the equalizer of fand g or as the kernel of f — g. This is the reason one
usually deals with kernels and not with equalizers in R-Med, Ab, etc.

The dual notion of cokernel has already been described, in § I11.3.

Now suppose that the category C has a null object z and kernels and
cokernels for all arrows. For each object ¢ e C, the set P, of all arrows f
with codomain ¢ has a preorder <, with g <[ defined to mean that g
factors through f(i.e., that g =fg' for some arrow g’). This reflexive and
transitive relation < defines as usual an equivalence relation =, with
f =g meaning that f <g and g <f. The equivalence classes of arrows
f€ P, under this relation form a partially ordered set, which contains the
partially ordered set of subobjects of ¢ (restrict f to be a monomorphism;
then g=</ is the inclusion relation already defined for subobjects in
§ V.7

Dually, the set Q¢ of all arrows u with domain c¢ is preordered, with
u = v when v factors through u (v =v'u for some v').

Now choose a kernel for each arrow u from c and a cokernel for each
arrow f to ¢. Then the definitions of kernel and cokernel state that

f =keru<>u f=0<>coker f Zu. (1)
These logical equivalences state exactly that the functions

ker: 9° — P., coker: P, — O
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define a Galois connection from the preorder Q¢ to the preorder P,
as defined in § IV.5. As for any such connection, the triangular identities
read

ker(coker(keru)) =keru, coker(ker(coker f))=coker f,

and g is a kernel if and only if g = ker (cokerg). These facts are also readily
provable directly from the definitions.

If C has a null object, kernels, and cokernels, then any arrow f of
C has a canonical factorization

f=mgq, m=ker(coker f). )

Lemma 1. If also f = m'q’, where m’ is a kernel, then in the commuta-
tive square
. >
/
’ Lt/ 7 m (3)
o/
s/
. 1 -

there is a (unique) diagonal arrow t with m=m't and q’' =tq. Moreover,
if C has equalizers and every monic in C is a kernel, then q is epi.

Proof. By assumption, m'=ker p’ where p’=coker m’; take also

p=coker m=coker f. Then p'm'=0, so p'f =p'm'q'=0, and p’ factors
through p as p’= wp for some w. Then p'm = wpm = 0, so mfactors through
m’'=Xker p’ as m=m’t for a unique monic t. Moreover, m'q’=m'tq and
m’ is monic, so g’ = tq. This gives the desired diagram (3).

Next, to prove that g is epi, consider some parallel pair of arrows

. re=se,
N
q’! 'r_—>—’ *s

14 8

r, s with rg=sq. Then g factors through the equalizer e of r and s as
qg=eq’ for some ¢’, and f = mq =meq’. Now m’ = me is monic, hence by
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assumption is a kernel, so by the first conclusion of the lemma there is an
arrow t with m =m't = met and hence with 1= et. The monic e thus has
a right inverse, so is an isomorphism. But e was taken to be the equalizer
of r and s, so r=s. This proves g epi.

Thus (2) is now an epi-monic factorization of the arrow f.

2. Additive Categories

An Ab-category A, as defined in § 1.8, is a category in which each hom-set
A(b,c) is an additive abelian group (not necessarily small) and composi-
tion of arrows is bilinear relative to this addition. Thus each abelian
group A(b,c) has a zero element 0:b—c, called the zero arrow (even
though 4 may not have a null object in the previous sense). Again,
a composite with a zero arrow is necessarily zero, since composition is
distributive over addition.

Proposition 1. The following properties of an object z in an Ab-category
A are equivalent: (i) z is initial; (i) z is terminal; (i) 1,=0:z—z; (iv) the
abelian group A(z,2) is the zero group. In particular, any initial (or any
terminal) object in A is a null object.

Proof. If z is initial, there is a unique map z—z, hence 1, =0 and
A(z,2)=0. If 1,=0, then any f:b—z has f}= 1,f=0f=0:b>z £0
there is a unique arrow, namely 0, from b to z, and z is terminal. The rest
follows by duality.

When there is a null (= initial and terminal) object z in the 4b-
category A, the unique maps b—z and z—sc are the zero elements of
A(b,z) and A(z,c) respectively. Hence the composite b—z—s ¢, which is
the zero morphism 0: b—sc, as defined in § 1, is also the zero element of
the abelian group A(b,c¢).

Next we consider products and coproducts in the 4b-category A.

Definition. A4 biproduct diagram for the objects a, be A is a diagram

a%c—‘i"_ﬁb (1)
1 2

with arrows py, p,, iy, i, which satisfy the identities

piii=1,, pyia=1,, i;py+ip,=1.. (2)

Theorem 2. Two objects a and b in an Ab-category A have a product in
A if and only if they have a biproduct in A. Specifically, given a biproduct
diagram (1), the object ¢ with the projections p, and p, is a product of a
and b, while, dually, c with i, and i, is a coproduct. In particular, two objects
a and b have a product in 4 if and only if they have a coproduct in A.
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Proof. First assume we have the biproduct diagram (1) with the
condition (2). Then

Pila=p(iypy +ipa)ia=1epiiy+piize l=pii, +pyis;

subtracting, p,i, =0; symmetrically p,i; =0. (These are familiar
equations for the usual biproduct of modules.) Now consider any diagram

gL, b The sum h=if; +i,f,:d—c then has ph=f;; con-
versely, if h':d— ¢ has p;h'=f; for i=1,2, then

K =(ipy+iLp)W =ipi +ip, i =if +irf,,

so k' = h. This states that there is a unique h: d— ¢ with p;h=f,fori=1,2,
so the diagram a<«f—c¢—22b is indeed a product. The assignment
h—<{f,, f,> is an isomorphism

A(d,0)= A(d, )@ A(d, b)

of abelian groups, where @ on the right is the direct sum of abelian
groups.

Conversely, given a product diagram a <% —a x b—2 b, the defini-
tion of this product provides a unique arrow i, :a—a x b with com-
ponents p,i, =1, p,i;=0 and a unique i,:b—axb with p,;i,=0,
p2i;=1,. Then

p1(isps +ip2)=p; +0p,=p;, Ppalitp1 +i2pa)=pa,

SO iyp;+i,p;iaxb—axb is the unique arrow with components
p;, and p,, hence is the identity 1,,,. Thus the given product diagram
does indeed yield a biproduct, with (1) and (2).

In special categories, such as Ab and R-Mod, the biproduct is often
called a direct sum. Note also that the description of the biproduct
diagram is “internal”, since it involves only the objects a, b, and ¢ and the
arrows between them, while the standard categorical description of
the product (or the coproduct) is “external”, since it refers to construction
of arrows in the whole category.

Given objects a, b e A, the biproduct diagram (1), if it exists, is de-
termined uniquely up to an isomorphism of the object c. If all such
biproducts exist, then a choice of ¢ = a@®b for each pair {a, b) determines
a bifunctor @: A x A— A, with f, ®f, defined for arrows f;:a—a’
and f, : b— b’ either by the equations

P @f)=fip;, i=12, 3)
(i.e., defined as for a product x = @) or by the equations

i ®fdh=if, k=12, 4
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that is, as for a coproduct @ =11, with i, i, the injections of the second
coproduct. Indeed, the first pair (3) of equations determines f, ®f,
uniquely as the arrow with components f,, f,; then by the defining
equations for the second biproduct and by p}#, = 0,

([1® )= p1 +i202) ([1® [ =it Sy,

as in the second pair of equations, and dually.

The conclusion may also be formulated thus: The identification of
the product functor a x b, with mapping function defined by (3), with
the coproduct functor allb, mapping function defined by (4), is a natural
isomorphism.

Iteration, for given ay, ..., a,€ A, yields a biproduct @a charac-
terized (up to isomorphism in A) by the diagram

i; P .
a; @ai a, j.k=1,..n
J

and the equations

i1p1+ en +i,|p"=1, pklj=5kj=0 k*]~ (5)
=1 k=j.

Moreover, for given ¢y, ..., ¢, € A there is an isomorphism
A(@Cb @%’) =) Ale, a)
k i ik

of abelian groups, where % denotes the iterated biproduct of abelian
groups. This implies that each arrow f: @,¢,— @ ;a; is determined by
the n x m matrix of its components f\;=p, fi;: a;—¢,. Composition of
arrows is then given by the usual matrix product of the matrices of
components. In other words, the equations (5) contain the familiar
calculus of matrices (cf. § I111.5).

An additive category is by definition an Ab-category which has a zero
object 0 and a biproduct for each pair of its objects.

Proposition 3. For parallel arrowsf, f': a— b in anadditive category A,
[+ =8 ®f)b,:a—b, (6)

where 0,:a—axa is the diagonal map, 8°:b@b=>bllb—b the co-
dzagonal

Here the diagonal is defined by p,d,=1,=p,6, and the codiagonal
by 8i; =1,=6%i,. The proof is a direct calculatlon

SF(f®f)6,=8(f @® f)(i1p1 +12p2)d,
=8(f @ f)i, + 8 (f ® i,
=0%i, f+ 00, [ =f+ 1.
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This proposition suggests that the additive structure of A can be
derived from the biproduct (cf. Exercise 4).

If A and B are Ab-categories, an additive functor T:A—B is a
functor from A to B with

T(f+f)=Tf+Tf (7

for any parallel pair of arrows f, f':b—c in A. It follows that TO=0.
Since the additive structure of A can be described in terms of the bi-
product structure of A, this condition (7) can also be reformulated as
follows:

Proposition 4. If A and B are Ab-categories, while A has all binary
biproducts, then a functor T:A— B is additive if and only if T carries
each binary biproduct diagram in A to a biproduct diagram in B.

Proof. Each of the equations p,i, =1, p,i,=1, and i;p; +i,p,=1
describing a biproduct in terms of its insertions i; and projections p; is
preserved by an additive functor; therefore each additive functor preserves
biproducts.

Conversely, suppose that T preserves all binary biproducts. Then
a parallel pair of arrows f;, f,:a—a has T(f,® f,)=T/f,® Tf, and
therefore T(f, + f,)=T/f, + Tf, by the formula (6) for sum in terms of
direct sum and the equations T(3,)= 1., T(6% =467 which follows
at once from the definition of the diagonal § and the codiagonal 4 in
terms of product and coproduct.

Our proposition can also be modified: Tis additive if and only if T
carries each binary product diagram in A4 to a product diagram in B, or,
if and only if it carries each binary coproduct in 4 to a coproduct in B.

Many familiar functors for Ab-categories A are additive. For example,
if A has small hom-sets each hom-functor

A(a, —): A—Ab, A(—,a): A®—Ab

is additive. If 4 and B are Ab-categories, so is A X B, and the projections
Ax B— A, A x B— B of this product are additive functors. The tensor
product of abelian groups is a functor Abx Ab— Ab, additive in each
of its arguments, and so is the torsion product.

Exercises

1. In any additive category 4, show that the canonical map
xia,U---lla,—a;x - xa,
(defined in §II1.5) is an isomorphism. (This is essentially a reformulation of
Theorem 2.)
2. Define the corresponding canonical map k of an infinite coproduct to the
corresponding infinite product, and show by an example that it need not be an
isomorphism in every additive category.
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3. In an additive category, show that the biproduct is associative and commutative
(up to a natural isomorphism).

4. (Alternative definition of addition of arrows, to get an additive category.)

(a) Let 4 bea category with a null object, finite products, and finite coproducts in
which the canonical arrow a,lla,—a, x a, from the coproduct to the
product (§ IIL5) is always an isomorphism. For f, f':a—b define
f+f =8(f xf)6,. Prove that this addition makes each set A(a,b)
a commutative monoid, and that composition is distributive over this
addition.

(b) If, moreover, there is foreach ae 4 an arrow v, : a—awith v, + 1,=0:a—a,
prove that each A(a, b) is a group under the addition defined above, and
hence that this addition gives A4 the structure of an additive category (Mac
Lane [1950]).

5. (The free Ab-category on a given C.) Given a category C, construct an Ab-
category 4 and a functor C— A4 which is universal from C to an Ab-category.
(Hint: The objects of A are those of C, while A(b,c) = Z({C(b,¢)) is the free
abelian group on the set C (b, c).)

6. (The free additive category.)

(a) Given an Ab-category A, construct an additive category Add (4) and an
additive functor A-—Add (4) which is universal from A4 to an additive
category. (Hint: Objects of Add (4) are n-tuples of objects of 4,forn=0, 1, ...,
while arrows are matrices of arrows of 4.)

(b) If 4 is the commutative ring K, regarded as an additive category with one
object, show that Add (K) is the category Matry described in § 1.2. (Hint: Show
that Matry has the desired universal property.)

3. Abelian Categories )

Definition. An abelian category A is an Ab-category satisfying the
following conditions

(i) A4 has a null object,
(i) A has binary biproducts,
(i) Every arrow in A has a kernel and a cokernel,
(iv) Every monic arrow is a kernel, and every epi a cokernel.

The first two conditions ensure that A is an additive category, as
described in §2. Instead of requiring a null object in (i), we could by
Proposition 2.1 require a terminal object or an initial object. Instead of
requiring all biproducts a@®b, we could require all products a x b or all
binary coproducts.

With (i) and (ii), the existence of kernels in condition (iii) implies
that A has all finite limits. Indeed, the equalizer of f, g:a—b may be
constructed as the kernel of f —g, (i) and (i) give finite products, and
finite products and equalizers give all finite limits. Dually, the existence
of cokernels implies the existence of all finite colimits.
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Condition (iv) is powerful. It implies, for example, that any arrow f
which is both monic and epi is an isomorphism. For f :a—b monic
means f = ker g for some g, hence gf =0=0/. But f is epi, so cancels
to give g=0:b— ¢, and the kernel of g =0 is equivalent to the identity of
b, hence is an isomorphism.

The categories R-Mod, Mod-R, Ab (and many others) are all abelian,
with the usual kernels and cokernels. If 4 is abelian, so is any functor
category A7, for arbitrary J. Specifically, if S, T:J— A4 are any two
functors, the set Nat(S, T)== A’(S, T) of all natural transformations
o, f:S-=T is an abelian group, with addition defined termwise —
(¢ + B);=a;+ B;: Sj— Tj for each j e J. The functor N : J-— A everywhere
equal to the null object of A is the null functor in A7, the biproduct
SOT of two functors is defined termwise, as (S@® T)a=Sa® Ta, and
the kernel K of a natural transformation «: S-+»Tis defined termwise,
so that for each j, Kj—Sj is the kernel of «;. All the axioms follow, to
make A’ abelian.

Proposition 1. In an abelian category A, every arrow f has a factoriza-
tion { = me, with m monic and e epi; moreover,

m=Ker (coker f'}, e=coker (ker ). (1)

Given any other factorization f'=m'e’ with m’ monic and € epi and a
y
commutative square

J
-
..__L_). P T G
¢ | m
gl lh gl Ek lh (2)
i ’
+
———3 s ———e———— o
S e’ m
-
T

as shown at the left above, there is a unique k with e’ g=ke, m'k=hm
(i.e., with the squares at the right commutative).

Proof. To construct such a factorization of f, take m = ker (coker f).
Since (coker f)o f =0, f factors as f =me for a unique ¢, and by Lemma 1
of § 1, e is epi. Now m is monic, so for any composable ¢, ft=0 if and
only if et=0. This implies that ker f = kere. But e is epi, so the arrow
e =coker (ker e) = coker (ker /). We have proved (1).

Now regard fand f* as objects in the arrow category A%; a morphism
{g,h)>: f— f’is then just a commutative square as in (2) above. Consider
the factorizations f =me and f'=m'¢’, and set u=ker f =ker e. Then
O=hfu=m'egu, so €gu=:0, and €g must factor through e= coker u
as €'g=ke for a unique k. Then also m'ke=m'e'g = hme, so m'k=hm,
and both squares commute in the rectangle of (2).
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This completes the proof. The second part shows that any morphism
{g,hy: f— f" must carry a factorization of f to a factorization of f”,
so that the factorization is functorial. In particular, for the identity
morphism <1, 1) : f— f, this proves that any two monic-epi factoriza-
tions f=me and f=m'¢ are isomorphic (k an isomorphism above).

From this factorization, we define (the usual) image and coimage of
f=me:a—b as

m=im f, e=coimf, (3)

uniquely up to isomorphism. Thus the image m of fis a subobject of its
codomain b, its coimage a quotient object of its domain. More generally,
if f =myte, with m; monic, ¢ an isomorphism and e epi, then m, = im f,
e, = coim fand ¢ is (the usual) isomorphism of coimage to image. This is
the situation which arises in familiar concrete categories like Ab. If
f:B—C is a morphism in Ab with kernel a subgroup K of B, image a
subgroup S of C, then ffactors as a three-fold composite

B— L B/K—*% »S—m ,C,

with e, the projection on the standard quotient group, m, the inclusion,
and u the evident isomorphism of the coimage B/K to the image S. This
three-fold factorization arises because each quotient object B/K has a
canonical representation (by cosets).

Exact sequences work as usual in any abelian category.

Definition. A composable pair of arrows,

—L sy . (4)
is exact at b when im f =ker g (equivalence as subobjects of b) ~ or,
equivalently, when coker f = coim g.

Observe that im f < ker g if and only if g f =0, while im f > ker g if
and only if every k with gk =0 factors as k=mk’, where m is the first
factor in the monic-epi factorization f =me. This bipartite definition of
exactness 1s just the usual condition (say in Ab): { f, g)> exact means that
the composite g f is zero and that every element killed by g is in the
image of f.

Definition. The diagram (with O the null object)

0 a—L b2 ¢ 0 (5)

is a short exact sequence when'it is exact at a, at b, and at c.

Since 0-——a is the zero arrow, exactness at a means just that f is
monic; dually, exactness at ¢ means g epi. All told, (5) short exact thus is
equivalent to

f=kerg, g=cokerf. (6)
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Similarly, the statement that = coker f becomes the statement that the
sequence

a—L—b—tsc— 50 (7
is exact at b and at ¢. Classically, such a sequence (7) was called a short
right exact sequence. Similarly, k=ker f is expressed by a short left
exact sequence.

The monic-epi factorization f =me of any arrow f determines two
short exact sequences which appear (with the bordering zeros omitted)
as the top and side of the following commutative diagram:

ki i
erf . coim f .

A functor T : A— B between abelian categories 4 and B is, by defini-
tion, exact when it preserves all finite limits and all finite colimits. In
particular, an exact functor preserves kernels and cokernels, which
means that

ker(Tf)= T'(ker f), coker(Tf)= T(coker f); 9

it also preserves images, coimages, and carries exact sequences to exact
sequences. By the familiar construction of limits from products and
equalizers and dual constructions, T : A— B is exact if and only if it is
additive and preserves kernels and cokernels.

A functor Tis left exact when it preserves all finite limits. In other
words, Tis left exact if and only if it is additive and ker(Tf)= T(ker f)
for allf: the last condition is equivalent to the requirement that Tpreserves
short left exact sequences.

Abelian categories have a more economical description, not involving
a given abelian group structure on each hom-set. Explicitly, let 4 be any
category which satisfies the axioms (i), (ii"), (iii), and (iv) just as above,
except that (ii) is replaced by

(ii") A has binary products and binary coproducts.

Then the formula (2.6) can be used to introduce an addition in each
hom-set A4(a, b), and with this addition A4 is an abelian category. The
somewhat fussy proof, Freyd [1964], Schubert [1970], will be omitted
here because it seems of little use for the applications, where the categories
usually come equipped with the needed addition in each A(a, b).
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Exercises

1. For A, B abelian categories, show that an additive functor T : A— B is exact if
and only if it carries all short exact sequences in A4 to short exact sequences in B,

2. Prove: A and B abelian implies that the product category A x B is abelian.

3. Show that the category of all free abelian groups is not abelian.

4. Show that the category of all finite abelian groups (with arrows all morphisms
of such) is abelian.

5. If R is a left noetherian ring, show that the category of all finitely generated left
R-modules (with arrows all morphisms of such modules) is abelian.

6. For subobjects u < v of an object a in an abelian category, define a “quotient”
object v/u (to agree with the usual notion in Ab). If g f =0, prove that ker g/im fis
isomorphic to the dual object coim g/coker f.

4. Diagram Lemmas
In an abelian category A4, a chain complex is a sequence

O 2,
..._)C"+1_Ll_)cn_"—)cn_l_,... (1)

of composable arrows, with 4,0, ,, =0 for all n. The sequence need not
be exact at c,; the deviation from exactness is measured by the n-th
homology object (for the quotient, cf. Exercise 3.6)

HnC=Ker(an:Cn_)Cn—l)/Im (5"+1:c"+1—>c"). (2)

Initially in algebraic topology one used chain complexes only in Ab or
in K-Med (especially for K the integers modulo a prime), but more
general considerations of sheaf theory and homological algebra use
complexes in many other abelian categories. The definition (2) of homo-
logy applies in any abelian category; the development of its properties
depends on certain manipulations of exact sequences, normally proved
in Ab by chasing elements around diagrams. We will now show how the
basic diagram lemmas hold in any (fixed) abelian categoryA.

A morphism {m, e>—{m’, &> of short exact sequences (in A4) is by
definition a triple (f, g, h> of arrows in 4 such that the diagram

e—m_ e . 0
lf jg Jh (3)
0 NS U, 0

commutes. The short exact sequences with these morphisms constitute
a category Ses A; in an evident way, it is additive. A first basic lemma is:

Lemma 1 (The short five lemma). In any commutative diagram (3)
with short exact rows, f and h monic imply g monic, and f and h epiimply g epi.
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In Ab, take any element x in ker g; then g(x)=0:

X' s X &> e(x)

¥
T,
O f(x)—— 0 1—=0=he(x),

so he{x)=0, e(x)=0. By exactness of the first row, there must be an
element x’' with m(x)=x. By exactness of the second row, f(x)=0,
therefore x" =0, and so x = 0. This argument is a “diagram chase” with x.

In any abelian category, the same argument can be done without
elements. Take k=ker g. Then hek =¢'gk=0; since h is monic, ek=0.
Therefore k factors through m = ker e as k=mk’. But 0 = gk = gmk’ = m'f k',
and m’ and f are monic, so k=0. Since k=ker g, this proves g monic.

The proof that g is epi is dual.

In Ab, a pullback of a monic or an epi is monic or epi, respectively.
This holds for pullbacks of monics in any category (Lemma V.7), and
for pullbacks of epis in an abelian category, as follows.

Proposition 2. Given a pullback square (on the right below)

a———ms—L 4

i l j

0——a—2sb—L ¢

in an abelian category, f epi implies f epi. Also, the kernel k of f factors as
k=g'k' for a k' which is the kernel of f".

In particular, given a short exact sequence a—b—c, each arrow
g :d—c to the right-hand end object ¢ yields by pullback a short exact
sequence a— s—d. This operation (and its dual) is basic to the description
of Ext (¢, a) (the set of “all” short exact sequences from a to ¢) as a bifunctor
for an abelian category (Mac Lane [1963] Chap. III).

Proof. The pullback s (like any pullback) is constructed from
products and equalizers thus: Take b@d with projections p,; and p,,
form the left exact sequence

0 s—" s b@d—IPT L.

(i.e., mis a kernel), and set g¢'=p,m, f'=p,m.
Here fp, — gp, is epi. For suppose h(fp, —gp,) = 0 for some h. Then,
using the injection i; of the biproduct,

O=h(fp,—gps)i,=hfpi,=h,

and h =0 because fis given to be epi.
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Now suppose uf' =0 for some u. Since f'=p,m, up,m=0, so up,
factors through fp, —gp,=cokerm as up,=u(fp, —gp,) But
pai; =0, so .

O=up,iy=v'(fp,—gpi,=wfpiiy=u'f.
Since f'is epi, 4’ = 0; therefore f” is epi, as desired.

Finally, consider k = ker f. The pair of arrows k:a—b and 0:a—d
have fk=0=g0, so by the definition of the pullback s there is a unique
arrow k':a—s with g'k’=k and f'k’=0; since k is monic, so is k’. To
show it the kernel of f’ consider any arrow v with f'v=0. Then
fgv=gf'v=0, so g'v factors through k =ker fas g'v=kv' for some v'.
Then gv=g'(k'v') and f'v=0= f'(k't'), so by the uniqueness involved
in the definition of a pullback, v = k'v’. Therefore k' =ker f’, as desired.

In virtue of this Proposition, diagram chases can be made in any
abelian category using “members” (in A4) instead of elements (in Ab).
Call an arrow x with codomain a e A a member of a, written x €, a, and
define x =y for two members of a to mean that there are epis u, v with
xu = yv. This relation is manifestly reflexive and symmetric. To prove it
transitive, suppose also that yw = zr for epis w and r and form the pullback
square displayed at the upper left in the diagram

Jx

e .4,
t
I
toe

|
¢

o
e

By Proposition 2, v and w’ are epi, and hence x = z. Then a member of a
is an equivalence class, for the relation =, of arrows to a. Since every
arrow x has a factorization x = me, every member of a is represented by a
subobject {(a monic m) of a, but we shall not need to use this fact. Each
object @ has a zero member, the (equivalence class of the) zero arrow
0—a. Each member x €, a has a “negative” — x.

For any arrow f:a—b, each member xe¢, a gives fxe,b, and
x=yinaimplies f x=fy in b, so any arrow from a to b carries members
of @ to members of b — just as if these members were elements of sets.

Theorem 3 (Elementary rules for chasing diagrams). For the members
in any abelian category

(1) f :a—b is monic if and only if, for all xe,a, f x=0 implies x=0;
(i1) f :a—>bismonicif and only if, for all x, X' €,,a,f x=f x implies x=x";
(ili) g:b—cisepiifand onlyifforeachz €, c thereexistay e, bwithgy = z;
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(iv) h:r—sis the zero arrow if and only if, for all x e, r, hx=0;

(v) A sequence a—L—b—2—c is exact at b if and only if g f =0 and to
every y €, b with gy =0 there exists x e, awithf x = y;

(vi) (Subtraction) Given g:b—c and x,ye,b with gx=gqy, there is a

member z €,b with gz=0; moreover, any f :b—d withfx=0hasfy=fz

and any h:b—a with hy=0 has hx= — hz.

Proof. Rules (i) and (ii) are just the definition of a monic. In (iii),
if g is epi, then one can construct ye, b with gy =2z by pullback (using
Proposition 2); conversely, if g is not epi, the member 1 ¢, ¢ is not of the
form gy=1, for any ye,,b. Rule (iv) is trivial.

For rule (v), take the standard factorization f =me, and suppose
first that the given sequence is exact at b, so that m=ker g. If gy =0,
y=my, for some y,. Form the pullback at the left of the diagram

e —

¢ —_———— . =

! }
1 Iy J)‘
1 ]
v 4

 ——  ————— »
€ m b

since ye'=mey, = fy, and ¢ is epi, y= fy;, as required. Conversely,
given this property for all y e, b, take k=kerg; then ke, b and gk=0
(in ¢). Therefore there is a member xe,a with fx=k; that is, with
ku=mexv for suitable epis u and v. But this equation implies that the
monic k factors through m, and hence that im f = ker g. Combined with
gf =0, this gives the desired exactness.

Rule (vi) is intended to replace the subtraction of elements in Ab. If
gx=gy, there are epis u, v with gxu=gyv, and (vi) holds with
Z=yv—XxXue,b.

Here is an example of a diagram chase with these methods:

ri

Lemma 4 (The Five Lemma). In a commutative diagram

41 g2 43 ga
ay——>4a; as ay as

S

bl hy b2 h2 b3 h3 b4’ hy b5

with exact rows, f, f,, f4, fs isomorphisms imply f5 an isomorphism.

Proof. By duality, it suffices to prove f; monic. In Ab one would
“chase” an element xeker f3. Consider instead any member x€,,a,
with f;x=0. This gives f, g; x=0; since f, is monic, g;x=0:

s g;x

z Yy
z

A Ifz Ifs I
¢/

Y= 2y 0-0=f,g5x.
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By exactness at a; and Rule (v) of the theorem, there is a y€,a, with
g;y=x.Then 0= fyx= f39,y=h,f,, S0 by exactness at b, there is a
y €,b, withh,y'= f,y.Since f; is epi, thereisa ze,a; with hy fz= f,y
or f,g,z= f,y. But f, is monic, so, by Rule (ii), g,z=y and x=g,y
=g,9,2=0. Since any x with f; x =0 is itself 0, f; is monic, as required.

As another illustration, consider any morphism {f,g, k> of short
exact sequences, as in (3); add the kernels and cokernels of f, g, and h to
form a diagram

0 Kef—" 5 Keg-—-2->Keh

i

(5)

“~
@

Cof —"— Cog —*+—> Coh 0;

where Kef is the domain of ker f, Cof the codomain of coker f, etc.
In this diagram the columns (with 0's added top and bottom) are exact
sequences by construction, and both middle rows are given to be exact.
By the definitions of kernel and cokernel, one may add unique arrows
mg, €, in the top row and my, e, in the bottom row so as to make the
added squares commute. An easy diagram chase (by the method of
Theorem 3) shows the first row exact at Ke f and Keg; dually, the last
row is exact at Cog and Coh. However, the first row is not necessarily a
short exact sequence because e, need not be epi; moreover, this happens
precisely when m, is not monic. An easy example of this phenomenon
(in Ab; g=0) is

0 0 Z—sZ—0
| b
0 Z——7Z 0 ——0.

The failure of exactness can be repaired by the following striking
lemma, which produces an added ¢ called the connecting homomorphism
~ it is essentially the connecting homomorphism used for relative
homology (a complex modulo a subcomplex) and for the connecting
maps between derived functors in homological algebra.

Lemma 5 (Ker-coker sequence = Snake lemma). Given a morphism
{f, g, h) of short exact sequences, as in (3), there is an arrow 6 : Keh—Co f
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such that the following sequence is exact:
0——Kef-"Keg—2sKeh—-Co f 2 Cog—2-Coh—0 (6)

Proof. From the map of short exact sequences we first build a
different diagram; on the left in

a----2--- sd-—*-> ¢, X €,Co
|
e .
” ik lk I
a—2—>b—2 ¢ y ——kx
Jf 1 J I I %
a—" b —< ¢ zt gyt 0
f
Jp b I
¥
a,——=—>d' —7— ' zy

co=Keh, d is the pullback of e and k = ker h, so that u is epi with kernel

s as in Proposition 2; dually, & is the pushout of p = cokerf and m/, with

cokernel s’ as shown. Right down the middle runs a composite arrow

o=pgk :d—d, with séy=hku=0 and Jdys=upf =0. Since

# = ker s’ and u = coker s, this means that dy factors uniquely as
So=udu:d—L—co—2—a,—¥d.

The middle factor is the required “connecting” arrow d: cy—a,.

The effect of this arrow 4 on a member x €, ¢, can be described by
the zig-zag staircase shown at the right of (7) above. Indeed, since e is
epi there is a member y €, b with ey =kx. Then e'gy=hey=hkx =0, so
by exactness there is a member z €,,a’ with m'z=gy. We claim that §x is
then the member z, = pz e, a,. For, d is a pullback so there is an x,¢,,d
with uxg = x, k'xq=y. Then

UWox=u'duxg=0¢Xg=pgy=u'z,

and u’ is monic, so dx =z,. This argument also proves that (the equiva-
lence class of) the member z, is independent of the choices made in the
construction of the zig-zag (7). This zig-zag is exactly the description
usually given for the action of a connecting morphism é on the elements
of abelian groups.

Using the zig-zag description we can now prove the exactness of the
ker-coker sequence (6), say the exactness at Keh. First, to show that
deo, =0, it suffices to show de,w=0 for any member we, b, = Keg. But
the member eqw = x €,,¢q has kx =keyw = ¢jw, where j=ker g as in (5);
hence in the zig-zag (7) we may choose y =jw. Then gy =gjw=0, which
proves that de, = 0. On the other hand, consider any x g,,¢, with dx =0.
This means that the z; constructed in the zig-zag has z, =0; by exactness
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there is a member z, €, a with fz, =z which means that gmz,=gy.
Now form the “difference” member y, =y —mz,¢€,,b. By Rule (vi) above,
this difference member has ey, =ey=kx and gy, =0. But j:by—b is
ker g, so there is an x, €,,b, with jxq = yo:

Xo F———r€pXy X

bl

Yo H—%— kx=kx

gg

Then keyxo= ey, =kx and k is monic, 50 ¢;x, =x. We have shown that
each x with dx=0 has the form x=r¢e;X,, so is in the image of ey. This
proves exactness; in fact, it is exactly like the usual exactness proof with
honest elements of actual abelian groups.

Exercises

1. In the five-lemma, obtain minimal hypotheses (on f|, /5, and f, only) for f; to
be monic.

2. In the five-lemma, prove f3 epi using members (not comembers). (Hint: Rule

(vi) of Theorem 3 is necessary in this proof.)

. Complete the proof of the exactness of the ker-coker sequence.

4. Show that the connecting morphism & is natural; i.e,, that it is a natural transfor-
mation between two appropriate functors defined on a suitable category whose
objects are morphisms (3) of short exact sequences.

5. A 3 x 3 diagram is one of the form (bordered by zeros)

[ Y

L

—_————

L

.

w

(a) Give a direct proof of the 3 x 3 lemma: If a 3 x 3 diagram is commutative
and all three columns and the last two rows are short exact sequences, then
so is the first row.

(b) Show that this lemma also follows from the ker-coker sequence.

{c) Prove the middie 3 x 3 lemma: If a 3 x 3 diagram is commutative, and all
three columns and the first and third rows are short exact sequences, then so
is the middle row.

6. For two arrows f :a—b and g: b—c establish an exact sequence

0—Kef—Kegf—-Keg—Cof—Cogf—Cog—0.
7. Show explicitly that the category Ses (4) is nqt in general abelian.
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Notes.

Shortly after the discovery of categories, Eilenberg and Steenrod [1952] showed
how the language of categories and functors could be used to give an axiomatic
description of the homology and cohomology of a topological space. This, in turn,
suggested the problem of describing those categories in which the values of such a
homology theory could le. After discussions with Eilenberg, this was done by
Mac Lane [1948, 1950]. His notion of an “abelian bicategory” was clumsy, and the
subject languished until Buchsbaum’s axiomatic study [1955] and the discovery by
Grothendieck [1957] that categories of sheaves (of abelian groups) over a topological
space were abelian categories but not categories of modules, and that homological
algebra in these categories was needed for a complete treatment of sheaf cohomology
(Godement [1958]). With this impetus, abelian categories joined the establishment.

This chapter has given only an elementary theory of abelian categories — a
demonstration directly from the axioms of all the usual diagram lemmas. Our
method of “chasing members” is an adaptation of the method given by Mac Lane
[1963, Chap. X1I]; the critical point is the snake lemma, which must construct an
arrow. Earlier proofs of this lemma in abelian categories were obscure; the present
version is due to M. André (private communication). These diagram lemmas can
also be proved in abelian categories from the case of R-modules by using suitable
embedding theorems (Lubkin-Haron-Freyd-Mitchell). These beautiful theorems
construct for any small abelian category A a faithful, exact functor A—Ab and a
full and faithful exact functor A— R-Mod for a suitable ring R. For proofs we
refer to Mitchell [1965], Freyd [1964], and Pareigis [1970].

These sources will also indicate the further elegant developments for abelian
categories: A Krull-Remak-Schmidt theorem, Morita duality, the construction of
“injective envelopes” in suitable abelian categories, the structure of Grothendieck
categories, and the locally Noetherian categories (Gabriel [1962]).




IX. Special Limits

This chapter covers two useful types of limits (and colimits): The filtered
limits, which are limits taken over preordered sets which are directed
(and, more generally, over certain filtered categories), and the “ends”,
which are limits obtained from certain bifunctors, and which behave
like integrals.

1. Filtered Limits

A preorder P is said to be directed when any two elements p, g € P have
an upper bound in P; that is, an r with p=<r and g=r (there is no re-
quirement that r be unique). It follows that any finite set of elements of P
has an upper bound in P. A directed preorder is also called a ~directed set”
or a “filtered set”.

This notion (renamed) generalizes to categories. A category J is
filtered when J is not empty and

(@) To any two objects j,j'eJ there is k € J and arrows j—k, j'—k:

—

(b) To any two parallel arrows u, v:i—j in J, there is ke J and an
arrow w:j—k such that wu=wuv, as in the commutative diamond

/J\\\w\
. ~S
i Sk
\ //
v . "W

Condition (a) states that the discrete diagram {j, j'} is the base of a cone
with vertex k. Condition (b) states that i=3; is the base of a cone. It follows
that any finite diagram in a filtered category J is the base of at least one
cone with a vertex ke J.

Note that the terminology for “co’ varies. Some authors (e.g.,
Mac Lane-Moerdijk [1992]) call such a filtered J “cofiltered”.
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A filtered colimit is by definition a colimit of a functor F : J — C de-
fined on a filtered category J.

Classically, colimits were defined only over directed preorders
(sometimes just over directed orders). This has proved to be a needless
conceptual restriction of the notion of colimit. What does remain relevant
is the interchange formulas for filtered colimits (§ 2) and the possibility
of obtaining all colimits from finite coproducts, coequalizers, and colimits
over directed preorders. Since we already know that (infinite) coproducts
and coequalizers give all colimits (the dual of Theorem V.2.1) this needs
only the following result.

Theorem 1. A category C with finite coproducts and colimits over all
(small) directed preorders has all (small) coproducts.

Proof. We wish to construct a colimit for a functor F : J— C, where J
is a set (= a discrete category). Let J* be the preorder with objects all
finite subsets S CJ, ordered by inclusion; clearly, J* is filtered. Let F*
assign to €ach finite subset S the coproduct II Fs, taken over all seS.
If SCTis an arrow u:S— T of J*, take F* u to be the unique (dotted)
arrow which makes the diagram

F*S=UFs-----UFt=F*'T

Fs = Fs

commute for every s € S, with i and i’ the injections of the coproducts.
This evidently makes F* a functor J*— C which agrees on J with the
given functor F, if J is included in J* by identifying each j with the one-
point subset {j}.

Now consider any natural transformation 6: F*-G to some other
functor G:J*—C. For each se S the diagram

F*S=1Fs—I5_5GS

L.s IG({S)CS)

Fs——5->G{s}

commutes. By the definition of coproducts, this means that § is completely

determined by the values 6, of # on F's. In particular, each conev* : F = ¢

over F* is completely determined by its values on J, which form a cone

v: F-=sc over F. Moreover, v" is a limiting cone if and only if v is. Thus

we can calculate the desired coproduct II F, which is the colimit of F,

as the colimit of F*, known to exist because J* is a directed preorder.
As a typical application, we construct colimits in Grp.

Proposition 2. The forgetful functor Grp—Set creates filtered colimits.
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Proof. We are given a filtered category J and a functor G:J— Grp;
it assigns to arrows j— k group morphisms G;,— G, ; we shall write G;
both for the group and its underlying set. We are also given a limiting
cone p for the composite functor J— Grp—Set; it has a set S as vertex
and assigns to each je J a function y;: G;—S. We first show that there
is a unique group structure on the set S which will make all functions
u; morphisms of groups. First note that to each se S there is at least one
index j with a group element g; for which u;g;=s; otherwise we could
omit s from S to have a cone with a smaller set S’ as vertex, an evident
contradiction to the universality of S (there would be two functions
S=3S having the same composite with u).

Now we define a product of any two elements s,z € S. Write s= u;g;
and t =y, g, for some j, ke J; since J is filtered, there is in J a cone

g;t s

Gk“‘——) Gir/

gyt t

over j, k with some vertex i. The image of this cone under G is G;— G; G,
so s and t €S both come from elements of the group G;; define their
product in S to be y; of their product in G;. This product is independent
of the choice of i, because a different choice i’ is part of a cone G;— G,, «—G;
of group morphisms. Also, the product of three factors r, s, t is associative,
because we can choose G; to contain pre-images of all three, and multi-
plication is known to be associative in G,. Each group G, has a unit
element, and each G;,— G, maps unit to unit; the common image of
these units is a unit for the multiplication in S. Inverses are formed
similarly.

We now have found a (unique) group structure on S for which
u;: G;—S is a morphism of groups. This states that u is a cone from
G to S in Grp. It is universal there: If v: G- T is another cone in Grp,
it is also a cone in Set, so there is a unique set map f: S— T with fu=v;
one checks as above that this map f must be a morphism of groups.

This argument is clearly not restricted to Grp; 1t applies to each
category Alg, of algebras of a fixed type t (defined by operators and
identities, § V.6). The same remark applies to the following corollary.

Corollary 3. Grp has all (smadll) colimits.

Proof. First, the one-element group is an initial object in Grp. Next,
any two groups G and H have a coproduct G x H. Indeed, any pair of
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homomorphisms G— L, H—L to a third group L factors through the
subgroup of L generated by the images of G and H. The cardinal number
of this subgroup is bounded; this verifies the solution set condition for
an application of the adjoint functor theorem to construct the coproduct
G » H. Comparison with G — G x X shows that G — G x H is monic.

These two observations show that Grp has all finite coproducts.
By Proposition 2, it has all filtered colimits. Hence, by Theorem 1,
it has all small coproducts. To get all small colimits we then need only
coequalizers, and the coequalizer of two homomorphisms u,v: G—H
is the projection H— H/N on the quotient group by the least normal
subgroup N containing all the elements (ug) (vg)~* for g G.

This proof gives an explicit picture of the coproduct in Grp. The
coproduct G * H of two groups is usually called the free product; its
elements are f{inite words <g;,hy, g3, h,, ..., gn, B,y spelled in letters
g;€ G and h; € H; these words are multiplied by juxtaposition, while
equality is given by successive cancellations (if k;=1 in H, drop it and
multiply ¢;9;.; In G, etc.). A direct proof of associativity of the multi-
plication from this definition is fussy. By this corollary an infinite co-
product II; G; of groups G, is obtained by pasting together all the finite
coproducts

G
(the inclusion maps make this a subgroup of any coproduct of more

factors). Thus 1]; G; is the union of all these finite coproducts, identified
along these inclusion maps.

* G xex Gy

iy

Exercises

1. Use the adjoint functor theorem to prove in one step that Grp has all small
colimits.

2. Prove that Alg, as described in § V.6 has all small colimits; in particular, de-
scribe the initial object (when is it empty?).

2. Interchange of Limits

Consider a bifunctor F : P x J— X to a cocomplete category X. For values
p € P of the parameter p, the colimits of F(p, —):J— X define functors
p—Colim; F(p, j) of p, so that the colimiting cones.

Uy ;- F(p, j)— Colim;F(p, j) (1)
are natural in p (Theorem V.3.1). One may prove readily (§ 8 below) that

Colim, Colim; F(p, j) = Colim; Colim, F(p, j) (2)
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with the isomorphism given by the “canonical” map. Dually, limits
commute. But limits need not commute with colimits, because
the canonical map

 : Colim, Lim,, F(p, j)— Lim, Colim; F(p, j) (3)

“need not be an isomorphism.
Nhis canonical map exists as soon as all four limits and colimits in (3)
exist, and is constructed as in the following diagram

up.jl idj ix 4)
Colim; F(p,j)«——”—L—}:@p Colim; F(p,j) = Lim, Colim; F(p, j)

where v and v_ ; for each j are limiting cones, and p, p, _ for each p the
colimiting cones. Since v is a cone in p and p is natural in p, the
composite u, ; v, ; for fixed j is a cone in p; by the universality of v there
then exist arrows «; for each j making the left hand squares commute.
Since u, _ is a cone in j, so is «; by the universality of y, there is then a
map x making the right hand square commute. It is the desired canonical
arrow.

This x need not be an isomorphism. Consider, for example, the case
when P ={1,2} and J = {1, 2} are both discrete 2-object categories. The
canonical k when it exists (in evident notation)

K:(A; xB)I (4, xB,)— (4, I 4,)x (B, I B,)
is given by two components «, and «,, where «, is determined by

Aje—P A xB—— " B

A 11 A, 2 (4, 11 A,) x (B, 1 B,)—2—B, 11 B, .

In Ab, x is evidently an isomorphism, but in Set it is not — the domain of ¥
is a disjoint union of two sets, while the codomain of « is the four-fold
disjoint union
(A, x By) 11 (4, x B,) 11 (4, x B,) 1 (4, x B,).
We now turn to conditions which suffice to make x an isomorphism.

Theorem 1. If the category P is finite while J is small and filtered, then
Jor any bifunctor F : P x J—Set the canonical arrow

k : Colim, Lim, F(p, j)— Lim, Colim, F(p,))

as in (iv) is an isomorphism.
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This states that finite limits commute with filtered colimits in Set.

Proof. By thé construction of colimits in terms of coproducts and
coequalizers (dual of Theorem V.2.2 with J filtered),

Colim; F(p.j) =11, F(p,j)/E, ()

where II; is the disjoint union and E is the equivalence relation defined
for elements xe F(p,j) and x’e€ F(p,j') in that union by xEx’ if and
only if there are arrows u:j—k, w :j—k with F(p,u)x=F(p,u")x'.
Write (x,j) for the E-equivalence class of an element x € F(p, ). Now J
is filtered; condition (a) in the definition of filtered” implies that any
finite list (x;,j,), ..., (X,,j) of such elements can be written as a list
(y1, k), ..., (¥,., k) with one second index k. Condition (b) in the definition
implies that every equality between elements of this list takes place
after application of a suitable one arrow w: k—Kk'.

For any functor G: P—Set, (Iﬂgl,, Gp = Cone(x, G), the set of cones 7

over G with vertex a point *. If Gp = Colim; F(p,;) and P is finite, each
such cone consists of a finite number of elements of Colim; F(p, ) and

the conditions that t be a cone involve a finite number of equations
between these elements. Since J is directed, the observations above
now mean that each cone t can consist of elements 7, = (y,, k') for some
oneindex k', where the y e F(p, k') already constituteaconey : x> F(—, k').
This cone y is an element of Lim,F(p, k'); its equivalence class (y, k')
is an element of Colim; Lim,. The map

v (y, k') € Colim; Lim, F(p,J),

which is independent of the choices made, is the desired (two-sided)
inverse of the canonical arrow k.

Exercises

1. Show that x of (3) is natural for arrows ¢ : F-= F' in X**/.

2. (Verdier.) A category J is pseudo-filtered when it satisfies condition (b) for
filtered categories and the following condition (¢'): Any two arrows i — j,
i — j' with the same domain can be embedded in a commutative diamond

J -
Prove that a category J is filtered if and only if it is connected and pseudo-
filtered. Prove that a category is pseudo-filtered if and only if its connected
components are filtered.
3. In Set, show that coproducts commute with pullback.
4. Using Exercises 2 and 3, show that pseudo-filtered colimits commute with
pullbacks in Set.
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3. Final Functors

Colimits may often be computed over subcategories. For example,
the colimit of a functor F: N— Cat, where N is the linearly ordered set
of natural numbers, is clearly the same as the colimit of the restriction of
F/'to any infinite subset S of N (i.e., to any subcategory which contains
dt least one object “beyond” each object of N). In classical terminology,
such a subset S was called “cofinal” in N; it now seems preferable to
d\(;}; the ~co”, as not related to dualizations. Also, we will replace the
subset S first by the inclusion functor S— N and then by an arbitrary
functor.

A functor L : J'— J is called final if for each k € J the comma category
(k | L) is non-empty and connected. This means that to each k there is
an object j' e J’' and an arrow k— Lj’, and that any two such arrows can
be joined to give finite commutative diagram of the form

=~
Il
=
Ii
=~
=~
Ii
=

A subcategory is called final when the corresponding inclusion functor is
final. For example, if J is a linear order, J'CJ and L the inclusion, then
L final means simply that to each ke J thereisj e J with k <.

For L:J'—J and F:J— X there is a canonical map

" h: Colim F L— Colim F (1)

defined when both colimits exist; if y': FL--Colim FL and u are the
colimiting cones, h is the unique arrow of X with hy} =, ;. for all j'e J'
The main theorem now is:
Theorem 1. If L:J'— J is final and F:J— X is a functor such that
x= ColimF L exists, then ColimF exists and the canonical map (1) is
_— —_—
an isomorphism.
Proof. Given a colimiting cone u : F L+ Colim F L = x, we construct

arrows 7% : F k — x for each k € J by choosing an arrow » : k — Lj’ and
taking 7, to be the composite

Fk—F“ S FLj—8 5y

Since pis a cone and (k | L) is connected, the connectivity diagram above
readily shows 7, independent of the choice of u and j'. It follows at once
that 7: F-=>x is a cone with vertex x and base F. On the other hand, if
A: F—=syis another cone with this base F, then AL : F L=y is a cone with
base F L, so by the universal property of u there exists a unique f: x—y
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with fu= 1L, and hence (because 4, = A, ;> Fu) with f7=A. This shows
that 7 is a limiting cone and hence that x = Colim F; clearly this also
makes the canonical map # an isomorphism.

The condition that L be final is necessary for the validity of this
theorem (cf. Exercise 5). The dual of this result (the dual of final is "initial”)
is useful for limits.

Exercises

1. If je J and {j} is the discrete subcategory of J with just the one object j, show
that the inclusion {j}—J is final if and only if j is a terminal object in J. What
does this say about colimits and terminal objects?

2. Prove that a composite of final functors is final.

3. If J is filtered, L:J'—J is full, and each (k | L) is non-empty (k € J) prove that
L is final.

4. For the covariant hom-functor J(k, —):J—Set, use the Yoneda Lemma
to show that ColimJ(k, —) is the one-point set.

_

5. (Converse of the Theorem of the text). Let L:J'—J be a functor, where J’
and J have small hom-sets, such that for every F:J— X with X cocomplete
the canonical map Colim F L— Colim F is an isomorphism. Prove that L must

—_— e

be final. (Hint: Use F = J(k,—), X = Set, and Exercise 4.)

4. Diagonal Naturality

We next consider an extension of the concept of naturality. Given
categories C, B and functors S, T: C°° x C— B, a dinatural transformation
a:S=»T is a function « which assigns to each object ce C an arrow
a,: S(c, c)— T(c, c) of B, called the component of « at ¢, in such a way that
for every arrow f: c—c¢’ of C the following hexagonal diagram

S(c, o)—*=——T{(c, ¢)
s(J/ wn
S(c, ¢) T(c, ¢') (1)
S(IN %f 1)

S(¢, Y2 T(c, ¢)

is commutative. Observe that the contravariance of S and T in the first
argument is used in forming the arrows S(f, 1) and T(f, 1)in this diagram.

Every ordinary natural transformation t:S-->T between the bi-
functors § and T, with components .. S(c, ¢')— T(c, ¢), will yield a
dinatural transformation a:S-==T between the same bifunctors, with
components just the diagonal components of t; thus a,=1, .. More
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interesting examples arise from functors which are "dummy” in one or
more variables. For example, T: C°® x C— B is dummy in its first variable
if it 1s a composite

\C*PxC—2Cc—" B,

where Q is the projection on the second factor and T, is some functor
(of one variable). Put d1f}”erently, each functor T, : C— B of one variable
may be treated as a bifuhctor C°P x C — B, dummy in the first variable.
Again, a functor dummy in both variables is in effect a constant object
beB with T(c,c')=» for all objects ¢,c’'eC and T(f, f)=1, for all
arrows f and f’ in C.

The following types of dinatural transformations S-== T arise. If S
is dummy in its second variable and T dummy in its first variable, a
dinatural transformation «:S==T sends a functor S,:C*—B to a
covariant T,:C—B by components o, :Syc— Toc which make the
diagrams

Soc—=—Tyc

Sof[ JTof (2)
Soc’ —*— Ty’

commute for each arrow f:c—c¢’ of C. Such a dinatural transformation
might be called a natural transformation of the contravariant functor
S, to the covariant functor T,. (Dually, of a covariant to a contravariant
one.)

If T=b:C°®x C—B is dummy in both variables, a dinatural trans-
formation o:S-=»b consists of components «,: S(c, c)—b which make
the diagram

S(c, o) 2L 3¢, ¢

NUISY] J J acr (3)

S(¢, o)——b

commute for every f:c—c'. (The right hand side of the hexagon (1)
has collapsed to one object b.) Such a transformation o : S+=»b is called
an extranatural transformation, a “supernatural” transformation or a
wedge from S to b. The same terms are applied to the dual concept
f:b==>T, given by components fi.: b— T(c, c) such that every square

p—2te T(c, ¢c)

B J Jru.f) 4)

T(C C)—TWT(C C)

is commutative. (The left hand side of the hexagon (1) has collapsed.)
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We give an example of each type. A Euclidean vector space E is a
vector space over the field R of real numbers- equipped with an inner
product function ( , ): Ex E—R which is bilinear, symmetric, and
positive definite. These spaces are the objects of a category Euclid,
with arrows those linear maps which preserve inner product. There are
two functors

U : Euclid— Vetg, * : (Euclid)°® — Vetg

to the category of real vector spaces: The (covariant) forgetful functor U
“forget the inner product” and the contravariant functor “take the dual
space”. Now for each Euclidean vector space E the assignment e (e, —),
for ec E, is a linear function xj: E— E*; these functions x; are the
components for a transformation x which is dinatural from U to =
(dual of type (2)): This is the fact, familiar in Riemannian geometry, that
each Euclidean vector space is naturally isomorphic to its dual — and
we need the notion of dinaturality to express this fact categorically.

Evaluation. Vy, for X a (small) set, takes the value of each function
h:X—A at each argument x e X. If the (small) set 4 is fixed, we may
regard Vy as a function

Vy :hom(X, Ay x X - 4, <{hx>rhx,

defined for each object X €Set. For two small sets X and Y, hom(X, A)x Y
is the (object function of a) functor Set°® x Set—Set, whilé for every
arrow f: Y— X the obvious property h(fx)=(hf)x of evaluation states
that the square like (3) always commutes. Hence the functions Vy are
the components of an extranatural transformation

V:hom(—, A)x(—)=4.

Observe that V is also natural (in the usual sense) in the argument 4;
we say that hom(X, 4)x X—A by evaluation is dinatural (= extra-
natural) in X and natural in A.

Counits. For functors F: X xP—A and G: P°®* x A— X a bijection

A(F(x, p), a) = X (x, G(p, a)) (5)

natural in X, p, and 4 is an adjunction with parameter p (Theorem I'V.7.3);
its counit, obtained by setting x=G(p,a) in (5), is a collection of
components

6<p,a> .F(G(p, a)a p)——’a (6)

natural in a and dinatural (=extranatural) in p. This includes the case
of evaluation above.

Here is an example of the dual type of dinaturality. In any category C
the identity function assigns to each object ¢ the identity arrow 1.: c—-c,
which may, be regarded as an element 1.ehom(c, ¢) or as an arrow
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1.:*—hom(c, ¢), where = is the one-point set. Now hom(c, ¢) is (the
object function of) a functor C°® x C—Set, and for each arrow f:c—¢’
the identity function 1 has the evident property fo 1. =1_f, which states
in the present language that 1 is a dinatural transformation

I:*=shom(—, —).

All three types of dinatural transformations occur in combination
with natural transformations in the previous sense (and indeed we will
usually simply call all three types “natural transformations”, dropping
the “di” except where it is needed for emphasis). Thus given categories
and functors

S:CPxCxA—B, T:AxD®*xD—B

a natural transformation y:S=>T is a function which assigns to each
triple of objects ce C, ac A, and de D an arrow

y(c,a,d):S(c,c,a)— T(a, d, d)

of B such that (i) for ¢ and 4 fixed, y(c, —, d) is natural in g, in the usual
sense; (ii) for a and d fixed, y(—, a, d) is dinatural in c; (iii) for ¢ and a
fixed, y(c, a, —) is dinatural in d. In the description of these natural trans-
formations any one of the categories 4, B, or C may be replaced by a
product of several categories, and in each case naturality in a product
argument ce C=C’'x C” may be replaced by naturality in each argu-
ment of the pair ¢=<{c, ¢”) when the other is fixed (see Exercise 3
below). For example, in any category the operation of composition

hom(b, ¢) x hom(a, b)—hom(a, ¢)

is natural; i.e., natural in a, dinatural in b, and natural in c.

The composite of two dinatural transformations need not be di-
natural at all, but any dinatural transformation & : S+ Tmay be composed
on either side with transformations which are natural in both arguments.
If ¢:8=S and t: T=>T' are natural transformations, the composite
arrows

S'(¢, o)—2=>S(¢, ()—=— T(c, c)—=—T'(c, ¢)

are the components of a dinatural transformation S'=»T". Here is a
more interesting case (easily proved).

Proposition 1. Given functors
R:C—»B, S:CxC®xC—B, T:C—B
and functions ( for all ¢,de C)
o(c,d): R(c)—S(c,d,d), a(d, c):Sd,d, c)— T(c)
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which are natural in ¢ and dinatural in d, the function which assigns to
each ¢ € C the composite arrow

R(c)—2<9 §(c, ¢, ¢)—22- T(c)

is a natural transformation R->T.

Exercises

1. Prove that the unit #,:x— G(p, F(x, p)) of an adjunction with parameter is
dinatural in p, and that this property is equivalent to the naturality of the ad-
junction itself in p (cf. IV.7., Exercise 2). Dualize.

2. Formulate the triangular identities for an adjunction with parameter.

3. (Naturality by separation of arguments.) Given b € B, a functor

S:(CxDyY*xCxD—B,

and a function f assigning to ce C, de D an arrow

Bea:S(c,d,c,dy—b

of B, show that §: S+=b is dinatural if and only if it is dinatural in ¢ (for each
fixed d) and dinatural in d (for each fixed c). State the dual result.

4. Extend the composition rule of Proposition 1 to the case when S is a functor
CxCPxCxC®xC—B. Do the same for any odd number of factors C.

S. For S:C®*xC—B and b, b’ € B, show that dinatural transformations b=»$§
and S==b’ do not in general have a well defined composite b—b'.

6. Extending Exercises 3 and 4, find a general rule for the composition of natural
transformations in many variables.

5. Ends

An “end” is a special (and especially useful) type of limit, defined by
universal wedges in place of universal cones.

Definition. An end of a functor S : C°P x C — X is a universal dinatural
transformation from a constant e to S; that is, an end of S is a pair {e, ©),
where e is an object of X and w: e=>S is a wedge (a dinatural transforma-
tion) with the property that to every wedge f5: x=> S there is a unique arrow
h:x—e of B with 8,=w,h for all aeC.

Thus for each arrow f: b—c of C there is a diagram

x-——-)

S(b
(L.
RN \S(bc M)

S(f 1
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such that both quadrilaterals commute (these are the dinaturality
conditions); the universal property of w states that there is a unique h
such that both triangles (at the left) commute.

The uniqueness property which applies to any universal states in this
case that if {e, w) and {¢’, ") are two ends for §, there is a unique iso-
morphism u:e—¢' with w'cu=w (i.e., with &, -u=w, for each ce ).
We call w the ending wedge or the universal wedge, with components w,,
while the object e itself, by abuse of language, is called the “end” of S
and is written with integral notation as

e=[S(c,c)=End of S.

Note that the “variable of integration” ¢ appears twice under the integral
sign (once contravariant, once covariant) and is “bound” by the integral
sign, in that the result no longer depends on ¢ and so is unchanged if “¢”
is replaced by any other letter standing for an object of the category C.
These properties are like those of the letter x in the usual integral [ f(x) dx
of the calculus.

Natural transformations provide an example of ends. Two functors
U,V:C— X define a functor homy(U —, V —): C°®* x C—Set, and if
Y is any set, a wedge 7: Y= homy(U —, V —), with components

7.: Y—=homy(Uc, Ve), ceC,

assigns to each ye Y and to each ce C an arrow 7, ,: Uc—Vc of X
such that for every arrow f:b—c one has the “wedge condition”
Vfet,,=1.,°US. But this condition is just the commutativity of the

square
Ub——Vb

U,J Jw

Uc——Ve¢

which asserts that t _ | for fixed y is a natural transformation t_ ,:U—~V.
Thus, if we write Nat(U V) for the set of all such natural transformatlons
the assignment y+>t_ , is the unique function Y— Nat(U, V) which
makes the following diagram commute.

Y hom(Uc, Vo)
!
! I
4
Nat(U, V) hom(Uc, Vo),

where w, assigns to each natural A: U~V its component 4.: Uc— Ve,
This states exactly that w is a universal wedge. Hence

Nat(U, V)= [hom(Uec, Ve); U, V:C—X. (2)
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Everyendis manifestly a limit—specifically, a limit of a suitable diagram
in X made up of pieces like those pieces S(b, b)—S(b, c)«<S(c, c), one
for each fin C, which come up in the diagram (1) defining an end. This
can be stated formally in terms of the following construction (to be used
only in this section) of a category C% depending on C. The objects of C$
are all symbols c¥ and f*¥ for ce C and f an arrow in C (note especially
that ¢¥ and (1,)} are different objects). The arrows of C? are the identity
arrows for these objects, plus for each arrow f:b—c in C two arrows

b§—>f§<—c§

in CY The only meaningful compositions for these arrows in C? are
compositions with one factor an identity arrow. Thus we have defined
a category C8, called the subdivision category of C.

Each functor S:C°®*x C— X defines a functor S%:C%—X by the
assignments indicated (from top to bottom) in the following figure for
a typical f:b—cin C:

C? b f§ ct
I
X S(b, b)W S(b,c) 43(7——5((: c)

Inspection of this figure shows that a cone t:x-+S" is exactly the same
thing as a wedge w: x+»S. This proves that a limit of S¥is an end of S,
in the following sense.

Proposition 1. For any functor S:C°®xC—X and the associated
Sunctor S%: C8— X, as defined above, there is an isomorphism

0:]5(c, c)= Lim [§%: C*— X]. (3)

In more detail, if either the indicated end or the indicated limit exists,
then both exist, and there is a unique arrow 8 in X such that the diagram

| S(c, )—=2=—>5(c, ¢)
<
Gl Il
Lim S¥ —%— §%(¢)
padoii
commutes for every c € C, where w is the ending wedge and A the limiting
cone; moreover, this arrow @ is an isomorphism.

Corollary 2. If X is small-complete and C is small, every funcpor
S:CPxC—X has an end in X.

The Proposition above has reduced ends to limits. The converse is
easier: Every limit may be regarded as an end!



Ends 225

Proposition 3. For each functor T: C— X let S be the composite functor
CPxC—2—Cc—T,x

where Q is the second projection {c,c'>+c of the product. Then
(e,t:e->T) is a limit for T in X if and only if {e,t:e=>8> is an end
for Sin X.

Proof. The components 7, of a cone e =T make the triangle
7. = Tf° 7, commute (naturality condition!) for each f:b—c in C. This
amounts to saying that every square

e———2—Tb=S(b, b)

T l S(L N)=T()
Tc= S(C, c)—S(—f,-l)Tl) Tc= S(b, C)
commutes (S(—, —) is "dummy” in the first variable), and this in turn

states exactly that 7:e==S is a wedge. It follows that t is universal as a
cone if and only if it is universal as a wedge.
This conclusion reads: There is an isomorphism

[S(c,e)={Te=LimT

valid when either the end or the limit exists, carrying the ending wedge
to the limiting cone; the indicated notation thus allows us to write any
limit as an integral (an end) without explicitly mentioning the dummy
variable (the first variable ¢ of S).

A functor H: X—Y is said to preserve the end of a functor
S:C®?"xC— X whenw:e=»>SanendofSin X impliesthat Ho : He=»>H S
is an end for HS; in symbols

H{S(c,c)=[{HS(cc).

Similarly, H creates the end of S when to each end v: y+» H S in Y there is
a unique wedge w:e=»S with Ho=v, and this wedge w is an end of S.
Since an end (of the functor S) is the same thing as a limit (of the cor-
responding S%) the properties we have established for the preservation
of limits carry over to the preservation of ends. For example, the hom-
fuhctors preserve (and reverse, see § 6) ends:

X (x, IS, c)>= [X(x, S(c, o), 4

x(fs(e 0 x) = [ X(S(e, ) ). (5)
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6. Coends

The definition of the coend of a functor S: C°®* x C— X is dual to that
of an end. A coend of S is a pair, {d,{:S=>d), consisting of an object
de X and a dinatural transformation { (a wedge), universal among
dinatural transformations from S to a constant. The object d (when it
exists, unique up to isomorphism) will usually be written with an integral
sign and with the bound variable ¢ as superscript; thus

<

S(c, )—*—[ S(c,c)=d.

The formal properties of coends are dual to those of ends.

Coends are familiar under other names. For example, the tensor
product of modules over a ring R is a coend. Specifically, a ring R is an
Ab-category with one object (which we call R again) and with arrows the
elements r € R, composition of arrows being their product in R. A left
R-module B is an additive functor R— Ab which sends the (one) object R
to the abelian group B and each arrow r in R to the scalar multiplication
re:b—rb in B. Similarly, a right R-module A is an additive functor
R°P— Ab (contravariant on R to Ab). If ® is the usual tensor product
in Ab, then R— A® B is a bifunctor R°® x R— Ab. Moreover, the coend

R
| AQB=A®;B

is exactly the usual tensor product over R. Indeed, a wedge { from the
bifunctor A® B to an abelian group M is precisely a (single) morphism
0: A® B— M of abelian groups such that the diagram

AR B8, 4B

r.®lg l lg

AQB—*— M

commutes for every arrow r in R. With the above interpretation of modules
as functors, this means for elements ae A and b e B that

olar®@b)=g(a®rb).

Therefore M is an end precisely when M is A®Q Bmoduloallar® b— a®rb,
and thisis precisely the usual description of the tensor product M = A ® z B.

The point of these observations is not the reduction of the familiar
to the unfamiliar (tensor products to coends) but the extension of the
familiar to cover many more cases. If B is any monoidal category with
multiplication (], as in Chapter VII, then any two functors T: P°*— B
and S: P— B have a “tensor product”

P
TOpS=[(Tp)I(Sp),
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an object of B. The simplicial category 4 of § VILS has a functor
A:4—Top (each ordinal n+1 realized by the n-dimensional affine
simplex), while any S: 4°°—Set is called a simplicial set. Now the co-
power S+ X (set S times space X) is just the disjoint union IIgX of S
copies of X. Hence (n,m)+> Sn- Amis a functor 4°° x 4 — Top and the
coend

[(Sn)-4n (1)

is the usual geometric realization (Lamotke [1968], p. 34; May [1967],
p. 55) of the simplicial set S. The coend formula describes the geometric
realization in one gulp: Take the disjoint union of affine n-simplices, one
for each t € Sn, and paste them together according to the given face and
degeneracy operations (arrows of 4). There is a similar efficient description
of the (Stasheff-Milgram) classifying space of a topological monoid
{best situated in the category CGHaus of § VIL.8); see Mac Lane [1970].

Exercises

1. For S:C° x C—Set, prove that the set Wedge (x, S) of all wedges w:*=»S
from the one-point set * to S is an end of S, with ending wedge given by
w—a(+) € S{c, ¢). Compare with the explicit description of a limit in Set as a
set of cones.

2. Show directly (without using limits) that a category X with all small products
and with equalizers has all small ends (cf. the corresponding proof for limits
in § V.2).

3. Toeach category C there is a “twisted arrow category” C, with objects the arrows
f:a—b of C and arrows {(h, k) : f— [’ the arrows h:a'—a (note the twist!)
and k:b—b' such that f'=kfh Then {f:a—b)+—<a, b) is a functor
K:Cy — C%® x C. For any S: C°P x C — B, prove that cones ¢ — S K cor-
respond to wedges e = S, and use this fact to give another proof of the re-
duction of ends to limits (Proposition 5.1).

4. Let Fin (the skeletal category of finite non-empty sets) be the category with
objects finite nonzero ordinals n and arrows all functions f:n—m. For each
set X, ni—X" defines (the object function of) a functor (Fin)°®—Set. For each
ring R, the assignment n—~R" becomes a covariant functor R ,: Fin— R-Mod
if each function f:n—m (arrow in Fin) takes a list ag,...,a,_,€R" to
bg, ..., by—1 € R™, where b;=Za;, the sum over all those jen with f;=i. Show
that the free R-module generated by the set X is the coend

fX" Ry,

and show that this formula is essentially the usual description of the elements
of the free module as finite formal sums Xx,a;,i=1,...,n.
5. If D is cocomplete, functors §: C°—Set and T : C—D have a tensor product

defined as the coend {(Sc)- (T¢), where - denotes the copower. Show that the
tensor product is a functor D€ x Set®*—D.



228 Special Limits
7. Ends with Parameters

The basic formal properties for ends are much like those for integrals
in calculus. All these properties will apply equally well to limits (regarded
as ends with a dummy variable).

Proposition 1 (End or limit of a natural transformation). Given a
natural transformation y:S-S' between functors S,5:CPx C—X
which both have ends e, w) and {e', "), respectively, there is a unique
arrow g= j'yc,c:e—ve’ in X such that the following diagram commutes

<

for every ceC:
{ S(c,0)—2=—S(c, )
e
!7=£Yc,c= Ye,e (1)

i ,
[S'(c,0)—2=— S'(c, ).

Proof. The composites y, .o w, define a wedge, so g exists and is
unique by the universality of the wedge «'.

We call the arrow g the end of the natural transformation 7.

Composing y with another y": §'>$” yields the rule

{0 Vo= [I vé,c] ° [I v] : v)

By this composition rule, a limit (or an end) involving a parameter
p (in some category P) can be shown to be a functor of that parameter
in the following sense.

Theorem 2 (Parameter Theorem for ends and limits). Let
T:PxC®PxC—X be a functor such that T(p, —, —) for each object
p€ P has an end

wp:j.T(pa c, C)A'T(p’ T -) (3)
in X. Then there is a unique functor U:P—X with object function
Up= [ T(p, c, ) such that the components of the wedge (3) for each ce C
define a transformation (w,).: Up— T(p, c, c), natural in p.

Proof. Each arrow s:p—q of P defines a natural transformation
y=T(s, —, =): T(p, —, =)= T(g, —, —). Hence the arrow function of
the desired functor U must have Us= f T(s, ¢, ¢), defined as in (1), and

the composition rule (2) shows that this definition of Us does determine
a functor U: P— X.
The functor U will be written U= [ T(—, ¢, ¢); thus

{j T(—,c,c)J p= ch(p,c, 0, {; T(—,¢, c)] s= §T(s,c, 0. (4
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The notation suggests that this functor U is itself an end. Indeed,
regard j' T(—, ¢, c) as an object of the functor category XF and rewrite

T:PxC®x C—X as the functor T*: C°® x C— X7¥ given on arrows
(or objects) f, f’ of C by

Tf, f)=T(=.f.f):P—X.
Put differently, T* is the image of T under the standard adjunction
Cat(P x C°® x C, X) = Cat(C°* x C, X©).

Theorem 3 (Parameter Theorem, continued). Under the same hy-
potheses on T, the functor T* has the end

o' [ T(—,cc)TF

<

where (w7), =(w,), for allpe P and ce C.
Proof. The end | T(—, ¢, ¢) is an object of X*, while T* is a functor

<
with codomain XF. By the previous theorem, the arrows (w,), of X
provide for each ¢ an arrow of X¥ (a natural transformation)

wf: [ T(—, ¢ ) T(—,¢0);

its component at p is (w}), = (w,).. Moreover, varying ¢, o is a wedge
{ T(—,c,0)=»T" 1t is a universal wedge, for, given any object Fe X*
(4

and any wedge fi: F=»T", each component §, factors uniquely through
the corresponding component w,, so f itself factors uniquely through
w*. This gives the end for T¥ as required.

This theorem can also be formulated wholly in terms of the functor
category X¥, as was done in the case of limits in Theorem V.3.1.

Exercises

1. (Dubuc.) Construct a functor category X and a functor T : C — X which
has a limit not a pointwise limit. (Suggestion: Take C = 2.)

2. State and prove the parameter theorem for coends.

3. If X issmall complete and C is small, use Proposition 1 to prove that I(,i_n (X6 X
is a functor (cf. Ex. V.2.3).

4. For any categories X and P, show that the functor X*— X'?linduced by inclusion
(of the discrete subcategory {P}) creates ends and coends (cf. Theorem V.3.2).
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8. Iterated Ends and Limits

We now describe when the “double integral” can be obtained as an
“iterated” integral (Fubini!).

Proposition. Let S:P®*x P x C®P?x C—X be a functor such that
the end | S(p,q,c,c) exists for all pairs {p,q> of objects of P; by the

parameter theorems, regard these ends as a bifunctor P® x P— X, and
regard S as a bifunctor (P x C)°® x (P x C)—X. Then there is an iso-
morphism
6: | Sp.cpo=| [fS(p,p,c,c)} .
{p,c> p lc

Indeed, the “double end” on the left exists if and only if the end | on the

P
right exists, and then there is a unique arrow 0 in X such that the diagram

) § >S(p, p, ¢, ¢) be.e S(p,p.c,c)
p.c |
9‘[ Il

j[jS(p, ;, c, c)}——e—"—»jS(p, p, ¢, c)—22:2:55 S(p, p, c, )

p

commutes, where the horizontal arrows £, o, and w are the universal wedges
belonging to the corresponding ends; moreover, the arrow 6 is an iso-
mor phism.

Proof. For each (p, q) € P x P we are given the end
wp,q : j S(pv q,¢, C)_"S(P, q, —, —) .
For any x € X each P-indexed family p,: x — [ S(p,p,c,c) of arrows
of X determines a (P x C)-indexed family £, asc the composites

Epoix—2— [ S(p,p,c,c) —=22:22 S(p, p, ¢, ¢);

for p fixed, ¢, _y is trivially a wedge in c. Conversely, since @, , is
universal, every (P x C)-indexed family which is natural in ¢ for each
p is such a composite, for a unique family g. Now g or £ is extranatural
in p (the latter for some c) if and only if the corresponding square below

x——22— [S(p, p, ¢, ¢) x fh S(p, p, c,c)

€q §8(p,s,¢,¢) [0 S(p,s,¢,6)
c

LjS(q, q, & C)TIS@’ q, G, C), S(q’ q, c, C)m—’S(P, q, c, C)
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commutes for each arrow s: p—¢q in P. Also, the first square commutes
precisely when it commutes after composition with the arrows w,, , . for
all objects ¢. Form the cubical diagram with these two squares as
front and back faces and with edges 1, @, ., ®,,. and o, , . (front
to back). By our definitions the four side faces involving these edges
commute; hence the front square commutes if and only if the back
square commutes for all ¢. Therefore p is a wedge (in p) if and only if &

is a wedge (in {p, c)), so that wedges from x to j'S( —, —, C, ¢) correspond

one-one to wedges from x to S. Since the end is a universal wedge, and
since a universal is determined up to isomorphism, this gives the
isomorphism 8 of the proposition.

Note one essential point: This proposition reduces double to iterated
integrals provided the inner integral {S(p,g,c,c) exists for all pairs

{p, 4> (not just for p = gq). The case of limits involves no such refinement.
The familiar result on change of order of integrals follows from
this one, expanding a double integral in two ways.

Corollary. Let S:P®x Px C°®x C—X be a functor such that the
ends j'S(p, q,¢,c) and j'S(p,p,b c) exist, for all p,qe P and b,ce C. By

the parameter theorems regard these ends as bifunctors (of p,q or b,c)
respectively; then there is an isomorphism

H:JU S(p, p, ¢, c)]g E[U S(p, p ¢, c)]‘

Indeed, the (outside) iterated end on the left exists if and only if the
(outside) iterated end on the right exists, and the isomorphism 8 is the
unique arrow in X such that the diagrams

IjS(p,p,CC) IS(p,p,C,C)————)S(p,p,C,C)

pc c

I i

1

¥
[ 1S, p,c,c)——— [ S(p, p, c,©)—— S(p, p, ¢, )
cp p

commute for all pe P and ce C, where the horizontal arrows are the
appropriate components of the universal wedges for the integrals involved.

These results include the corresponding facts for limits and colimits.
Thus, for a functor F: P x C— X with P and C small, X complete

Lim,Lim F(p, ¢)= Lim,, . F(p, ¢)= Lim,Lim,F(p, ¢),

by Proposition 5.3, with the corresponding formula for colimits.
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Notes.

A systematic treatment of all possible properties of limits was contained in a
manuscript by Chevalley on category theory; the manuscript was unfortunately
lost by some shipping company.

Eilenberg and Kelly discovered the extranatural transformations (and all the
rules for their composition) in [1966b], while diagonally natural transformations
are due to Dubuc and Street [1970]. The tensor product of functors was first
defined by Kan [1958,§ 14]; these products have been further developed in
unpublished work of F. Ulmer and Allen Clark.

The idea of an end was discovered by Yoneda [1960], and its efficient utilization
is due to Day and Kelly [1969], who observed that this notion is essential in cate-
gories based not on Set but on other closed categories. See also Kelly [1982].



X. Kan Extensions

If M is a subset of C, any function t : M— A to a non-empty set A can be
extended to all of C in many ways, but there is no canonical or unique
way of defining such an extension. However, if M is a subcategory of C,
each functor T:M—A has in principle two canonical (or extreme)
“extensions” from M to functors L, R:C— A. These extensions are
characterized by the universality of appropriate natural transformations;
they need not always exist, but when M is small and A is complete and
cocomplete they do exist, and can be given as certain limits or as certain
ends. These “Kan extensions” are fundamental concepts in category
theory. With them we find again that each fundamental concept can be
expressed in terms of the others. This chapter begins by expressing
adjoints as limits and ends by expressing “everything” as Kan extensions.

1. Adjoints and Limits

Limits and colimits, if they exist for all functors J—C, provide re-
spectively right and left adjoints for the diagonal functor 4:

C
I_,ir_n+ '{ ld'{ ‘I_ir_ll (=right adjoint of 4). (n
CJ

Conversely, left adjoints can be interpreted as limits. First note that
an initial object in any category C is a limit:

Initial object C = Colim(0 — C) = Lim(Id : € — C) , )

where 0 denotes the empty category (the ordinal 0) and 0 — C is the
empty functor. The definition of the initial object e states exactly that
it is the colimit of the empty functor. Moreover, the unique arrows
U.:e—c, one for each ¢, define a cone e=Id¢. If A:d—1d. is a cone
from some other vertex, then there is a unique f:d—e with all y, f =1_;
indeed, this equation for ¢ =e shows that f must be 4,, and for f=4,
this equation p 4, =A. does hold because A is a cone over Id.. This

233
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proves e = Lim Id.. The converse property, that any limit of Id is initial,
is a special case of

Lemma 1. If A:d-=>1d. is a cone over the identity functor and F - J— C
is a functor such that AF : d—=>F is a limiting cone for F, thend is initial in C.

Proof. Since A is a cone, the triangles

d d d
}t/ \F: /\1:1 ':/x:
dT»Fi, d—TFi, d-—7—>c

commute for each ieJ and each arrow f in C. But AF is a limiting
cone, so the first two triangles prove A;=1. Then by the third triangle,
f = A.: There is a2 unique arrow f from d to each ¢, and d is indeed initial.

This result reduces initial objects to limits. Now a functor G: A— X
has a left adjoint precisely when for each x the comma category (x| G)
of all pairs {¢: x — Ga,a) has an initial object. In this way we can
express the left adjoint by limits. Recall that {g,a)r-a defines the
(second) projection Q: (x| G)— A of the comma category.

Theorem 2 (Formal criterion for the existence of an adjoint)
A functor G: A— X has a left adjoint if and only if both

(i) G preserves all limits which exist in A;

(ii) For each xeX,Lim(Q:(x|G)— A) exists in A.
W hen this is the case, a left adjoint F is given on each x€ X as

Fx=Lim(Q:(x|G)—4), 3)

and the left adjunct of each arrow g:x—Ga is the component
A, Fx— Qg =a of the limiting cone A for the limit (3).

Proof. Since right adjoints preserve all limits, (i) is necessary. Since
a left adjoint F to G has each {5,:x—GFx, Fx) an initial object in
(x| G), any functor on this comma category has a limit (namely, its value
on that initial object). Hence (ii) is necessary.

This motivates the converse. By hypothesis (ii) the composite functor

WG —L—-(ylG)—2—4 4)

has a limit in 4 for each y € X. By hypothesis (i), G preserves all limits;
hence, using the Lemma of § V.6, Q creates all limits. Therefore Id has
a limit on (y| G). This limit is, by (2), an initial object there, say y— Ga.
But then a is a value a=Fy for a left adjoint F, and

Fy=Q[Lim(y|G)—(y|G)]=Lim(Q: (y| G)— 4)

(since Q preserves this limit which it has created!). This is the desired
formula; the rule for finding the left adjuncts follows at once.
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Exercises

1. State the dual of Theorem 2.

2. (Bénabou, formal criterion for representability). Let C have small hom-sets,
while * is the one-point set. Prove: A functor K :C—Set is representable if
and only if (i) K preserves all limits which exist in C, and (ii) the projection
Q:(*| K)—C of the comma category has a limit in C. When this is the case,
the limiting cone A:r->Q for this projection assigns to each he K, an arrow
Ay:r—c and h—1, is a representation K = C(r, —).

3. (Formal criterion for a universal arrow.) Let X have small hom-sets. Prove
that there is a universal arrow from xeX to G:4—X if and only if
(i) X (x, G —): A—Set preserves all limits and (i) Lim Q: (x| G)—4) exists in 4.

4. (Refinements of formal existence criteria.)

(@) In the Theorem, show that condition (i) may be replaced by “G preserves
the limits required to exist in (ii)".

(b) In Ex. 2, show that condition (i) may be replaced by “K preserves the limit
of Q”.

5. (Representables and adjoints; Bénabou.) Let C have small hom-sets, and
construct from each K :C—Set the category Cy obtained by adjoining to C
one new object oo with new hom-sets Cy (00, ¢)=Kc, Cg(00, 00)=1%, the one-
point set and Cg(c, 0)=0, the empty set, with appropriate composition. Let
Jx 1 C—Cyg be the inclusion. Prove that K is representable if and only if Jg
has a left adjoint.

2. Weak Universality

Given a functor G: A— X and an object x € X, a weak universal arrow
from x to G is a pair {r, w: x— Gr) consisting of an object re 4 and
an arrow w of X, as indicated, such that for every arrow f:x—Ga
there exists an arrow f”: r—a with f = G f' o w. This is just the definition
of universal arrow, except that f” is not required to be unique. By the
same device (Freyd) we can modify all the various types of universals,
defining weak products, weak limits, weak coproducts (existence but
not uniqueness in each case).

As an application, we give a second proof of the Freyd existence
theorem for an initial object (Theorem V.6.1).

Theorem 1. If D is a small complete category with small hom-sets, then D
has an initial object if and only if it has a small set S of objects which is
weakly initial: For every d e D there exists se S and an arrow s—d.

Proof. Let S also denote the full subcategory of D with the objects s;
since D has small hom-sets, S is still small, so by completeness the
inclusion functor F:S— D has a limiting cone u: v F. We shall prove
v=LimF initial in D.
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First, for every d e D we choose s—d and define y, as the composite
yg: vEs—d. We claim that y:v—1d,, is a cone. For, take any arrow
f:d—d’ and form the diagram

d d.

Since S is small complete, there is a pullback of s — d' > s with vertex p;
since S is weakly initial, there is an arrow v s"— p. The two composite
arrows s"—p—s and s"—p—s’ are in S because S is full, so the two
upper quadrilaterals commute (i is a cone), while the pentagon commutes
because p is a pullback. This proves y a cone.

If, in defining y, we choose v — s — s to be y, then y is a cone such
that the composite y F : v=—F is the limiting cone y. By Lemma 1.1, v is
initial in D, q.ed.

Carefully examined, this proof is just a refinement of the previous
one (§ V.6), where we took first a product IIs (to get a single weakly
initial object) and then a suitable equalizer. In this proof, these operations
are combined to one: Lim F for F:SCD.

3. The Kan Extension

Given a functor K:M—C and a category 4 we consider the functor
category A€, with objects the functors S: C— A and arrows the natural
transformations ¢: S-S, and we define the functor AX: A°— AM by

the assignments
{g:8>8>—<{cK:SK->SK).

The problem of Kan extension is to find left and right adjoints to 4%
We consider this problem first for right adjoints.

Definition. Given functors K:M—C and T:M— A, a right Kan
extension of T along K is a pair R,¢: RK—>T consisting of a functor
R € A€ and a natural transformation & which is universal as an arrow from
AX: A AM 10 Te AM.

As always, this universality determines the functor R=RangT
uniquely, up to natural isomorphism. In detail, this universality means
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that for each pair S, o : SK- T there is a unique natural transformation
6:S—=R such that e =¢- 6K : SK->T. The diagram is

4 X, e:RK-T ()
R
The assignment a+¢- 6K is a bijection

Nat(S, Rang T) = Nat (SK, T), )

natural in S; again, this natural bijection determines RangT from K
and T. It is a right Kan extension because it appears at the right in the
hom-set “Nat” (But note that some authors call this R a “left” Kan
extension).

By the general result that universal arrows from the functor A% to
all the objects T together constitute a left adjoint to the functor AX,
it follows that if every functor Te AM has a right Kan extension
{R,e7:RK—=»T), then T—R is (the object function of) a right adjoint
to AX and ¢ is the unit of this adjunction. In the sequel, we shall construct
right Kan extensions for individual functors T, which may exist when
(the whole of) the right adjoint of A¥ does not exist.

A useful case is that in which M is a subcategory of C and K: M—C
the inclusion M C C; in this case, A% is the operation which restricts
the domain of a functor S: C— A4 to the subcategory M. Conversely,
for given T: M — A we consider extensions E: C— A4 of T to C. Then
Ece A must have for each arrow f:c—min C an arrow Ef: Ec—Tm
in A, and these arrows must constitute a cone from the vertex Ec to the
base T, where T is regarded as a functor on the category of arrows
f:c—m (fixed ¢ to variable m). These arrows f are the objects of the
comma category (c|K), so a natural choice of Ec is the limit (with Ef
the limiting cone) of the functor T: (c|K)— A:

-5 Lim

N LN

m——-—m ————m

This procedure (compare (1.3)) works in general. For each ceC,
the comma category (c|K) has the objects {f, m), written f for short,
where f:c— Km in C, while {f, m)>+>m is (the object function of) the
projection functor @ : (c| K)— M.

Theorem 1 (Right Kan extension as a point-wise limit). Given
K:M—C, let T:M—A be a functor such that the composite
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(c|Ky=>M—A has for each ce C a limit in A, with limiting cone A,
written
Rc=1<4i_m((clK)—Q>M—T>A)=Limem, fe(clK). (3)

Each g: c— ¢ induces a unique arrow

Rg:LimTQ—LimTQ’ 4)
commuting with the limiting cones. These formulas define a functor
R:C— A, and for each ne M, the components A, =g, of the limiting

cones define a natural transformation ¢: RK-=T, and R,¢ is a right
Kan extension of T along K.

Proof. First, Rg is defined in (4) by the fact that the limit is a functor
of (¢} K) and hence of c. Specifically, given g:c— ¢’ and the projection
Q' :(c'|K)— A, each f':¢— Km determines f'g:c—Kme(c|K), the
components A.,:Rc— Tm form a cone from Rc, and since the cone
A’ is universal, there is a unique arrow Rg which makes

Rc=LimTQ —2£+ Tm
A

I Rg I (35)

v L.
R =LimTQ —%— Tm
Lim

commute for all f'. (Actually, f'+>f'g defines the functor
@lK):(¢'|K)—>(c}K),sothat TQ'=T Q- (g} K),and Rg is the canonical
comparison (cf. “final functors”)). This choice of Rg clearly makes R a
functor.

For each ne M, 1, is an object of (Kn|K), so the limiting cone A
has a component 4,, : RKn— Tn, called ¢,. For each h:n—n' form the
diagram

RKn 2= 5 Tn

RKhl & JTh (6)

RKn -—7,;————) Tn N
Knt

the lower triangle commutes by the definition of Rg for g= Kh, and
the upper triangle commutes because 4 is a cone. Therefore the square
commutes; this states that ¢: RK-- T is natural.

Now let §: C— A4 be another functor, with «: S K-> T natural. We
construct ¢, : S¢ — Rc from the diagram for f : ¢ = Km

Rc=Lim, Tm At Tm —* m
4
oe | / 1% ]LW 7)

I
Sc fASKm sz~ SKm'

S
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For each arrow h:{f,m)—{f,m) of (c|K), where f'=Kh-f, the
right-hand square commutes because « is natural. This shows that the
diagonal arrows «,,°Sf:Sc— Tm form a cone from Sc. Hence there
is a unique arrow o, as shown in (7). To prove ¢ natural for g:c—¢’,

form the diagram )
Af'g

SKm

S{f7oq)

for each f':¢’—=Km in (¢’| K). The right-hand square and the outer
square commute by the definition of ¢, and the top box by the definition
(5) of Rg. Therefore the left-hand (inner) square commutes after both
legs are composed with A} — and this for all f". But A’ is a limiting cone,
so the left-hand square commutes. Therefore ¢ is natural.

The definition (7) of ¢ for c=Kn, f=14,, and m=n shows that
o, = A1, Ok hence that o=¢-gK. This proves that ¢: RK-=T gives
every o as e =¢- gK for some ¢. The diagram (8) shows that ¢ is unique
with this property. Indeed, this property determines the components
Ok, of o; to determine other components, set ¢'=Kn, f'=1,,, and
m=n in (8). The lefthand square commutes if ¢ is natural, and then
4,00, is determined for all g:c— Kn. But 1 is a limiting cone, so o, is
determined. This shows that e is universal, g.e.d.

Corollary 2. If M is small and A complete, any functor T:M— A
has a right Kan extension along any K : M— C, and AX has a right adjoint.

This applies in particular when A =Set; this is the case originally
studied by Kan [1958].

Corollary 3. If the functor K in the theorem is full and faithful, then
the universal arrow ¢: RK—T for the Kan extension R of T along K
is a natural isomorphisme: RK = T.

Proof. For ne M, RKn is obtained from a limit over the comma
category (¢} K) with ¢ = Kn. Because K is full and faithful, every object
f:Kn—Km in this comma category can be written as f=Kh for a
unique h:n—m. This states that 1: Kn— Kn is an initial object in this
comma category and hence that RKn=Lim,TQ can be found by
evaluating T'Q just at this initial object: Thus RKn="Tn, ¢,=1, q.ed.

This also gives a case in which a Kan extension is an actual extension:

Corollary 4. If M is a full subcategory of a category C and T: M— A
is a functor such that each composite (c\K)—M— A has a limit in A,
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then there is a functor R:C— A with RK=T (ie, R extends T) such
that the identity natural transformation 1: RK—=T makes R the right
Kan extension of T along the insertion K : M—C.

Proof. Apply Corollary 3 to the insertion M—C.
The left Kan extension L=1Lang T is described similarly, as a pair
L,n: T-> LK with n universal from T to A¥; this gives a bijection

Nat(Lang T, S) = Nat(T, SK) )}
natural in S e 4°. When the requisite colimits exist, L is given by
Le = Colim((K }c)-E>M-T5 4), (10
—_—

where P is the projection {(m, Km-—c)+—m.

Exercises
Exercises 1—4 refer to the data for a Kan extension:
K:M—-C, T:M—A.

1. If A is the arrow category 2, and M and C are sets, then a functor T: M —2
can be regarded as a subset of M. Show that 2™ is the contravariant power
set #M, that LangT is the direct image of TC M under the function K, and
describe Rang T.

2. (Kan extensions of representable functors.) If A=Set, and M, C have small
hom-sets, show that the left Kan extension of M(m, —)is C(Km, —) with unit
n:M(m, =) C(Km, K —)given by nm = 1g,,.

3. If M, C, and A are all sets, while 4 has at least two elements and K is not sur-
jective, prove that neither Lang T nor Ran, T exists.

4. (Ulmer.) Show that Corollary 3 still holds if the hypothesis “K is full and
faithful” is replaced by “K is full, and as faithful as T”. Here K “is as faithful
as T” when, for arrows h, b’ :m—n in M, Kh= K} implies Th=Th'

5. For any category M, let M, be the category formed by adding to M one new
object oo, terminal in M. For T: M — A, prove (from first principles) that a
colimiting cone for T is a left Kan extension of T along the inclusion functor
M CM,, and conversely.

4. Kan Extensions as Coends

The calculus of coends gives an elegant formula for Kan extensions; for
variety we treat the left Kan.

Theorem 1. Given functors K: M—C and T:M— A such that for
all m,m' e M and all c e C the copowers C(Km', ¢)* Tm exist in A, then T
has a left Kan extension L = Lang T along K if for every ce C the
following coend exists, and when this is the case, the object functor of L
is this coend

Le=(LangT)e= | C(Km,c)- Tm, ceC. (1)
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Proof. By the parameter theorem, we may regard this coend as a
functor of c. Compare it with any other functor S: C— A. Then

A(Tm, SKm) = Nat(C(Km, —), A(Tm, S—))
~ [ Ens(C(Km, ), A(Tm, Sc)) (2)
by the Yoneda lemma and the representation of the set of natural trans-

formations as an end (in a sufficiently large full category Ens of sets).
Now we can write down in succession the following isomorphisms

Nat(L,S)= { A(Lc, Sc) (end formula for Nat)

IR

(.[ C(Km,c)+ Tm, Sc) (Definition (1) of L)

2

(C(Km, c)* Tm, Sc) (Continuity of A(—, Sc))

I

IR

[4
[ia
| [ Ens(C(Km, ¢), A(Tm, Sc)) (Definition of copowers)
| [ Ens(C(Km, ), A(Tm, Sc)) (Fubini)

I

{ A(Tm, SKm) (by (2) above)
= Nat(T, SK) (end formula for Nat).

Here the Fubini theorem (interchange of ends) applies because both
indicated ends [ and [ exist, while Ens must be a sufficiently large

category of sets (to contain all hom-sets for 4 and C and all sets Nat (L, S),
Nat(T, SK) for all S:C— A). Since each step is natural in S, the com-
posite isomorphism is natural in S and proves that L =LangT.

Note that we do not assert the converse: That if LangT exists, it
must be given for each ¢ as the coend (1).

The unit n of this Kan extension is obtained by setting S= L and
following the chain of isomorphisms. We record the result:

Theorem 2 (Kan extensions as coends, continued.) For the Kan ex-
tension (1) above the universal arrow n: T— LK is given for eachne M
as the composite of an injection iy . of the copower { for f =1g,: Kn—Kn)
with a component of the ending wedge w:

Th—2%2  ,C(Kn,Kn) Tn

j“HC(K m, Kn)+ Tm=(Lang T) (Kn).
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For the left Kan extension we thus have two formulas — (1) above
by coends, and (3.10) by colimits. They are closely related, and simply
constitute two ways of organizing the same colimit information (see
Exercise 1 below). The corollaries of §3 can be deduced from either
formula. Also right Kan extensions are given by a formula

(Rang T)e= | Tm¢©Xm, 3)

valid when the indicated power (powers X, a+>a* in 4) and its end exist.
Consider additive Kan extensions: M, C, and A are Ab-categories
and the given functors K and T are both additive. Then we can describe
a right Ab-Kan extension of T along K as an additive functor R": C— A4
with a bijection (3.2) given and natural for additive functors S. This
functor R’ need not agree with the ordinary right Kan extensions Rang T
obtained by forgetting that K, T (and S) are additive. However, R’
can still be given by a formula (3) with an end, provided the power a¢
involved (for a€ A, C € Ab) is replaced by a “cotensor” a* defined by the

adjunction
A(b, c©) = Ab(C, A(b, ¢)) 4)

for all be A (see Day and Kelly [1969], Dubuc [1970]). For example,
if A=R-Mod, this makes a°=Ab(C,a) with the evident R-module
structure (induced from that of a e R-Mod).

Derived functors are an example. If T: R-Mod— Ab is right exact,
its left derived functors T,: R-Mod— Ab come equipped with certain
connecting morphisms, which make them what is called a connected
sequence of functors (Mac Lane [1963a], Cartan-Eilenberg [1956]);
basic example: If A is a right R-module, the left-derived functors of the
tensor product A ®z— :R-Mod— Ab are the torsion products
Tor,(A, —): R-Mod— Ab.

The left-derived functors T, of T can be described by the following
“universal” property: T,=T, and if S, is any connected sequence of
(additive) functors, each natural transformation S,—»T, extends to a
unique morphism {S,|n=0}—{T,|n=0} of connected sequences of
functors.

This property may be rewritten thus. Embed R-Mod in a larger
Ab-category E with objects (C, n), C an R-module and n a nonnegative
integer, while the hom-groups are E({C,n), (B, m))=Exty ™(C, B),
with composites given by the Yoneda product. Then C+—<C,0) is a
functor K:R-Mod—E. A connected sequence of additive functors
{T,|n=0} is then the same thing as a single additive functor T, : E—Ab
with T,(C, n) = T,(C), while T, on the morphisms of E gives the connecting
morphisms. The universal property stated above for the sequence T,
of left derived functors of T now reads:

Nat(S, K, T)= Nat(S,, T,).
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This states exactly that T, is the right Ab-Kan extension of T=T,
along K:R-Mod—E (and that the unit &: T, K—=T of this Kan ex-
tension is the identity).

For details we refer to Cartan-Eilenberg or to Mac Lane [1963a]
(Where the category E is treated in a different but equivalent way, as a
“graded Ab-category”).

Exercises

1. If the coends in Theorem 1 exist, prove that these coends do give the colimits
required in the formula (3.10) for Lang.

2. For fixed K, describe Lang T and RangT, when they exist, as functors of T.

3. (Dubuc.) If RangT exists, while L: C — D is any functor, prove that Ranpg T
exists if and only if Ran; Rang T exists and that then these two functors (and
their universal arrows) are equal.

4, (Ulmer; Day-Kelly; Kan extensions as a coend in a functor category A°€.)
If C(Km',c)-Tm exists for all m,meM and all ceC, show that
{m',my— C(K m',—)» T m is (the object function of ) a functor M°P x M — 4€.
Prove that T has a left Kan extension along K if and only if this bifunctor has
a coend, and that then this coend is the Kan extension

LangT= [ C(Km, —)* Tm.

Describe the universal arrow for Lang T in terms of the coend.
5. (Ulmer.) As in Ex. 4, obtain a necessary and sufficient condition for the existence
of RangT in terms of the limit formula, interpreted in the functor category A°€.

5. Pointwise Kan Extensions

Given functors
C—~%* ML 4% X (1)

and a right Kan extension RangT with counit ¢:(RangT) K =T, we
say that G preserves this right Kan extension when G <Rang T is a right
Kan extension of GT along K with counit Ge¢:G(RangT)K-=-GT.
This implies (but is stronger than)
GoRang T~ Rang(GT).
We already know that right adjoints G preserve limits. We now show
that they also preserve Kan extensions.

Theorem 1. If G: A—X has a left adjoint F, it preserves all right
Kan extensions which exist in A.

Proof. First a preliminary, for an adjunction

A(Fx,a)= X(x,Ga), xe€X, acA.
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If in place of x we have a functor H:C— X and in place of a a functor
L:C— A, then applying this adjunction at every Lc and Hc gives a
bijection,
Nat(FH, L)~ Nat(H,GL). 2)

(As usual the adjunction switches F on the left to G on the right.)

Now assume the adjunction and a right Kan extension RangT
for some K and T: M — A4. Then for any functor H: C— X we have the
following bijections

Nat(H, Go Rang T)= Nat(FH,Rang T)
~Nat(FHK, T)=Nat(HK,GT),

natural in H; the first and third are instances of (2), and the second is the
definition of the right Kan extension. The composite bijection (for all H)
shows that GoRang T is the right Kan extension RangGT. To get its
counit, we set H = GoRang T and take the image of the identity; we
get Ge, where ¢ : (Rang T) K-> T'is the counit of the given Kan extension.

Corollary 2. If R, ¢ : RK > T is a right Kan extension and A has small
hom-sets and all small copowers, then for eachaec A, A(a,R—) : C — Set,
is the right Kan extension of A(a, T —) : M — Set, with counit A(a,e ).

Proof. The functor A(a, —): A—Set has the left adjoint X+ X * g,
the copower.

Definition. Given C XM T, A where A has small hom-sets, a

right Kan extension R is point-wise when it is preserved by all representable
functors A(a,—): A—Set, for ae A.

Theorem 3. A functor T: M- A has a pointwise right Kan extension
along K:M—C if and only if the limit of (c | K)—~M— A exists for
all c. When this is the case, Rang T is given by the formulas of Theorem 3.1.

Proof. Since A(a,~) preserves limits, any Kan extension given by the
limit formula is pointwise.

Conversely, suppose for each ae A that A(aq, T—): M—Set has a
right Kan extension R”= A(a, R —), as in the figure

MTA—AWSet .

Then for each functor V, as shown, there is a bijection
Nat(V, RY)=Nat(VK, A(a, T—)),
natural in V. This holds in particular when V= C(c, — ) for some ce C, so
Nat(C(c, —), A(a, R —))=Nat(C(c, K—), A(a, T—)).
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We reduce the left hand side by the Yoneda Lemma and the right hand
side by the lemma below to get, with Q the projection (¢ | K) - M

A(a, Re)=Cone(a, TQ:(c | K)— A).
This states that the set of cones is representable, hence that the limit

of TQ exists, q.e.d.
The missing lemma is

Lemma. Given K : M— C, there is a bijection
Cone(a, (¢ | K)—M—C)=Nat(C(c, K —), A(a, T—)).
Proof. A cone t:a-—T(Q assigns to each f:c—Km an arrow
7(f,m): a—Tm subject to the cone conditions; for each h:m—m’,
(Khof,m)=Thot(f, m).

A natural transformation f:C(c, K —)=>A(q, T—) assigns to each
me M and to each f:c—Km an arrow f,,f:a— Tm, subject to the
naturality condition, for each h:m'-—»m. that

ﬂm'(Khof):Thoﬂmf'

The bijection 7« [ is now evident.
This proof of the theorem also shows

Corollary 4. R,c: RK-T is a pointwise Kan extension of T along
K if and only if, for all ae A and c e C,

A(a, Re)—Nat(C(c, K =), A(a, T—))
sending g : a— R c to the transformation with the component
C(c, Km)—E— A(Rc, RK m)2&5, A(a, Tm)

at me M is a bijection.

Exercise

1. In the situation (1), if RangT and RangGT both exist, with counits ¢ and ¢/,
prove that there is a unique natural transformation (the canonical map)
w:GoRangT->Rang G T with ¢’ - wK = G¢, and prove that G preserves Rang T
if and only if w is an isomorphism.

6. Density

A subcategory M of C is said to be dense in C if every object of Cis a
colimit of objects of M; more exactly, a colimit in a canonical way,
for which the colimiting cone consists of all arrows m—c to ¢ from an
me M. More generally, density can be defined not only for an inclusion
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M C C, but for any functor K: M— C. The arrows m—c are then re-
placed by the objects {(m, f: Km—c) of the comma category (K | c).
Recall that the projections P¢, Q¢ of this comma category are given by
P{m, f5>=m, Q°¢m, f> = f, and observe that (the object function of) Q¢
may also be regarded as a cone Q°: K P°—c.

Definition. 4 functor K : M — C is dense when for each ce C
Colim (K | ¢o)—ZE—-M X C) =c, (1)

with colimiting cone the “canonical cone” Q°. In particular, a subcategory
M of Cisdense in C when the inclusion functor M — C is dense in the sense
just defined.

The definition (1) is sometimes phrased, “The canonical map
Colim K P*—c is an isomorphism”; here the canonical map is the unique
arrow k : Colim K P*— ¢ which carries the colimiting cone to Q°.

For example, the one-point set * is dense in Set: For each set X, the
comma category (* | X) is just the set (discrete category) of elements
x € X, each regarded as a function x:*— X, while (1) becomes state-
ment that each X is the coproduct 1 x of its elements (i.e., that a function f
with domain X can be uniquely determined by specifying the value
fx at each xe X).

Dually, a functor K: M —C is codense when for each ce C

Lim ((c|K)—2— M —E . C) =c, 2)

with limiting cone the canonical cone sending {f:c—Km,m) to f.
But this limit is precisely the one involved in the definition of RangK.
Hence

Proposition 1. The functor K : M—C is codense if and only if 1d,
together with the identity natural transformation Idg:K--K, is the
pointwise right Kan extension of K along K.

In this case Corollary 5.4 simplifies (¢ is the identity) to the corre-
spondence sending each f:a—c to the natural transformation

f*=C(f,K—-):C(¢c,K—)>C(a, K—) (3)
(the transformation f* is “composition with fon the right”). Hence

Proposition 2. The functor K : M —C is codense if and only if the
correspondence f +— C(f, K—) above is for all a and ce C a bijection

C(a, &)= Nat(C(c, K~), C(a, K —)); @)
that is, if and only if the functor C°—Ens™ defined by
c—C(c,K—-): M — Ens™ (5)

is full and faithful, where the hom-sets of M lie in Ens.
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Corollary 3. If the hom-sets of M lie in a full category Ens of sets,
then Yoneda embedding Y : M — (Ens™)P | given by Y m = M(m,—) is
codense.

Proof. By the Yoneda Lemma itself, for each F : M —Ens,
(Ens™)°? (F, Ym)=Ens™(Ym, F)~Fm.
Thus the right side of (4) above, with C=Ens™)°?,a=F and c=G

becomes Nat(G, F) = (Ens*)*® (F, G)=C(F, G),

and (4) becomes an identity.

This result is often stated thus: Any functor M—Ens is a canonical
limit of representable functors.

The dual of Proposition2 states that K:M—C is dense if and
only if ¢+~ C(K—,¢) is a full and faithfu] functor C—Ens™"". As an
application, we show that the full subcategory of finitely generated
abelian groups is dense in Ab. We need only show that for K and any two
abelian groups A4 and B the map

Ab(A, B)—Nat(Ab(K —, A), Ab(K ~, B))

is a bijection. First, it is injective: Two homomorphisms f,g:4—B
which agree on cyclic subgroups of A must agree everywhere. Also, it is
surjective: Given 7:Ab(K—, A)--Ab(K -, B), we define a function
f: A—B by taking fa for each ae A to be the value of 7 on the map
Z— A taking 1 to a. Because Z@Z is a finitely generated group, this
function must be a homomorphism. Its image under the map in question
agrees with 1; the proof is complete. Note that the argument proves
more: The full subcategory with one object Z@ Z is dense in Ab. (There
are two summands Z required because abelian groups are algebraic
systems defined by binary operations.)

Exercises

1. In R-Mod, show that the full subcategory with one object R € R is dense.

2. Show that the full subcategory with one object Z is not dense in Ab.

3. Let the image category KM for K : M — C be the subcategory of C with objects
all Km for m € M and arrows all Kh, h in M. Prove that K dense implies KM a
dense subcategory of C.

4. Prove that the objects of a subcategory M generate C if and only if the functor
C — Ens™® given by c— C(K —, c) is faithful.

5. If all copowers C(Km’,c) - Km exist in C, prove that K : M —> C is dense if and
only if each object ¢ e C is the coend

c = }IC(Km, c)*Km

with coending wedge ¢, : C(Km,c)- Km — c given on the injections ir of the
copower as b, ir =f : Km — c.
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7. All Concepts Are Kan Extensions

The notion of Kan extensions subsumes all the other fundamental
concepts of category theory.

Theorem 1. A functor T:M— A has a colimit if and only if it has a
left Kan extension along the (unique) functor K;:M—1, and then
Colim T is the value of Lang, T on the unigue object of 1.

Proof. A functor S:1—A is just an object ae A, and a natural
transformation o : T->SK;, for K; : M—1, is just a cone with base T
and vertex a. Since the left Kan extension L=Lang, T is constructed
to provide the universal natural y : T-> LK, it also provides the universal
cone with base T, and hence the colimit of T.

Dually, right Kan extensions along the same functor K, give limits.

Theorem 2 (Formal criteria for the existence of an adjoint). A functor
G:A—X has aleft adjoint if and only if the right Kan extension
Rangl,: X— A exists and is preserved by G; when this is the case, this
right Kan extension is a left adjoint F=Rangl, for G, and the counit
transformation &:(Rangl,)G—=1, for the Kan extension is the counit
&: FG—=1 of the adjunction.

Proof. If G has a left adjoint F, with unit #:1,-GF and counit
¢: FG—=1,, then we can construct for all functors H : A— C (in particular,
for the identity functor 1) a bijection

Nat(S, HF)~Nat(SG, H), (1)

natural in S : X — C, by the assignments

{6:S -HF}~{SG—C%>HFG—H- . H},
{1:56G> H}—{S —"SGF —F L HF}.

The first followed by the second is the identity o+ g, because the diagram

S —— HF = HF
Snjv JHF'I It
SGF—2%F , HF GF —yp— HF

is commutative (the first square represents the horizontal composite on
in two ways, and the second square is H applied to one of the two
triangular identities for n and &). The composite in the other order is
also an identity, by a similar diagram. Hence we have the asserted
bijection, clearly natural in S. If we take H =1, this bijection shows
that F =Rangl ,, its unit is the image of 6 = 1, so is &. If we take H =G,
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this bijection shows that GF = Ran;G, with unit Ge. Hence G preserves
the right Kan extension Rangl,. We have proved the first half of the
theorem.

We have proved more: For any H, HF = RangH, with unit He. Thus
Rangl, is preserved by any functor whatever (it is an absolute Kan
extension). This is formulated as follows:

Proposition 3. If G: A— X has a left adjoint F with counit ¢: FG—= 1,
then Rang1, exists, is equal to F with counit ¢, and is preserved by any
functor whatever.

Now suppose conversely that 1, has a right Kan extension R along G,
and that this extension is preserved by G. We then have bijections

¢ =@s:Nat(S,R) =Nat(SG,1,), @S —*—>R)=¢¢G,
w=1vg: Nat(H, GR)=Nat(HG, G), w(H—"— GR)=Ge¢"dG,

natural in S: X—A4 and H: X— X, with counit gl =¢:RG—+1, and
Yerl=Ge: GRG-=G. Define 5:1--GR to be p;3'(1: G=G). Then
pn=1,so
GenG=1;.

This is one of the two triangular identities for the proposed adjunction
e:RG-=>1,,5n:1,= GR. The other would be ¢R + Rn=15. Applying the
bijection ¢y, it will suffice to prove instead @(¢R - Rn)=e¢. Putting in
the definition of ¢ in terms of ¢ we are to prove the following square
commutative:

RnG
RG < =—=RGRG
RGe

1, «—*— RG.

Insert the dotted arrow at the top and use R of the (known) triangular
identity Ge+nG=1. The square then reduces to the equivalence of two
expressions for ee: RGRG—1, q.e.d.

The arguments -so far in this section have not used either formula
for Kan extensions. We now examine the meaning of these formulas in
the simple case of Kan extensions along the identity functor I: C—C.
The universal property defining Kan extensions shows at once for each
T:C— A that

Lan,T=T, Ran,T=T.

Consider in particular T : C—Set, and assume that C has small hom-
sets. Then, in the formula for Ran; as an end, all the powers involved
exist, so for every ce C

Tc=(Ran,T)c= [ Tmtem.
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But in Set, XY =Set(Y, X), and by (IX.5.2) the end reduces to a set of
natural transformations

Tc= [Set(C(c, m), Tm)=Nat(C(c, =), T).

The result is just the Yoneda Lemma.

Exercises

1. Show that the bijection (1) (and (5.2) as well) is a special case of a bijection
defined for an adjoint square (Exercise 1V.7.4)

Nat(HG, G'K)=Nat(F'H, KG).

2. Obtain the Yoneda Lemma from the limit formula for RangT. (This gives an
independent proof of the Yoneda Lemma, which was not used in the proof
of §3).

3. (a) IfK:M—Chasaright Kanextension R,alongitself, ¢ : Nat(S,R)= Nat(SK, K),

prove that (R, %, u)> is a monad in C, where = ¢ (Idg), = ¢ "'(e* Re).
(This is called the codensity monad of K.)

(b) Show that K is codense if and only if # is an isomorphism.

(¢) ¥ G:A—X has a left adjoint F:X— A with unit #:/d-->GF and counit
g:FG-1d, then its codensity monad exists and is {GF,#, Ge¢F). (The
monad defined by the adjunction.)

Notes.

The formal criteria for adjoints are due to Bénabou [1965]. The construction of
Kan extensions by limits and colimits, in the critical case when the receiving
category A is Set, was achieved by Kan in [1960]. The impact of this construction
was understood only gradually. In 1963 Lawvere used these extensions in functorial
semantics. Ulmer emphasized their importance, and in an unpublished paper
gave the coend formula (without the name coend) for LangT. Bénabou (unpub-
lished) and Day-Kelly [1969] describe Kan extensions in relative categories
(including Ab-categories). This idea is further developed by Dubuc [1970]; here
the coend formula for Kan extensions plays a central role.

The Cartan-Eilenberg notion of derived functors is, as noted in § 4, the original
and decisive example of a Kan extension. Verdier, by embedding each abelian
category in a suitable derived category, has achieved an elegant form of this
interpretation of derived functors by Kan extensions. For an exposition, see
Quillen [1967].

Isbell, in a pioneering paper [1960], defined a functor K:M—C to be “left
adequate” when ¢—C(K —, ¢) is full and faithful. This assignment is the functor
of the dual of Proposition 6.2; hence by that theorem “left adequate” and “dense”
agree. Isbell has developed the ideas further in characterizing categories of algebras
[1964].

The ubiquity of Kan extensions has developed gradually; I have learned
much in this chapter from my student Eduardo Dubuc; and Max Kelly has
suggested major improvements, notably the use of pointwise Kan extensions.



XI. Symmetry and Braidings in Monoidal Categories

A monoidal category, as introduced in Chapter VII, is a category equip-
ped with binary “tensor” products, associative up to a natural iso-
morphism «. A principal result for these categories was a “coherence”
theorem: If a certain pentagonal diagram (§ VII.1.5) in « commutes, then
all diagrams involving this « must commute. We now consider various
extensions of this result.

First, we observe that this coherence theorem really amounts to an
assertion that the monoidal category is equivalent to a “strict” one; that
is, to one in which the associativity map as well as the maps A and p for
the unit object are always identities. Next, a symmetric monoidal cate-
gory (§VIL.7) is one in which the tensor product is not only associative
but also commutative up to a suitable natural isomorphism y: e[ b =
b O a. Again, a coherence theorem holds, in that all diagrams involving «
and y commute; however, it is not always possible to make y the identity
(i.e., to strictify). These symmetric monoidal categories have y? = 1 (that
is, y is its own inverse), but there are other cogent examples of monoidal
categories where y is a “twist” with y? # 1. These are the “braided”
monoidal categories, they (§4) arise in applications to quantum mechanics
and to knot theory.

1. Symmetric Monoidal Categories

A monoidal category M is a category with a bifunctor, ® or [,
O:MxM-M
written for objects a, b of M variously as a “product™
(a,b) —aOb,a®b,orab
which is associative up to a natural isomorphism
a:albe) = (ab)c (1)
and is equipped with an element e, which is unit up to natural iso-

morphisms

251
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Area=a, p:aexe. (2)

These maps must satisfy certain commutativity requirements; for a, a
pentagonal diagram

a(b(cd)) —2— (ab)(cd) —— ((ab)c)d

1{ lal 3)

a((bc)d) - (a(be))d

as in § VIL.1.(5), and for A and p the two commutativities

alec) —— (ae)c
ul lpl A=p:ee—e. (4)

ac = ac,

The category of all vector spaces over a given field F, with the usual ten-
sor product ® of vector spaces as the product [] and with the one-
dimensional vector space F as unit, is a standard example of a monoidal
category M; with this in mind, monoidal categories are often called tensor
categories.

The assumed commutativities (3) and (4) suffice to show, as in the
Corollary of Theorem VII.2.1, that “every” diagram of o’s, A’s, and p’s
commutes; that is, given any word w in letters a, b, . . . , e, there is a unique
composite of «, A, and p mapping w to a word with all parentheses start-
ing in front and all ¢’s removed. (For example, by (4), any e can be re-
moved before or after the application of an associatvity «, with equal
results.)

Examples to be presented later suggest the idea of a “braiding”.

A braiding for a monoidal category M consists of a family of iso-
morphisms

Yap:a@0b=b[la (5)

natural in a and b € M, which satisfy for e the commutativity

¥
alJe —— e[Ja

”l P (6)

a = a

and which, with the associativity &, make both the following hexagonal
diagrams commute (with the symbol [] omitted):
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(ab)e —1— c(ab) abe) —— (bc)a
Ja-l J J Ja-n
a(bc) (ca)p  (ab)c b(ca) (7
l.yl Jy.l Jy.l Jl.y
alcb) —— (@b, (baje —“— blac).

Note that the first diagram replaces each y,; . which has a product ab as
first index by two 9’s with single indices, while the second hexagonal dia-
gram does the same for y, ;. with a product as second index. Note also that
the first hexagon of (7) for y implies the second diagram for y~!, and con-
versely. Thus, when y is a braiding for M, then y~! is also a braiding for M.

A symmetric monoidal category, as already defined in §VIL 7, is a
category with a braiding y such that every diagram

Yap
ab —= - ba

\ J (®)

ab

commutes. For this case, either one of the hexagons (7) implies the other.
The coherence theorem for monoidal categories, as proved in Chapter
VII, will now be extended to the symmetric case, using the symmetric
group S, on n letters. As in §VIL.2, we will consider [J-words w in n
letters and also permutations t of S,. For each symmetric monoidal
category M, a “permuted” word wr determines a functor (wt),, :
M™ — M, defined by permuting the arguments of w by 7, as in

(wo)pla,...,an) =wWas,...,amy, aeM.

Theorem 1. In each symmetric monoidal category M there is a function
which assigns to each pair (vo, wt) of permuted words of the same length n
a (unique) natural isomorphism

cany(ve,wt) : (vo)y — (W) : M" > M, 9)

called the canonical map from vo to wt, in such a way that the identity of
M and all instances of « and y are canonical, and the composite as well as
the [J-product of two canonical maps is canonical.

Proof. There is always at least one such map between different per-
muted words, since we can use instances of o to rearrange the parentheses
and instances of y to transpose adjacent arguments. This will provide for
any desired permutations of the arguments, since all the permutations of
the symmetric group can be achieved by successive transpositions. The
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identities (7) show that interchanging a single argument ¢ with a product
of arguments can always be replaced by successive interchanges of indi-
vidual arguments.

It remains to show that any two such composites (“paths”) from
(vo),, to a (wr),, are equal. From the monoidal coherence theorem
(§ VII. 2) for associativity alone, we already know that any two sequences
of applications of « to get from a (va),, to a (wt),, will be equal. Hence,
we might as well assume that the product [] is strictly associative and
that « is the identity. In this case, the two hexagons (7) can be replaced by
two triangles

abe —— cab abe —— bea
17\/11 71\/ (7a)
ach, bac.

These identities show that we need only consider successive steps
which interchange two adjacent letters @, b. Now the symmetric group S,
is generated by the transpositions z; = (i, 1 + i) of successive letters for
i=1,...,n—1. And any closed path consisting of such transpositions
will correspond to a relation between these generators z;. It is known that
all such relations are products of conjugates of a number of the known
“defining relations”, which (for S,) can be taken to be just the relations

=1, i=1,...,n—-1,
(it =1, i=1,...,n=2, (10)
T = 1T, I1<i<j—-1Zn-2.

Hence, to prove coherence, we need only show that for each such relation
the corresponding diagram of paths is commutative.

The first relation t? = 1 matches the assumed property y> = 1 of (8).
For the third relation, the naturality of y suffices. For the second relation
(1112)3 = 1, the naturality of y,, and the two triangles (7a), relabelled,
give a commutative diagram

abe - bac
/ \1 ’
Yach
ach bca (11)
71 Yeah 71

cab — cba
1.y

The perimeter here reads 1) 13 1) = 13 71 T2, as desired for (10).
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This coherence theorem also extends to include the use of the maps
A and p which remove units. The assumption (6) provides that we can
remove any unit before or after an application of y, and the corre-
sponding result for « is already known. The precise formulation of the
resulting theorem is left to the reader; it requires consideration of words
with more than » arguments, some of which are taken to be the unit. We
note also that the statement of the corollary of § VIL.2 requires similar
adjustment in the use of “words” involving e. The result still expresses
the fact that “all formal diagrams involving just «, y, p, and y will
commute™.

2. Monoidal Functors

For any category with added categorical structure it is in order to define
the corresponding structure for functors and for natural transformations.
Here we consider the monoidal case again (§ VIL. 1).

A monoidal functor (F,F>,Fy): M — M’ between monoidal cate-
gories M and M’ consists of the following three items:

(i) An (ordinary) functor F : M — M’ between categories;
(ii) For objects a, b in M morphisms

Fy(a,b): Fla)(OQF(b) — F(a[1b) (1)

in M’ which are natural in 2 and 5;
(ili) For the units e and ¢, a morphism in M’

Fo:d = Fe. (2)

Together, these must make all the following three diagrams, involving the
structural maps «, A, and p, commute in M’

F(a) O (F(b) O F(c)) —“— (F(a) OF(b)) OF(c)

lIDFz JszEll

Fl@O(F@®Oc) (F(eOb)OF(e)) ©)
lpz JFZ

F(aCl(bOc) @, FeOs)Oe,
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Fp)Oe —2—  F(b) JOFpP) —— F(b)

ll 0O F, Ip(p) IFO mp! IF(D

F(p)OF(e) —— F(bOe), F(e)OF () > FleOb).
4)

B

The evident composite of two monoidal functions is monocidal.

A monoidal functor is said to be strong when Fyp and all the F>(a, b)
are isomorphisms, and strict when Fy and all F>(a, b) are identities (recall
that a monoidal category is strict when o, 4, and p are identities).

A monoidal natural transformation @: (F,F,, Fy) — (G, G2, Gp) :
M — M’ between two monoidal functors is a natural transformation
between the underlying ordinary functors 6 : F — G such that all the
diagrams

Fla)OF(b) —2— F(aOb)

loa 06 lo.,m (5)

G(a) 1 G(b) —2— G(aOb)
and

Fy
¢ ——— Fe

loz (6)

0
¢ —— Ge

commute in M’. The evident composite of two monoidal natural trans-
formations is natural.

For a monoidal function F, the maps F, for the product and Fp for
the unit can be extended to the functors defined by arbitrary tensor words
v in n letters (as these words are defined in § VIL.2). This will give for each
such functor v a transformation

F,:v(Fai,...,Fa,) — Fo(ay,...,a,) )

natural in ay,...,a,, such that Fr; is F, and F, is Fy. Indeed, words are
defined inductively as tensor products v []v’ of shorter words and we
take F,qy as F>(F, (] Fy). With this definition it is evident that all dia-
grams in these natural transformations commute. Specifically, if v and w
are two such [J-words in »n letters, the coherence theorem gives a unique
natural transformation # : v — w constructed out of the maps «, p, and A.
Thus by induction, the diagram
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vo(Fay,...,Fay) _5, Fyay,...,an)
T
w(Fay,...,Fay) LN Fwlay,...,an)

commutes. (This is just the extension of conditions (3) and (4) to arbi-
trary words.) Moreover, for any monoidal natural transformation
6 : F — G between two monoidal functors and for any word v, the dia-
gram

v(Fay,...,Fa,) _r, Folay,...,a,)
lu(e,,‘ yeesBan) ngv (@1,---,an) 9)
v(Gay,...,Gay) — Gu(ay,...,a,)

v

commutes; this condition generalizes the conditions (5) and (6).

If B, B' are braided (or even symmetric) monoidal categories, a
braided monoidal functor is a monoidal functor (F,F;, Fy):B — B
which commutes with the braidings y and ¥ in the following sense:

Fa(OFb —'— Fb[OFa

P

FlaOb) 2, FbOa) ;

here y and ¥ are the braidings of B and B, respectively. The category of
braided monoidal categories has morphisms these braided monoidal
functors.

3. Strict Monoidal Categories

Theorem 1. Any monoidal category M is categorically equivalent, via a
strong monoidal functor G: M — S and a strong monoidal functor
F: S — M, to a strict monoidal category S.

(Recall that the monoidal category is said to be “strict” when the struc-
ture maps a, ¥, and p are all identities.)

Proof The coherence theorem yields unique “canonical” maps be-
tween words; hence, the plan of the proof is to embed the given category
M in a larger strict monoidal category S consisting of iterated formal
products (where all pairs of parenthesis start in front) of elements of M.
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S will be the free monoid generated by the elements of M. Specifi-
cally, take the objects s of S to be all finite strings s = [by,...,bx] of
objects of M, including the empty string . A product s [J ¢ of strings s
and ¢ is then defined by concatenation of strings, as s - #. This product is
associative, so the associativity map « for S can be the identity. Also, the
empty string ¢ acts as a unit for this product, so the maps p and A for S
can both be the identity. With these agreements, S is an associative
monoid with a unit, but not yet a monoidal category.

Now define a map F : § — M on strings in S by setting

F(Q)=e7
F(s) =Flby,...,be] = (...(51 Ob2) Ob3)...) Obx) s (1)

where on the right all pairs of parenthesis begin in front. Now define the
arrows s — ¢ between strings s and ¢ in S to be exactly the arrows between
the corresponding objects in M,

F(s) — F(2), (1)

with composition just as in M. This convention clearly makes S into a
category. Then the concatenation product s- u can be extended to a cor-
responding product f - g of arrows f : s — tand g : ¥ — v, where u and v,
like s and ¢, are finite strings of objects of M. Specifically, this means that
we define f - g as the following composite in M:

F(s-u) — F(s) OFw) L84 F() O F(v) — F(t-v) ;

here the two outer arrows are the canonical maps in M. For a triple
product with a map 4 : w — p of strings, iteration of this definition gives
(f - g) - h as the composite of canonical maps, therefore also canonical.
The coherence theorem for monoidal categories then shows that this
product f - g of arrows is strictly associative. Hence, S is a strict monoidal
category. Moreover, F is a strong monoidal functor if we take Fy to be
the identity e — e and F5(s, #) to be the unique canonical map (move all
parentheses to the front)

F(s, ) F(s)OF(t) - F(s-1) . (2)

With this definition, the requirements (3) and (4) of §2 for a monoidal
functor follow from the coherence theorem for the monoidal category M.

A strong monoidal functor G : M — § in the opposite direction with
G(b) = [b] is defined for b, ¢ in M by noting that G(b)- G(c) =
[blc] = [, €] and by setting
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G)=[@l, G =f,
G0=1:®_’[e], (3)
Gyb,c)=1:[b,c]— .

Here the last map is 1 because by the definition (1) above a map of
strings [b, ¢] — [b [ c] is just a map b [Jc — b ] c in M. The conditions
(3), (4), and (4') of §2 on G then follow. In the case of (3), observe that
the map G, [J1is

(G(a) - G()) - G(c) 2B G(a3b) - G(o)
[a,b,(,‘] ’—)[an7 (,‘] 3

therefore, by the definition (1) of maps in S, must be the map
:a[J(bOc) — (edb) Ocin B as a map in S; this matches the map
G(a) at the base of (3) of 2, while &/ = 1 is at the top. The composite
functor F G : M — M is the identity, while the composite G F is naturally
isomorphic to the identity. Hence, the monoidal category M is indeed
categorically equivalent (by monoidal functors) to the strict monoidal
category S, as claimed.

Conversely, the equivalence given in the conclusion of this theorem
will yield the coherence theorem as an easy consequence:

Theorem 2. If the monoidal category M is equivalent by a strong mon-
oidal functor G: M — S to a strict monoidal category S, then coherence
holds for the associativity of the tensor product [] in M.

Proof. Suppose that v and w are two tensor words in k letters, while
@ and & :v— w are two natural transformations between the corre-
sponding functors, both constructed as combinations of the associativity
transformation « in M. Now use the natural transformations G, and G,
constructed as in (2.7) from G, and Gy. As in (2.8), the diagram

v(Gay,...,Ga,) _% w(Gay,...,Gay)
lGu le
GOm
Golaiy,...,a,) —— Gw(ay,...,a,)

commutes, as does the corresponding diagram for &'. Here, 0. is short for
#(Ga,...,Ga,) and 6, short for 8(ay,...,a,). But since the monoidal
category S, with G : M — §, is strict and 6 and & are both constructed
from «, we have # = @' in S. Then comparing the diagrams above for @
and for &, with G, and G, known to be isomorphisms, we find that
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GOy = G0, But G is an equivalence of categories, so there is also a
functor F : § — M in the opposite direction with F G = 1. But we have
F Gy, =F G6,. With F G = 1, this implies # = #' in M. In other words,
coherence for associativity (and likewise for p and A) holds in M, as
claimed.

Exercises

1. For any category C, show that the functor category C€ with composition as
tensor product and 1. as the unit is a strict monoidal category.

2. If, in Exercise 1, C = M is a monoidal category, show that there is a strong
monoidal functor (T, T3, To)M — M™ in which, for a, b, ¢, in M,

T@=ad-,
Ta(a,b), = vapc:ald(bOc) = (@aOdb)Oc),
(Ty)a=Ai(@)':a— eOa.

In particular, note that the conditions (3) and (4) above for this monoidal
functor T became the conditions (5), (7), and (9) of § VIL.1 in the definition of a
monoidal category.

3. Use the above results to give another proof, independent of this coherence
theorem, of Theorem 1 above. Note that this gives an independent proof of
coherence, as in Theorem 2 above.

4. The Braid Groups B, and the Braid Category

Now we introduce the promised actual braids and the resulting category
of braids.
A braid on three strings, such as the following one

XS >

is formed by twisting the strings around each other in space without cut-
ting or tying them. One such braid can be multiplied by a second one by
attaching the right-hand ends of the first strings, in order, to the left-hand
ends of the second set of strings. Two braids are said to be equal when the
first one can be continuously deformed into the second without crossing
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or cutting strings. Here are some labelled examples of braids on three
strings, including an inverse and two products:

b h

o gyt 010261 G010

An evident deformation of the last diagram into the preceding one sug-
gests the equality

010701 = 630105 . (1)

The multiplication of these braids is clearly associative and has an iden-
tity (three untwisted strings) and an inverse. This may serve to indicate
the definition of the Artin braid group Bs. It is generated by oy and o,
subject only to the relation (1). A corresponding description yields the
braid group B, on » strings.

More formally, this braid group B, can be defined as the fundamental
group of a suitable space T, that of n-tuples of distinct points. Indeed, let
P be the Euclidean plane and take the space T, to be the set of all »-
tuples of n distinct points of P, with the evident topology. Thus, the Artin
braid group B, can be defined formally as the fundamental group of this
space T,.

The braid group B, clearly can be generated by the n — 1 braids gy,
where o; twists the i-th string once under the (i 4 1)-st string. Its inverse
af‘ is indicated above, with a suggested deformation of )07 0 into
03 61 g;. Indeed, the defining relations for these generators o; of B, are as
follows:

0;0i410; = 0,41 0;0i11, alli=1,...,n—1, (2)
giop=0;0;, li—jl#1. 3)

The braid group B, is simply the infinite cyclic group on the (single)
generator g;. The braid group B, consists of just the identity.

Each braid on n strings determines a permutation of the n end-points
and hence a homomorphism B, — S, onto the symmetric group S, on n
letters. We recall that S, is generated by the n— 1 transpositions
7; = (i,i + 1) which interchange the letters i and i+ 1, and that S, is
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defined by these generators and the following relations:

=1, nuy=ynu, li-j#1, (4)

T i =T Gitist, i=1l,...,n—=1. (5)

This again shows the homomorphism ¢;— t; of B, onto S,,.

All the braid groups may be combined to form the braid category B.
The objects are all the natural numbers » = 0,1,2,... (including zero)
and the arrows are the braids n — n; there are no arrows n — m for
n # m and only the identity arrow § — (). This defines a monoidal
category, with the box product [J-B x B— B given by ‘“‘addition”
[0 = +; here the sum of two objects (natural numbers) m and » is the
usual sum of numbers, while addition of braids is the operation: lay the
braids side by side:

T T

This operation is clearly (strictly) associative and has the empty braid on
& as unit. Hence, the braid category B is, under +, a strict monoidal
category. It is almost a symmetric monoidal category; the addition of
objects m+n is commutative and one can define a transformation
Ymp : M+ n — n+m by crossing m strings over r strings, as in the fol-
lowing figure (for m = 3, n = 2):

This y natural in m and »n, as one can see pictorally (Joyal-Street, [1993])
for braids £ : m — m and 5 : n — n in the following schematic diagram:
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The symmetry requirement y? = 1 fails, but both hexagons apply, as
suggested in the following diagram (where the associativity is evidently

N /\
ED

The realization of a braid by twisted strings directly suggests the use
of braided categories for string theory in theoretical physics.

5. Braided Coherence

As we have seen in §1, coherence for a symmetric monoidal category
holds; all formal diagrams involving just associativity o and commuta-
tivity y are commutative. This is by no means the case for a braided
monoidal category B; given two objects a and b in B, there might be an
infinite number of ‘“‘canonical” automorphisms of a [] &, as follows:

Ly%y .y 5y, ia0b—aOb. (1)

In this way, a subgroup of the braid group B, acts on a []b; as a result,
all diagrams in y do not commute.

The general situation is similar and is described by the following
“coherence” theorem of Joyal-Street [1993)]:

Theorem 1. If B is the braid category and M a braided monoidal cat-
egory, with My the underlying (ordinary) category, there is an equivalence
of categories

homBMc(B, M) ~ Mg y (2)
where hompymc stands for the category of strong braided monoidal functors

F : B— M. The equivalence (2) is given by evaluating each such functor
F : B— M at the object 1 of the braid category B.
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Proof. By Theorem 3.1 the monoidal category M is strongly equiv-
alent to a strict monoidal category S. The braiding y of M readily trans-
lates by this equivalence to a braiding of S, so that the equivalence
M — S is a strong morphism of braided categories. It therefore suffices
to prove the theorem with M replaced by a strict monoidal category S.
We will then show that there is an isomorphism of categories

hompwms(B, S) = So , (3)

where homgys stands for strict braided monoidal functors F and the
isomorphism is again given by evaluation at 1 € B. The correspondence
(3) sends each such functor F to the object F{1) of S. Conversely, given an
object a of S, we wish to define a strict braided monoidal functor
F =F,: B — S with F(1) = a. Since F is to be strict, it must preserve the
product, so we set F(n) = a". In the braid category B, the maps n — n
must be sent to maps a"” — a” in S. These maps n — n in B are exactly
the elements of the n-th braid group B,, which is generated by the stand-
ard maps g;, i = 1,...,n~ 1. In particular, ¢ : 2 — 2 must be mapped to

F(a’):ylz’a:az—uz2 inS.

In B, the map g; (twist string i under string / + 1) can be written as a sum
(i.e., a [ product)
g=li1+a+1,1, a" —a".
Therefore, we must (and do) set
n

Flo))=1i-1 4 Ygu + lp—ic1, a" —a".

We must then check that F preserves the defining relations of the braid
group B,. The relations

G'iG'j=G'jG'i, [i_j|>17
are immediate, while the relation
0i0iy10; =041 0; 041

follows from the two commutative hexagons for y, as they are illustrated
in the diagram (11) of § 1, for the case when i = 1.

To complete the definition of the monoidal functor F = (F, Fp, Fp),
we must also produce a suitable map Fy and a map

Fa(m, n) : F(m) O F(n) — F(m+7),
natural in m and n. This must be a map

am D an - am+n
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for the chosen a = F(1). But since the sum of a braid m — m and one
n — n simply lays these braids side by side, we can take this map to be the
identity.

We also need a map Fy : ¢ — Fe; here, € is the unit object of .S, while
e =0 and so F(e) = ¢; so we can take Fp to be the identity; with these
choices, F is indeed strict.

Finally, we show that the operation “evaluate at 1” of (3) is an
equivalence of categories by showing that it is full and faithful. In-
deed, given two strict monoidal functors F, G: B — S and a map
J : F(1) — G(1) in S between their images (by evaluation at 1) in Sy, we
wish to have a natural transformation 8 : F — G for which @ at the object
1 is the given map f. But in B, the object n is the n-fold J-product of
objects 1, while S is a strict monoidal category and so has n-th powers by
0. For a [J-word w with n factors, the strict monoidal functor F yields
an isomorphism F,, : F(1)" — F(n); also, this word with all n arguments
equal to a yields the n-th power of a in B or in S. Hence, the desired
natural transformation 8 : F — G with (1) = f must make the following
diagram commute:

Fa)r L 6y

;JFW JG,., ;

F(n) — G(n)

so we must define 6§, by this as G, f"F, 1. From the properties of F,, and
G,, it follows that @ so defined is natural.

Note. This proof follows the argument of Joyal-Street in a preprint
[1986]; it was not introduced in the subsequent published paper [1993].

The result is a coherence theorem, but not in the usual sense. It does
not assert that every diagram in the basic maps «, 4, p, and y commutes,
but it does serve to describe all the composites of these maps and then all
the endomorphisms they generate for an iterated tensor product. Each of
these maps has an underlying braid, as for example in

(edb)dc a b ¢
\\/
I <
e
cO(edb), ¢ a b.
This braid gives the pairing of the variables for this map as a natural
transformation. The result can be stated informally (Joyal-Street [1993])
as follows: Two composites of «, 4, p, and y are equal if they have the

same underlying braids.
The resulting coherence theorem can be stated as follows:
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Theorem 2. Each composite of the canonical maps acting on an n-fold
product in a braided monoidal category M induces a braiding (an element
in the braid group). Two such composites are equal for all M if and only if
they give the same element in B,,.

6. Perspectives

The study of braided categories has many connections with other mathe-
matical topics, as well as in the study of parts of quantum field theories in
Physics. Some of these connections arise in string theory in Physics. There
the paths of elementary particles weaving around each other can form a
braid — and then something more, with two strings joining or separating,
as in the case of the Feynman diagrams representing the collision and the
separation of elementary particles; here, we consider the braid as com-
posed of paths (not by a moving point but by a moving “string” in a
different sense, say as an oscillating circular string. Our paths (called
strings above) are then replaced by tubes with a (topologically) circular
cross section. An array of a finite number of such tubes can then be re-
garded as the morphisms (the paths) of a braided category. These tubes
can be each given a conformal structure and the same applies to the col-
lisions, as in a Feynman diagram (see Mac Lane [1991]. These con-
structions also play a role in Tannaka duality for compact topological
groups (see Doplicher-Roberts [1989]).

In a different direction, the one-dimensional strings in one of our
braids may be replaced by ribbons, and these ribbons can given one or
more twists, clockwise or counterclockwise (see the ribbon categories of
Shum [1994]). There are extensive connections to knot theory (Kauffman
[1991, 1993] and again to Physics. The strings of a braid may be replaced
by “tangles”. In a tangle, a string may start out at the bottom line, twist
around various other strings, and then return to a different point on the
starting line, as for example in the following diagram:

Finally, there are striking connections to Hopf algebras and to quan-
tum groups (which are generalized Hopf algebras). There is an extensive
bibliography in the monograph by Schnider and Sternberg [1993].



XII. Structures in Categories

In this chapter, we will examine several conceptual developments. We
start with the idea of an “internal” category, described by diagrams
within an ambient category. We then go on to study the sequences of
composable arrows in a category — they constitute the “nerve” of the
category, which turns out to be a simplicial set.

From this point, we turn to consider “higher-dimensional’” categories
such as a 2-category, which has objects, arrows, and 2-cells between
arrows, and so on, to categories with three cells and beyond.

1. Internal Categories

In this section, we will work within an ambient category E which is
finitely complete; that is, which has all finite products, pullbacks, and a
terminal object. As already observed in our introduction, we can define
monoids, groups, graphs, and other types of algebraic objects within E.
Following this pattern, we can define a category within E — called a cat-
egory object in E or an internal category in E.

Such an internal category C = (Cy, C1,1,dp, dy,y) is to consist of two
objects Cy and C; of E, called respectively the “object of objects” and the
“object of arrows”, together with four maps in E:

i:Cy— Cp,dp,d: Cr — Gy, y: C x G — Cy, (1)

called identity i, domain d;, codomain 4, and composition y; here, y is
defined on the following pullback C; x ¢,Ci:

.7
C1XcC1 _z) C
0 1

l ld' e

C LN G,

which is thus (for E = Sets) just the object of all pairs of composable ar-
rows. These four maps (1) are subject to the following four commuta-

267
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tivity conditions, which simply express the usual axioms for a category.
Thus,

dyi=l=dji: Co— G (3)

specifies domain and codomain of the identity arrows and then

ix1 1xi
Co X CoCI —>C1 X CoCI — C1 X COCO

A
G = G = Cr,

asserts that identity arrows act as such under composition y, then

Ty )
C, +—— Ci X gCi —— C

N

Co —— Cy —

which specifies the domain and the codomain of a composite and

yx1
C1 X COCl X COCI —_— C1 X COCI

ny P (6)

C1 X COCI ———y—> Cl

which expresses the associative law for composition in terms of the (evi-
dently associative) triple pullback C; x C; x Cj. This definition is essen-
tially the same as that previously given in §I1.7.(3).

Since these diagrams express the category axioms, a category object in
Sets is just an ordinary small category. Also, a category object in Grp is a
category in which both the set Cy of objects and the set C; of arrows are
groups, and for which all the structural maps i, dy, d;, and y are homo-
morphisms of groups. This means for the case of i and dp that the
diagrams

CoxCo ——=Cy CxC -2 ¢
Jz‘xi Ji Jdoxdo ldo
CixC —2c, CoxCo—2s G

commute, where mg and m, are the multiplications in the groups C; and
C1. But Cp x Cp with Cy x Cy give the product category C x C, so these
diagrams also mean that the group multiplications my and m; together



Internal Categories 269

give a morphism of categories; that is, a functor m : C x C — C which is
associative and has an inverse. Thus, the given category object in Grp is
the same as a group object in Cat.

A similar interchange between algebraic structures holds generally:
The category of X objects in that of Y objects is also the category of ¥
objects in the category of all X objects.

An internal functor f : C — D between two internal categories C and
D in the same ambient category E is defined to be a pair of maps
Jo: Cy— Dp and f; : C; — D of E which as the “object” and “arrow”
functions make the evident diagrams commute:

do i
G xaC 225 Dixp Dl € —= G ——
d
J'}’c J'YD fIJ, foJ. ﬁJ. (7)
do i
Ci L» Dy, Dy ——3 Dy — D;.
d)

Similiarly, one may also readily describe an internal natural trans-
formation between two internal functors from C to D.

However, these internal functors C — D go from C to another in-
ternal category D and not from C to the universe E; there is no internal
category corresponding to the universe. Thus, internal functors in Sets do
not include functors H : C — Sets (such as the omnipresent hom-func-
tors). This leads to a reformulation of the concept of such functors H.
Since the set Cp of objects is small and the category of sets is cocomplete
we can replace the object function Hp : Cy — Sets by a coproduct of sets
and its evident projection to Cp,

7Z:H0=HH()C——>C0. (8)

ceCy
The actions of arrows [ : ¢ — ¢’ then combine to yield an “action” map
C1 X COHO — Ho .

Hence, given an internal category C in E, we are led to consider ob-
jects in E “over” Cy such as z : Hy — Cp, dp : C; — Cp. A left Cy-object
in E is thus defined to be an object 7 : H — Cp over Cy together with an
action map

.u:CIXCoH—_’H, (9)

where for this pullback C; is an object over Cy via the domain map
dy : C; — Cy. This action map u is to be a map “over (p”, in the sense
that the following diagram commutes, where p; is the projection on the
first factor:
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C1XC°H——£‘—> H

J}m J}ﬂ (10)

4
¢t —— Go;
it is also to be just like the action of a group on a set, in that it must sat-
isfy a unit law and an associative law, as follows:

ix1
CixggH —— CixcH

|
P2

7 (1)

Ixpu
Cl X COCI X CoH — (1 X COH

lrxl J,#
CixqH —f— H.

Such a left C-object is also called an “internal diagram™ on the internal
category C or (Borceux) an internal base-valued functor. The essential
point is to observe that when E = Set, this includes precisely the familiar
functors to the ambient category Set from a category in Set.

A morphism H — K of such (left) C-objects is then simply a mor-
phism ¢ : H — K in E which preserves the structure involved, that is,
which makes both the following diagrams in this morphism ¢ commute:

1
H_* .k CxoH—2s CxgkK
Jf Jf J}ll Jf (12)
Go Go H Y K.

For ordinary set-valued functors, H and K, this makes ¢ exactly a natural
transformation; the first diagram states that ¢ sends each H{(c) to K(c),
and the second diagram states that this commutes with composition (as
required for naturality).

In §8, we study category objects in groups.

2. The Nerve of a Category

Given a category C (in Sets), the pullback C; = Cy x ¢,C1, as used
above, consists of the composable pairs of arrows of C. Similarly we
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comnsider, as in § I1.7.(5), the composable strings

A S S

of n arrows, with
dfi=dofr. difii =dofn. (1)
They are the elements of the iterated pullback
Cr=Cy x C1 X - X €1 (n factors) . (2)
With Cj, this sequence of sets
Co, Cryeo ey Cpy- -

actually constitutes a simplicial set (in the same sense as defined in
(§VILS). For n=1, we already have the “face operators” dp,
dy: Cy— Cp. For n>1, the “face operators” d;=C, — C,—; for
i=0,...,n are defined by deletion or by composition of adjacent arrows
as in

do(fr,- s fo) = (S, f)
di(.fl;"')f;l):(ﬁa"',ﬁ.fj:-i-l’“',f;l)’ j=17"'7n—17 (3)
G fiseo s Jo) = (s o5 Sam1) s

while the degeneracies 5; are defined by inserting suitable identity maps
i4,y at suitable positions, as in

SO(fly---;f;l) = (idoﬁ7ﬁ7ﬁ7"'7ﬁl) s
Sj(ﬁ"")f;l)z(ﬁ7"'7 j;id1ﬁ7ﬁ+1,'~'7f;l), (4)

for j = 1,...,n. The results are again composable strings of arrows. The
required identities for face and degeneracy operators, as stated in
§ VIL.5.(11), are readily verified. The geometric meaning may be illus-
trated by placing the arrows f; on edges of simplices, so that the compo-
sitions are evident, as in

[ ]
*e— e

° S5
~L .
fifa 5 ﬁfzﬁ ////
, o— e, o L.
S A b
The nerve of an internal category in E is similarly a simplicial object
in E.
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Exercise

1. Verify the face and degeneracy identities for the operations as defined above
for the nerve.

3. 2-Categories

A 2-category is a system of 2-cells or “maps” which can be composed in
two different but commuting categorical ways.

A first example (see § I1.5) is that in which natural transformations are
the “maps”. Given three functors

RS,T:C—B

and natural transformations o : R — S and 7 : S — T, we have defined in
§I1.4 a “vertical” composite natural transformation rec: R — T by
(re0)(c) = 1cooc for each object ¢ of C. This is a first natural trans-
formation o followed by a second

R R
— —
c ﬂ B, C ﬂmB
— —

T

ﬂ,

——
T

But there is also a horizontal composition of natural transformations,
matching the composition of functors (§I1.5) as in the diagram

R R R'oR
—_—— _ B
C ﬂa’ B ﬂa’ A y C o'oﬂﬂ A y
_— —_— _—
N A S'eS

with (¢’ o 0)c = 'S ¢ o R'ac for any object ¢ in C. Both compositions are
associative, and they commute with each other (Theorem I1.5.1).

Similarly, there are two commuting ways of composing homotopies
between continuous maps. Recall from topology that a homotopy
0 : f ~ g between continuous maps f and g of a space X into a space Y is
a continuous deformation
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of the map finto g; that is, a continuous map 6 : X x I — Y, where I is
the unit interval and the identities 8(x, 0) = f(x) and 8(x, 1) = g(x) hold
at the start 0 and the end 1 for each point x in X. A second homotopy
@ = g ~ h has with @ a vertical composite p @ §: f ~ h (see below). Also,
maps f/, ¢’ : ¥ — Z and a homotopy & : f' ~ g’ between them give with
6 a “horizontal” composite & 0 §: f' o f ~ g’ o g of the composite maps.
However, the expected vertical composite ¢ o § of two homotopies, which
uses @ for 0 < t < 1/2 and then ¢ for 1/2 <t < 1, is not associative.
Hence, to get categoricity we must we must use as 2-cells the homotopy
classes of homotopies! Again, the horizontal composition commutes with
the vertical one.

These examples (and others) lead to the general notion of a 2-category
to be a structure consisting of objects, arrows between the objects, and 2-
cells between the arrows, where the 2-cells can be composed in two ways,
“horizontal” and “vertical”.

Start with an ordinary category C with objects a, b,... and “hori-
zontal” arrows f : a — b. A 2-category IT on C has, additionally, certain
2-cells  : f = g with domain f and codomain g, where f and g are par-
allel arrows in C, say from a to b, as displayed in

a:f=>g:a—b (1)
or pictured (vertically) as
f h
e} TN
a ﬂ b, b ﬂp c. @)
\g_ﬂ Y

These 2-cells have two different compositions. First, if
o« f'=>g:b—c (3)

is a second 2-cell, there is a horizontal composite 2-cell o o o

s ! Sflof
a ﬂ,“ o ¢c=qa doa C (4)
\IANTT 2~

g g g'og

which matches (above and below) the given composition of arrows. We
require that the 2-cells form a category under this horizontal composi-
tion. In particular, this means that there is for each object b an “identity”
2-cell1:1 = 1:b— b, acting as a 2-sided identity for this composition.
Also, both “domain” ¢+ f and “codomain” o> g are functors from the
horizontal category of 2-cells to the horizontal category of arrows.

Moreover, for each pair of objects a, b, the 2-cells from a to b are the
arrows of a category under a “‘vertical” composition, as in
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s s
——— —
a aﬂ b a Boa b y
—— gives - (5)
s
—_—
h

with a solid dot denoting this vertical composition. There are also vertical
identity 2-cells 17 : f = f for this composition.

Two additional axioms relate the horizontal to the vertical. First, we
require that the horizontal composite of two vertical identities is itself a
vertical identity, as in the diagram

f f frof
_—
a ﬂlf bob ﬂlﬂ c=a ﬂlﬂf ¢, lpr=1pols.  (6)
e
f f frof

Next, given the array of 2-cells
w:f=>g:a—b, dod:f'=4¢d:b—c, (N
B:g=h:a—b, B:d=HH:b-c,
the composites involved in the display
f s

a aﬁ b dﬂ ¢ (8)
)

N

hl

must satisfy the equation
(B op)e(dom)=(fed)o(Bea): fof=>hoh:a—c. (9)

Here (as elsewhere), the solid dot e is used for vertical composition
and the small circle o (or just juxtaposition) for horizontal composition.
This axiom (9) is called the “middle four exchange”, because it inter-
changes the middle two arguments in the sequence of the four 2-cells £,
B, o, and a.

Note that this structure also provides a horizontal composite of a 2~
cell with a 1-cell — just compose the 2-cell with the vertical identity of the
1-cell, on either side, as in f’ o «,
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s i rf
, R
a ﬂa b ﬂlﬂ c=a ﬂf’oa c, (10)
—
g f e

also written (as a “whisker” /' on the 2-cell «) as follows:
f/
a aﬂ b —— ¢. (11)

This definition of a 2-category does include the examples of 2-
categories adduced above: the 2-category of topological spaces, con-
tinuous maps, and classes of homotopies, and the 2-category CAT of
small categories, functors, and natural transformations.

It is convenient to write T'(a, b) for the vertical category on the
objects a and b. Then the middle four interchange (9) and the rule (6)
for the vertical identities together mean that horizontal composition is a
bifunctor between vertical categories:

Kope:T(b,c)xT(a, b)— T(a, c). (12)

Also, the operation U, which sends any object a to its identity arrow
1, : @ — ais a functor from the terminal category 1 (with one object, one
arrow)

Us:1— T(a, a). : (13)

These two operations suffice to describe a 2-category in terms of
its vertical hom-categories T(a, b) — the description is parallel to the
definition of an ordinary category by hom-sets (§1.8). Thus, a 2-category
is given by the following data:

(i) A set of objects a,b,¢,...;
(ii) A function which assigns to each ordered pair of objects (g, b) a
category T'(a, b);
(iii) For each ordered triple <{a, b, ¢)> of objects a functor (12), called
composition;
(iv) For each object @, a functor U, as in (13).

These elements of data are required to satisfy the associative law for
the composition (iii) and the requirement that U, provides a left and right
identity for this composition.

This set of axioms for a 2-category is equivalent to the previous set. It
is exactly like the definition of a category in terms of hom-sets, which
have been here replaced by the hom-objects T(a, b). These objects are
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not just sets but are categories (i.e., objects of the category CAT); one
says that they are hom-sets ““enriched” in CAT, the category of all (small)
categories. The construction uses the fact that CAT has products and a
terminal object. More generally, it is often helpful to use monoidal cate-
gories V in place of CAT and to examine categories “enriched” in V' —
that is, with hom-objects which are objects of V, with composition and
identities as above. (See also § VIL.7 and the remark in §1.8 about 4b-
categories.) The monograph of Kelly [1982] is a systematic examination
of such enriched categories; see also Dubuc [1970].

4. Operations in 2-Categories

Many of the properties of functors, as they have been developed in CAT,
will carry over directly to other 2-categories. Adjunction is an example.
Thus, in a 2-category, one says that two 1-cells running in opposite
directions between the same two objects, as in the figure

a——=b
g

)

are adjoint, with f a left adjoint to the right adjoint g, when there are 2-
cells # and & {(*“unit” and “counit”)

n:l=gf:a—a, e:fg=>1:b-5% (1)
such that both the following equations hold:

ef)e(fn)=1r:f=>fgf=>f:a—b, (2)
(ge)e(ng)=1y:g=>9fg=>g:b—a. 3)

Indeed, in the 2-category CAT, these two equations state exactly the two
triangular laws for the unit # and the counit ¢ of an (ordinary) adjunction
between functors (§1V.1.(9)). In the first equation, gf really stands for the
horizontal composite ¢ly, so that Eq. (2) should strictly be pictured as
follows:

1 \[GM
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Here, the left-hand side presents two horizontal compositions of 2-cells,
followed by a vertical composition of the results. This may be sugges-
tively pictured, omitting the 15 lower left, as

a—»a

N/ A

b——~————————>b b—»b

Similarly, the left-hand side of Eq. (3) involves the following vertical
composites:

a—»a

A

b—-—-»b

The diagram expresses the fact that the horizontal cmposite ge is
“pasted” along f to the horizontal composite ng to get the identity cell
from g to g.

In much the same way, we can lift the notion of a (right) Kan ex-
tension (§ X.3) to 2-categories. Thus, given objects m, ¢, a and arrows &, ¢
in the following configuration in a 2-category:

C

e (6)

m——— a;
H

a right Kan extension of ¢ along k is an arrow r and a 2-celle: rk = ¢

/ ﬂ\ ™

m——»a

such that any other such 2-cell o with o : sk = ¢ for some s: c = ais a
composite of ¢ with a unique 2-cell o, as in

/_.ﬂ_& /ﬂ\/

m————»a
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In other words, r and & form the universal way of filling in the triangle
(6), unique up to a 2-cell . This configuration is, of course, exactly that
already used in §X.3 to describe right Kan extensions of actual functors.

As with all other algebraic objects, we must define the morphisms
between 2-categories. They are called 2-functors. A 2-functor

F:T-U

between two 2-categories T and U is a triple of functions sending objects,
arrows, and 2-cells of T to items of the same types in U so as to preserve
all the categorical structures (domains, codomains, identities, and com-
posites). If G is a second such functor G: T — U between the same 2-
categories, a 2-natural transformation 6:F = G is a function which
sends each object a of T to an arrow fa: Fa — Ga of U in such a way
that for each 2-cell o : f = g of T, the equality

B o

—_— ——

Fa ﬁﬂ Fb—2 . Gb=Fa—* . Ga ﬂsa Gb (9)

Fg Gg

holds (between the indicated “whiskered”” 2-cells). In particular, applied
just to the edges (the 1-cells), this means that 6 is necessarily an (ordinary)
natural transformation between the associated ordinary functors Fand G.
The reader may check that 2-categories, 2-functors, and 2-natural trans-
formations between them form the objects, arrows, and 2-cells of a 2-
category! This category is often called 2-Cat.

But there is now a step up to the next dimension; given two 2-natural
transformations 6 : F — G and ¢ : F — G between the same two 2-func-
tors F and G, there are certain appropriate maps u : § = ¢, called modi-
fications, between transformations. Specifically, such a modification u is
required to assign to each object a of T a 2-cell p, : 6, = ¢, such that the
following 2-composites are equal for every 2-cell a: f = ¢:

Ff 6 0, Gf
_ _
Fa Jlra Fb ﬂy,, Gb=Fa ﬂu, Ga ﬂaa Gb. (10)
—_— _ >
Fg [/ Pa Gg

A three-dimensional presentation of this requirement is as follows:

Ga = Ga
8 ! l
4 Pa i =
@ Ga
Fa Fa »Gb =_Gb
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The front face of the cube is F «, the back face Ge. The bottom is u b, the
top u,, while the right and left side squares commute (because 8 and ¢ are
natural). Equation (10) states that the front followed by the bottom
equals the top followed by the back.

This suggests that we regard the modification u as a 3-cell y: 6 = ¢.
These 3-cells taken with 6’s as 2-cells, 2-functors as arrows, and objects as
objects together form the data for a 3-category. Just as a 2-category can
be defined as a category with hom-sets enriched in Cat, so a 3-category
can be formally defined to be a category with hom-sets enriched in 2-Cat,
as we will see in the next section.

5. Single-Set Categories

A category is usually considered as a structure consisting of two sets, a
set of objects and a set of arrows. But it is also possible to have a defini-
tion which uses only one set, that of arrows, with the objects regarded as
special arrows — to wit, as the identity arrows. In §1.1, we have already
described such an “arrows-only” definition of a category. Here is a differ-
ent arrows-only formulation which will be used below to describe n-
categories. A category is a set C of arrows with two functions
s,t: C — C, called “source” and target”, and a partially defined binary
operation #, called composition, all subject to the following axioms, for
all x, y,and zin C:
The operation x # y is defined iff sx = ¢y and then

s(x#y)=sy, tx#y)=tx; (1)
X#SX=X, tX#HX=X; (2)
(x#y)#z=x# (y#z) If either side is defined ; (3)

SSX=8§X=18X;
HxX=1tx=s1X. 4)

Then x is an identity iff x = sx or, equivalently, iff x = ¢ x.
In this form, a functor F : C — D is simply a function from the set C
to the set D such that

sF=Fs and tF=Ft:C—D (5)
and also
Fix#y)=Fx#Fy (6)
whenever x # y is defined (and this, by (5), implies that Fx # Fy is
defined).

This definition of a category or of a functor clearly is equivalent to
the standard definition in terms of a set of objects and a set of arrows.
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Similarly a 2-category can be considered to be a single set X con-
sidered as the set of 2-cells (e.g., of natural transformations). Then the
previous l-cells (the arrows) and the 0-cells (the objects) are just regarded
as special “degenerate” 2-cells. On the set X of 2-cells there are then two
category structures, the ‘horizontal” structure (#yg,s0,%) and the
“vertical” structure (#,s),#). Each satisfies the axioms above for a
category structure and in addition

(i) Every identity for the O-structure is an identity for the 1-structure;
(i) The two category structures commute with each other.

Here, the condition (ii) means, of course, that
So81 =515, Soli=1ts, fsi=s1l, =ttt (7)
and that, for o, $ =0, 1 or 1, 0, and for all x, y, u, and v
(x #ay) #p(u #20) #(y #470), (8)

la(x #py) = (1ax) #p (L) ,
Sa(x #py) = (5X) #p (529)

whenever both sides are defined.
Since spx and fgx are identities for the O-structure, they are also iden-
tities for the l-structure by condition (i) above. Hence,

S180 =28, HhS=S, Silhh=l, LI=I. 9)
With condition (7), this yields also
5081 = 8o , Soty =350, hs1=1g, hti=1to. (10)

Together, these rules, with (4), calculate any composite of an s or ¢ with
an s or t. The results agree with the intuitive picture of the “edges” of a
2-cell, as follows:

Sp =858 =14,
51
So 81 =801 =Soso=t16‘o=so@to=tosl=tot1=51to=tot0,
i
h=hth=s"hH.

With this preparation, we can now readily define a 3-category or
more generally an n-category for any natural number #. The latter is a set
X with n different category structures (#;,s;,14), for i=0,...,n—1,
which commute with each other and are such that an identity for struc-
ture i is also an identity for structures j whenever j > i. Put differently,
each pair #; and #; for j > i constitute a 2-category. This readily leads
to a definition of the useful notion of an w-category: i =0,1,2,....
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6. Bicategories

Sometimes the composition of arrows in a would-be category is not as-
sociative, but only associative “up to” an isomorphism. This suggests the
notion of a bicategory, which is a structure like a 2-category, but one
in which the composition of arrows is associative only up to an iso-
morphism given by a suitable 2-cell.

Formally, a bicategory B consists of O-cells @, b, ..., 1-cells f,g,...,

and 2-cells p, o, . . ., with sources and targets arranged as suggested in
S g h
a Hp b Ha c ﬂr d, (1)
fl gl hl

where the 1-cells extend horizontally and the 2-cells vertically. Specifi-
cally, each l-cell f has O-cells @ and b as domain and codomain, as in
f 1a— b, while each 2-cell p has coterminal (i.e., parallel) I-cells f and
f" as its domain and codomain. Moreover, to each pair of O-cells (a, b),
there is an (ordinary) category B(a, b) in which the objects are all the
l-cells f, f7,... from a to b, while the arrows are the 2-cells between such
1-cells.