Estruturas Algébricas Getting started, 2

- 1) Mostre que existe um único elemento neutro em um grupo.
- 2) Mostre que existe um único elemento inverso para cada elemento $a \in G$.
- 3) Mostre que se $H \subseteq G$ é subgrupo, então o elemento neutro de H é igual ao elemento neutro de G e para qualquer $a \in H$, seu inverso com relação a H é o mesmo inverso com relação a G.
- **4)** Mostre que uma condição necessária e suficiente para que $H \subseteq G$ seja subgrupo de G é que H seja não vazio e que para quaisquer $a, b \in H$, tivermos que $a \cdot b^{-1} \in H$.
- 5) Mostre que o conjunto dos elementos invertíveis em \mathbb{Z}_n forma um grupo abeliano multiplicativo. Qual é a ordem deste grupo?
- **6)** Mostre que o subconjunto dos números complexos de módulo unitário, $U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$ é um subgrupo de (\mathbb{C}^*, \cdot) .
- 7) Mostre que o conjunto das bijeções em um conjunto X é um grupo.
- 8) Mostre que todo grupo é isomorfo a um subgrupo de um grupo de bijeções.
- 9) Seja $f: G \to H$ um homomorfismo de grupos. Mostre que $f(e_G) = e_H$. Mostre também que para todo $g \in G$ temos que $f(g^{-1}) = f(g)^{-1}$.
- 10) Sejam G e H grupo e $f:G\to H$ um homomorfismo de grupos. Mostre que

$$Im(f) = \{ f(g) \in H | g \in G \}$$

 $\acute{\mathrm{e}}$ um subgrupo de H.

11) O grupo S_n é o conjunto das bijeções (permutações) em um conjunto de n elementos. Denotamos uma permutação como

$$\pi = \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{array}\right).$$

Vamos exemplificar com n=3. Em S_3 temos os elementos

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \pi_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \pi_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
$$\pi_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \pi_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \pi_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

A composição de duas permutações é feita como composta de funções (leitura da direita para a esquerda. Assim, por exemplo

$$\pi_1 \circ \pi_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \pi_4.$$

Escreva a tábua de composição do grupo de permutações S_3 .

- **12)** Seja G um grupo e H um subgrupo. Mostre que as relações $g \sim_L h \Leftrightarrow g^{-1}h \in H$ e $g \sim_R h \Leftrightarrow gh^{-1} \in H$, são relações de equivalência em G.
- 13) Dado um sub-grupo H de um grupo G e um elemento $g \in G$, definimos a classe lateral à esquerda de g associada a H como o conjuunto

$$gH = \{k \in G | k \sim_L g\}.$$

Similarmente, a classe lateral à direita de g em relação a H é o conjunto

$$Hg = \{k \in G | k \sim_R g\}.$$

Mostre que duas classes laterais à esquerda g_1H e g_2H ou são disjuntas ou são iguais, mostre analogamente para classes à direita.

- **14)** Mostre que a aplicação $L_g: H \to gH$ é uma bijeção (não homomorfismo) entre $H \in gH$.
- 15) Seja G um grupo finito e H um sub-grupo e sejam |G| e |H| suas respectivas ordens (número de elementos). Mostre que a quantidade de classes laterais relativas e H é igual a

$$\#C = \frac{|G|}{|H|}.$$

16) Considere o grupo S_3 e o subgrupo $H = \{e, \pi_1\}$. Construa as classes laterais à esquerda e à direita.

- 17) Seja G um grupo e $H \subseteq G$ um subgrupo. Se as classes laterais à esquerda e à direita de H coincidirem, diremos que H é um subgrupo normal de G, denotado como $H \subseteq G$. Mostre que, para G um grupo e $H \subseteq G$ um subgrupo, então são equivalentes as seguintes afirmativas:
 - (i) H é subgrupo normal.
 - (ii) Para qualquer $g \in G$, temos que $gHg^{-1} = H$.
 - (iii) Para qualquer $g \in G$, temos que $gHg^{-1} \subseteq H$.
- 18) Seja $f: G \to H$ um homomorfismo de grupos. Mostre que

$$\ker(f) = \{ g \in G | f(g) = e \}$$

 $\acute{\mathrm{e}}$ um subgrupo normal de G.

19) Seja G um grupo e $h \leq G$. Mostre que a aplicação canônica,

$$\begin{array}{cccc} \pi: & G & \to & G/H \\ & g & \mapsto & gH \end{array},$$

é um epimorfismo.

20) Seja $\phi: G \to H$ um homomorfismo de grupos, então existe um único isomorfismo $\overline{\phi}: g/\ker(\phi) \to \operatorname{Im}(\phi)$ tal que o diagrama abaixo comute

$$G \xrightarrow{\phi} H$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$G/\ker(\phi) \xrightarrow{\overline{\phi}} \operatorname{Im}(\phi)$$

Onde $i: \operatorname{Im}(\phi) \to H$ é a inclusão canônica.