Estruturas Algébricas Getting started!

- 1) Mostre que todo domínio finito é um corpo.
- 2) Dê um exemplo de um homomorfismo entre dois anéis unitais e que não preserva a unidade.
- 3) Mostre que todos os ideais do anel dos inteiros são principais.
- 4) Mostre que sempre dois números inteiros possuem máximo divisor comum e mínimo múltiplo comum.
- 5) Mostre que o kernel de todo homomorfismo de anéis é um ideal.
- 6) Sejam os inteiros não negativos $m_1, m_2, ..., m_k$ dois a dois primos entre si. Mostre que $\mathbb{Z}/\{m_1m_2...m_k\mathbb{Z}\}\cong \mathbb{Z}/m_1\mathbb{Z}\times\cdots\times\mathbb{Z}/m_k\mathbb{Z}$.
- 7) Mostre que $\bar{a} \in \mathbb{Z}_n$ é invertível, se, e somente se $\mathrm{mdc}(a,n) = 1$.
- 8) Mostre que um corpo não pode conter ideais. Com isto conclua que todo homomorfismo não nulo $\phi: K \to A$, onde K é um corpo e A um anel qualquer, é monomorfismo.
- 9) Mostre que se o homomorfismo $\phi: K \to A$, onde K é um corpo, é sobrejetivo, então A é corpo.
- 10) Seja $f: R \to S$ um homomorfismo de anéis e $B \leq S$ um subanel. Mostre que a imagem inversa $f^{-1}(B)$ é subanel de R.
- 11) Seja $f: R \to S$ um homomorfismo de anéis e $I \subseteq S$ um ideal, mostre que $f^{-1}(I)$ é ideal em R.
- 12) Mostre que a composta de homomorfismos de anéis é um homomorfismo de anéis. mostre também que o conjunto imagem de um homomorfismo é um subanel.

- 13) Mostre que se um homomorfismo de anéis é inversível como função, então a função inversa também é um homomorfismo.
- 14) Seja R um domínio, defina em $R \times R^*$, onde $R^* = R \setminus \{0\}$, uma relação dada por $(a,b) \sim (c,d)$ se ad = bc. Mostre que \sim é uma relação de equivalência. Denote as classes [(a,b)] por $\frac{a}{b}$ e mostre que o quociente $Fr(R) = (R \times R)/\sim$ é de fato um corpo, conhecido como corpo de frações do domínio R, cujas operações são dadas por

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 , $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

- **15)** Mostre que, se K é um corpo, então $K \cong Fr(K)$ pela aplicação $r \mapsto \frac{r}{1}$.
- **16)** Mostre que o anel de matrizes $M_n(R)$, onde R é um anel com unidade, não possui ideais bilaterais.
- **17)** Seja R um anel e I_1 e I_2 ideais de R. Mostre que $I_1 \cap I_2$, $I_1.I_2 = \{\sum_k i_k j_k \in R | i_k \in I_1, j_k \in I_2, k \in \mathbb{N} \}$ e $I_1 + I_2 = \{i + j | i \in I_1, j \in I_2 \}$ também são ideais de R.
- 18) Seja X um conjunto, K um corpo e $x \in X$. Mostre que o subconjunto

$$A_x = \{ f : X \to K \mid f(x) = 0 \}$$

é um ideal maximal do anel K^X .

- 19) Defina $C_0(\mathbb{R}, \mathbb{R})$ como o conjunto das funções contínuas em \mathbb{R} tais que $\forall \varepsilon > 0$ existe um intervalo fechado K tal que $|f(x)| < \varepsilon$ para $x \notin K$. Mostre que $C_0(\mathbb{R}, \mathbb{R})$ é um anel comutativo sem unidade.
- **20)** Seja $C_c(\mathbb{R}, \mathbb{R})$ o conjunto das funções reais contínuas de suporte compacto, isto é, o conjunto dos pontos para os quais $f(x) \neq 0$ está contido em um intervalo fechado, é um ideal de $C_0(\mathbb{R}, \mathbb{R})$.
- **21)** Seja R um anel sem unidade. Defina em $R \times \mathbb{Z}$ duas operações dadas por

$$(a,m)+(b,n) = (a+b,m+n)$$
 , $(a,m).(b,n) = (ab+mb+na,mn).$

Mostre que $\tilde{R} = R \times \mathbb{Z}$ é um anel com unidade e que R é um ideal maximal de \tilde{R} .

- **22)** Seja A um anel e $I \subseteq A$. Mostre que os ideais de A/I estão em correspondência um a um com os ideais de A que contém I. Uma vez provado este fato, determine os ideais de \mathbb{Z}_{12} .
- 23) Mostre que todo ideal maximal de um anel comutativo com unidade é um ideal primo.
- 24) Mostre que o quociente de um anel comutativo com unidade por um ideal maximal é um corpo.
- 25) Mostre que o quociente de um anel comutativo com unidade por um ideal primo é um domínio.
- **26)** Seja $I \subseteq R$ tal que exista um elemento $e \in R$ de forma que, para qualquer outro elemento $a \in R$ tenhamos que $ea a \in I$ e $ae a \in I$. Mostre que R/I é um anel com unidade.
- 27) Seja A um anel comutativo e $I \subseteq A$, defina o radical de I como o conjunto

$$J = \{a \in A \mid \exists n > 1, \text{ tal que } a^n \in I\}.$$

Mostre que $J \leq A$.

- 28) Seja R um anel comutativo com unidade e $a \in R$ um elemento nilpotente. Mostre que $(1+a) \in R^{\times}$.
- 29) Mostre que o conjunto dos elementos nilpotentes em um anel comutativo é um ideal.
- **30)** Seja R um anel e $I \leq R$. Defina o anulador de I como o conjunto

$$Ann(I) = \{a \in R | ai = 0, \forall i \in I\}$$

Mostre que $Ann(I) \leq R$.

31) Mostre que o conjunto

$$F = \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) \mid a, b \in \mathbb{R} \right\}$$

é um corpo. Mostre que $F \cong \mathbb{C}$.