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Abstract

The aim of this material is to present a decomposition of a group ring
RG using idempotents that can be obtained from normal subgroups of
G. The definition of a group ring RG is stated, along with some basic
properties. Connections between ideals of R and ideals of RG, and of
normal subgroups of G and ideals of RG are shown, and it is also pointed
out a method to obtain idempotents based on the normal sobgroups of G
of finite order. The desired decomposition of RG into a direct sum of rings
is, then, obtained. As an example, a decomposition of QZ, is presented.

Definition and basic properties

Definition 1.1. Let G be a group and R a ring (with identity).
The group ring RG is the set

RG = @ R=R® = Z aqg : ag € R and ag4’s are almost always zero

with

9eG geG

Z agg + Z bgg = Z(ag +bg)g

geG geG geG

Zagg.thh: Z (agbh)g*h: ZC;JC, Ck

geG heG g,heG keG
]-RG = Z 5g,eg = e
geaG
r E agq = Z ragg
geG geG

= Z agbh

gxh=k

where % and e are the operation and identity of the group G.
In what follows, the sums of the form a =
supp « is the set of g’s such that a, # 0.

agg have finite terms, and

It is not difficult to check that the ring properties are satisfied by RG. Ad-
ditionally, RG is a left R-module, and if R = K is a field, then KG is an
algebra over K.



The ring R and the group G can be regarded as subsets of RG via the embed-
dings

ir: R— RG ic: G— RG

rHrezZr&e,hh gHg:Z(Sg)hh
heG heG

An alternative definition can be stated by means of an universal property.

Definition 1.2. Let G be a group and R a ring (with identity).
A group ring with respect to R and G is a pair (X, v) such that

X D Risaring
v: G — X is a mapping and v(g x h) = v(g)v(h) for all g,h € G

the universal property is satisfied: given any ring A and any mapping
f: G — Asuch that f(g*h) = f(g)f(h) for all g,h € G, there exists a
unique ring homomorphism f: X — A such that fov = f.

It is stated below that the two definitions for a group ring are the same (up
to isomorphisms).

Proposition 1.1. (RG,iq) is a group ring in the sense of the second definition,
and for any other (X,v) group ring, X ~ RG as rings (and if R = K 1is a field,
as algebras too).

An useful consequence of the universal property is stated below.

Corollary 1.2. Let R be a ring (with unity) and f: G — H be a group homo-
morphism. Then

there exists a ring homomorphism f: RG — RH such that f(ic(g)) =
in(f(g)) for allg € G.

if R is commutative, then f is a homomorphism of R-algebras.

if f is an epimorphism (monomorphism), then f is an epimorphism (monomor-
phism).

2 Ideals in RG

2.1 Augmentation ideals

Using A = R and f = 1g in the universal property of RG, there exists a ring
homomorphism e: RG' — R such that e (Zg agg> = >, ag. In fact, € is an

epimorphism, since r =} rdg.e =€ (Zg rég,eg) for all r € R.
Definition 2.1. The epimorphism e: RG — R given by € (Zg agg) =>,0a9

is called the augmentation mapping of RG. Its kernel, denoted by A(G) :=
ker(e), is called the augmentation ideal of RG.



Proposition 2.1.

A(G) = {Z (ag - Zah5976> g:ag € R}

= {Zag(ig(g) —1pa): ag € R}

So, the set {ic(g9) — lra: g € G,g # e} is a basis of A(G).
As A(G) is not a trivial ideal (if G and R are not trivial), RG is not simple.

Proof. The first equality is shown below. The other set is a reformulation of
the first one (1rg =ig(g) = Zh 5h,eh)~

Qo) Ifa= Zg (ag —> ), andg.e) g, then

e(a) =€ (Z <ag — Zahég,e> g> = Zag_zzahég,e> = Zag_z ap =0
h g g h g h

g9

(S) Conversely, if o=} ag4g is such that e(a) = 0, then

0= o (;) ¥ <ag_ (;) 59,6>g

O
RG
Proposition 2.2. T(G) ~R
Proof. Tt follows from the fact that € is an epimorphism. O

2.2 Relationship between subgroups of G and ideals of RG

There is a way to construct ideals of RG based on normal subgroups of G.
And conversely, normal subgroups of G can be build from ideals in RG. These
constructs work almost like an invertion, in the sense that:

if one starts with a normal subgroup H < G and “operates” two times
(one to get an ideal in RG, the other one to get a normal subgroup of G),
one recovers H

starting from an ideal I < RG, one goes to a normal subgroup of G and
then, to a smaller ideal of RG

The procedure to go from a normal subgroup to an ideal of the group ring is
given below. Consider H < G and let w: G — % be the canonical projection.
Using the universal property of the group ring, with A = R (%) and f =



igow: G — R (%) (noticing that f(g* h) = f(g)f(h)), one obtains a ring
homomorphism w: RG — R (%), and

w Z agg | = Z agw(g) = Z agl9g]

geG geG geG

Moreover, @ is an epimorphism, because

Z alg,] lgi] = Z a[gi]w(gi) =w (Z a[gi]gi>
=1 =1 i=1

Definition 2.2. Given a normal subgroup H of G , define Ar(G, H) := ker(w)

Proposition 2.3. Ar(G, H) is the ideal generated by the set {ig(h)—1rg: h €
H,h # e}. So,

AR(G,H) = {Zah(z’g(h) —1pe): h€G,a, € R}
h

Proof. Let I be the ideal generated by the set {i¢(h) — 1grg: h € H,h # e}.
(D) Let h € H. One has ig(h) — 1rg € A(G, H), because

w(ZG(h) - 1RG) =w (Z 5g,hg - Z‘Sg,eg>

= ng’hw(g) - Zég,ew(g)
g ([h]) —ig(le]) =0

7

G G
H H

Then I C A(G, H).

(C) Let =3 ag9 € ker(w) = A(G, H). Let 7 be a set of representatives of
%. One can write o = Z” a; jq; * hj, with ¢; € 7 and h; € H.

0= w(z Qi,54q * hj)
1,J

= Zzai,j[qi * hJ] = Z Zai,j [Qz]

i

Then >_; a; j = 0. So, one can write

o= E a; jq; * hj
4,7

=3 > aijaixhi=> | aij|a
g J

%

= Z (Z ai,ﬂG(Qi)) (ic(hj) — 1rc)

Thus, « € 1.



O

Considering H = G, one has W = ¢, the augmentation epimorphism, and
Ag(G, H) = A(G), the augmentation ideal of G.
As in that case, one has the following proposition:

Proposition 2.4. Let H A G. Then Agr(G, H) is an ideal of RG and

_Re _g(&
AR(Gv H) B H
Proof. By the comment before the last definition, @ is an epimorphism, and the

result follows.
O

So A(G, _) takes a normal subgroup of G as input and returns an ideal of RG.

On the other hand, let I < RG.

Definition 2.3. V(I) :={g € G:ig(g9) —ic(e) € I}
It is easy to show that V(RG) = G.

Proposition 2.5. V(I) is a normal subgroup of G.

Proof.
V(I) is non empty because e € V(I) (ig(e) —ig(e) =0¢€ I).
g,h € V(I) implies h=! € V(I) and g * h™1 € V(I):
ig(h) —ic(e) € I = ia(h)ig(h™') —ig(e)ia(h™") =ia(e) —ia(h™') €1
=5 ig(hil) — iG(e) el

ic(gxh™") —igle) =ic(g)ic(h™) —iclg) +ial(g) —ic(e)
=ig(g) (ic(h™') —icle)) +ic(g) —ic(e) € I

el el

So V(I) is a subgroup of G.
Now it is shown that V(I) is a normal subgroup. Given g € G and h € V(I),
one has

iclgxhxg™ ") —ig(e) =ig(9)ic(h)ic(g™") —ic(9)ic(e)ic(g™")
=iq(g) (ic(h) —ic(e))ic(g™) €1
el

O

Hence, V(_) takes an ideal of RG as input and returns normal subgroup of G.

The relationship between the operations considered above is given in the propo-
sitions below.



Proposition 2.6. Let H < G be a normal subgroup. Then
V(A(G,H))=H

Proof.

(D) Let h € H. One has ig(h) —ig(e)

S
w(ZG(h) - iG(e)) =w <Z 5g,hg - Z 5g,eg>

Then h € V(A(G, H)).
(Q) Let h € V(A(G, H)). Then ig(h) —ic(e) € A(G,H) and

Hence z%([h}) =i

Proposition 2.7. Let I < RG be an ideal. Then
AG,V(I))CI
and the equality does not hold in general.

Proof.

(Q) Let w: G — % and w: RG%R(%).

Then A(G,V(I)) = ker(w). Denote H = V(I).
Let >°  agg € ker(w).

0

w(z agg)

Il
S
>
Q



Therefore >, ., a, =0forall o € £.
Now notice that

g =[h] = hxgteH
— ig(h+g™ ) —ig(e) =ig(h)ic(g™") —icle) € I
= ig(h)ic(g Vialyg) —ic(e)ic(g) = ia(h) —ic(g) € I
Then

Sews= 3 St

oes G heo

=3 S anicth) - Y. Y anicly)

lg]e & helg] [g]e & helg]

=0

Z Z’LR ap) (ig(h) —ig(g) € I

lolef heldl cre el

(2) Consider I = RG. Then V(I) = G and A(G,V(I)) = A(G,G) # RG.

2.3 Relationship between ideals in R and ideals in RG
Proposition 2.8. Let I A R. Then IG < RG and

RG R

iEl () ¢
Proof.

e (IG < RG):
IG is a commutative group under +. Let a = }° pagg € RG and
B =7 herbrh € IG. Then

- (%:agg> (thh> ng*helc’

g:h Py
Hence IG is an ideal of RG.

o (76~ (1)0):
Define 6: % — ()G vy 0 (Egagg—i—IG) = > ,lag +I)g. It is well
defined because:

Zagg+IG:Zbgg+IG — Zagg—Zbgg:Z(ag—bg)gelG
g g g g g

= ag—bye€l, Vg
= aqg+1=0by+1, Vg
= Z(%—i—])g:Z(%—}-I)g

g g9



It is clear that @ is an epimorphism. It is a monomorphism since

Z(ag—i—l)g:O = a,+1=0,Vg = a,€1I, Vg
g
= ZaggGIR = Zagg—l—lG:O
g 9

3 Idempotents and a decomposition in RG

There is a standard procedure for constructing idempotents in RG from the
finite subgroups of G.

Lemma 3.1. Let R be a ring (with unity) and let H be a finite subgroup of a
group G. Suppose that |H| is invertible in R. Then, setting H := ),y ic(h),

is an idempotent of the group ring RG. Moreover, if H is a normal subgroup,
then eqg 1is central.

Proof.

e (ey is an idempotent:) R
One has ig(h)H =), cyic(h*h') =3, cpic(h”) = H for all h € H
(changing the index h' to h” = hxh/ in the sum, and ' € H < h" € H )

enen = i = o (z idh)) = b S et

heH heH

1 - 1 ~ 1 -
e 2= e H

e (ey is central if H < G:)
For all g € G, one has g ' Hg = H. Hence

ic(g™ ) Hic(g) = Z ic(g~' xhxg) = Z ia(W')=H

heH h'eH

O

Lemma 3.2. Let R be a ring (with unity) and let H be a subgroup of a group
G. Then
Ann.(A(G,H)) #0 <= H is finite

[Anm(A(G,H)) #0 < H is finite]

In that case, R
Ann,.(A(G,H)) = H RG

[Anm(A(G, H)) = RG H)|



Furthermore, if H < G, then
Ann,.(A(G,H)) = H RG = RG H = Anm(A(G, H))
Proof. The case in [ | is analogous, so only the other case is proved.

(=) Let Ann,(A(G,H)) # 0, and let o = 3 ay9 € Ann,(A(G, H)) with
a #0.
For all h € H, ’Lc;(h) —1gc € A(G,H), SO (Z(;;(h) - le)Oé =0.
Hence ig(h)a = o, and ) aghxg =73 ayg.
Let go € supp « so ag, # 0. Then h * gy € supp «, Vh € H. But supp «
is finite so H is finite.

(<) Conversely, let H be finite. Then setting H = > gen ic(9),

(ig(h) = 1re)H =ig(hH - H =" ig(hxg)—H=" ialg) ~H=0

geH geH

for all h € H.
Since S = {ig(h) — 1rg: h € H} generates the left ideal A(G, H) in RG,
then RG S = A(G, H) is anihilated in the right by H.

e Now assume Ann,(A(G, H)) # 0. Now it is shown that Ann,.(A(G, H)) =
H RG:

(C) Let a = }_ agg € Ann,.(A(G, H)), a # 0. As before, in (=),

one has 3, agh™ xg = 29499, SO 30, Ahsgg = D, agg, and apeg = ag.

Hence, setting 7 a set of representatives of the classes in % ,
= Zagg = Z Z anig(h* g) = Z Z ag(h*g)
g geT heH geT he H
= Z Zagic(h)ie(g) = Z ic(h) (Z aﬂc(!]))
heH geT heH geT
=i (Z ang(g)> € H RG
geT

So Amn,.(A(G,H)) C H RG
(D) It is clear from the proof of («=).

o If H G @G, then H is central and
Ann,.(A(G,H)) = H RG = RG H = Anny(A(G, H))

O

Proposition 3.3. Let R be a ring (with unity) and let H be a finite normal
subgroup of a group G. Suppose that |H| is invertible in R. Set H := 7, _ig(h)
and ey = ﬁﬁ as above. Then one has the following decomposition

RG = RG@H —‘r RG(lRG — eH)
where RGey ~ R (%) and RG(1ge — eg) = A(G, H) = Ann(RGey)



Proof.

e From a previous lemma, ey is a central idempotent in RG, and it follows
that RG = RG@H + RG(IRG — €H).

o RGeyg ~ R (g)
One can show first that - ((f[)) ~ ic(G)ey as groups. Indeed,

i¢(G) is a group since i is a group homomorphism
i¢(G)eq is a group, with the operation ig(g)em -ig(h)em = ic(gh)en
and the inverse (ig(g)er) = ig(gen

the map ¢: ig(G) — ic(G)en, ¢(ic(9)) = ic(g)en is a group epi-
morphism

ker(¢) = iq(H), since

Mic(9)) = ic(g)en = ic(e)en = icly )\m 2 ia(h |H\ 2, ol

heH

— Z ig(g * h) — Z ig(h/) =

heH h'eH
= VheH, gxhe H = geH

and

geH = ¢(ic(g9)) =i ()|11{| > il \H| > ic(g*h)

heH heH

- |H| 2 ia(h)

heH

NH =Y eniclgxh) =Y epic) = HNVg € H.

where in (), ig(
Therefore & ~ Zg((% ~ j¢(G)ey and (RG)ey ~ R(iq(Glem) =~

o RG(le—eH):A(G,H): . .
Notice that Ann,(A(G,H)) = H RG = egRG = RGey = RG H =
Ann;(A(G, H)) from the previous lemma. And,

RG(lgg —en) ={f=a—aeg: a € RG} = Ann(RGep)

because § = a — aey & Beyg =0 S € Ann(RGey).
It is proved below that A(G, H) = Ann(RGep):

(C) Let h € H. 1pe —ig(h) € Ann(RGey) since

(tre ~ ic(W)acs = (Lra = ic(W) (ZzG )

1 . ’ 1 . . /
= ﬁ %:’Lg(h ) — W ;Zg(h)lg(h ) | @

=0

=(eg—eg)a=0

10



As the elements (1rg —ig(h)) generate A(G, H), one has that A(G, H) C
Ann(RGeg).

(D) Let @ € Ann(RGep). Then aeyg = 0, so

1 1
a=a—aeg =a(lpec —eng)=a| — lpg — — h
(e

1 .
=g > (lre —ia(h) € A(G, H)
~——_———
o ea )

O

Definition 3.1. Let R be a ring and G a finite group with |G| invertible in R.
The idempotent eq = |—é‘G is called the principal idempotent of RG.

In case eq = %CAJ is well defined, that is, when |G| is finite and invertible
in R, it is possible to conclude that RG has R as a direct summand of rings.

Corollary 3.4. Let R be a ring and G a finite group with |G| invertible in R.
Then
RG ~ R+ A(G)

Proof. Use the proposition with G = H:

RG~R (g) +A(G,G) ~ R+ A(G)

Example 3.1. Let
o G = Z4 = {[O]a [”v [2]7 [3]}
o H=27,={[0],[2]} I H
e R=Q

G and H are considered as groups under * := + and Q, a ring (actually a field)
under the usual operations. Then RG = QZ, is a group ring, with adition and
multiplication denoted by + and - (or juxtaposition), respectively. The group
ring operations in QZ4 will also be denoted as + and - (or juxtaposition).

The usual abuse of notation i¢(g) = g will be adopted. And the group operation
in Z4 is to be denoted by * rather than 4, in order not to be confused with the
sum in RG.

For example, [0] + [1] will denote an element in QZ4, and not the operation of
the group, which shall be written as [0] * [1] = [1]. And there will be expressions
such as [1]3([1] + [2]) = 2 ([1] * [1]) + 3 ([1] * [2]) = 3[2] + [3], which would look
odd in the sum notation for Z4 (although this still looks odd in this % notation).

11



Since |H| = 2 € Q is invertible, one can compute the idempotent associated to

en = (0] + 2)
emen = (;([o] + [2})) : (;([O} + [2]))
_ %%(([0] # [0]) + ([0] * [2]) + (120 = [0]) + ([2]  [2]))
- %([o] +[2]4[2] +[0]) = %([0] +[2)) =en

Thus, by proposition 3.3, one has the decomposition
@Z4 ~ QZ4€H —l— @Z4([0] - eH)

with QZsen =~ Q (%) and QZ4([0] — er) = A(Za, 2Z4).

.@@@)—ﬂmuun~{ﬁ°qﬂ q%EQ}

q
Define the ring isomorphism

9 q1
o (Z) - {[2 9] s ca)

goll0]]+a1[[1]] — [&0 @]

It is clear that this function is a bijection. To see that it is a homomor-
phism of rings, one notices that the additivity and the unity preservation
are trivial, and the multiplication property follows from

0 ((aol10]) + au [[1]) (a5110) + 5 1[1]))
= 6(40abl10 O] + a0 [10 = 1)) + q1ap 11+ 0)) + argi 11 ¢ 1]}

9 qoqo +a1g)[[0]] + (90} +q1q{))[[1]])

_ [qoqo taa ad + qlqo}
Q91 + 9195 Q9 + 01 q;

{110 ih] [0 (h}
q91 4o |1 qO

= 0(qo[[0]] + a [[1]1) 0 (g5 [[01) + g1 [[111)

o QZ4([0] — enr) = A(Z4,274) ~ { [qgl gj L qo,q1 € @}

First, the set A(G, H) will be determined explicitly. This set is the ideal
of QZ4 generated by {[0] — [2]}.

Calculating
[0}(0] — [21) = [0] = [0] = [0] * [2] = [0] — [2]
[1)([0] = [2]) = [1] = [0] — [1] = [2] = [1] = [3]
[21([0] — [2]) = [2] % [0] — [2] = [2] = [2] — [O]
[B1(10] = [21) = [3] % [0] = [3]  [2] = [3] — [1]



one obtains that
A(G,H) = {qo([0] = [2]) + ¢:([1] — [3]): g0, 01 € Q}

Thus, define the ring isomorphism

91A(G,H)—>{{q0 ql] :QO7QI€Q}
g1 4o

4o q1

g0 (01—[2D)+ar 3 (1-8) — [ %9, &0 ]

As in the previous item, bijectivity, additivity and unity preservation are
trivial. One has

1 (0] = [2))2((0] = [2)) = 2(0] = [2))
1([0] = [2DA([1] = [3]) = 3 (11 = [3))
L([1] = 3)2 (0] - [2)) = 2(11] - [3))
(1) = B)A([1] = [3]) = —1([0] — [2])

Thus

0((a03(10] [])+q12([] 13)) (a6 3(10] - [2]) + a1 3(11] - [3) )

= 0(q0ab3 (10] = [21) + q0ai 3 (11] = [3)) + qrab3 ([1] = [3]) — qaai 3 (0] — [2)))
- (qoqo AL [0}f[21>+<qoq;+q1qg>%<m43]))

—qd,  qdh + Q1Q6]
oq1 - 196 9090 — 14y

0

sl
@ Q] -4 @

9

(203 ([0] = [2]) + qa5([(1] — [3])) 0 (g

o~
[
—~
=
S
~
_|_
o
—_~
—~
=
~
~—

Hence, one obtains

07, = {[gfl) Zﬂ o e@}+{[_‘121 gﬂ : g e@}
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