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Abstract

The aim of this material is to present a decomposition of a group ring
RG using idempotents that can be obtained from normal subgroups of
G. The definition of a group ring RG is stated, along with some basic
properties. Connections between ideals of R and ideals of RG, and of
normal subgroups of G and ideals of RG are shown, and it is also pointed
out a method to obtain idempotents based on the normal sobgroups of G
of finite order. The desired decomposition of RG into a direct sum of rings
is, then, obtained. As an example, a decomposition of QZ4 is presented.

1 Definition and basic properties

Definition 1.1. Let G be a group and R a ring (with identity).
The group ring RG is the set

RG =
⊕
g∈G

R = R(G) =

∑
g∈G

agg : ag ∈ R and ag’s are almost always zero


with ∑

g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

∑
g∈G

agg ·
∑
h∈G

bhh =
∑

g,h∈G

(agbh)g ∗ h =
∑
k∈G

ckk , ck :=
∑

g∗h=k

agbh

1RG =
∑
g∈G

δg,eg = e

r
∑
g∈G

agg =
∑
g∈G

ragg

where ∗ and e are the operation and identity of the group G.
In what follows, the sums of the form α =

∑
g∈G agg have finite terms, and

supp α is the set of g’s such that ag ̸= 0.

It is not difficult to check that the ring properties are satisfied by RG. Ad-
ditionally, RG is a left R-module, and if R = K is a field, then KG is an
algebra over K.

1



The ring R and the group G can be regarded as subsets of RG via the embed-
dings

iR : R → RG

r 7→ re =
∑
h∈G

rδe,hh

iG : G → RG

g 7→ g =
∑
h∈G

δg,hh

An alternative definition can be stated by means of an universal property.

Definition 1.2. Let G be a group and R a ring (with identity).
A group ring with respect to R and G is a pair (X, ν) such that

X ⊇ R is a ring

ν : G → X is a mapping and ν(g ∗ h) = ν(g)ν(h) for all g, h ∈ G

the universal property is satisfied: given any ring A and any mapping
f : G → A such that f(g ∗ h) = f(g)f(h) for all g, h ∈ G, there exists a
unique ring homomorphism f : X → A such that f ◦ ν = f .

It is stated below that the two definitions for a group ring are the same (up
to isomorphisms).

Proposition 1.1. (RG, iG) is a group ring in the sense of the second definition,
and for any other (X, ν) group ring, X ≃ RG as rings (and if R = K is a field,
as algebras too).

An useful consequence of the universal property is stated below.

Corollary 1.2. Let R be a ring (with unity) and f : G → H be a group homo-
morphism. Then

there exists a ring homomorphism f : RG → RH such that f(iG(g)) =
iH(f(g)) for all g ∈ G.

if R is commutative, then f is a homomorphism of R-algebras.

if f is an epimorphism (monomorphism), then f is an epimorphism (monomor-
phism).

2 Ideals in RG

2.1 Augmentation ideals

Using A = R and f ≡ 1R in the universal property of RG, there exists a ring

homomorphism ϵ : RG → R such that ϵ
(∑

g agg
)

=
∑

g ag. In fact, ϵ is an

epimorphism, since r =
∑

g rδg,e = ϵ
(∑

g rδg,eg
)
for all r ∈ R.

Definition 2.1. The epimorphism ϵ : RG → R given by ϵ
(∑

g agg
)
=
∑

g ag

is called the augmentation mapping of RG. Its kernel, denoted by ∆(G) :=
ker(ϵ), is called the augmentation ideal of RG.
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Proposition 2.1.

∆(G) =

{∑
g

(
ag −

∑
h

ahδg,e

)
g : ag ∈ R

}

=

{∑
g

ag(iG(g)− 1RG) : ag ∈ R

}

So, the set {iG(g)− 1RG : g ∈ G, g ̸= e} is a basis of ∆(G).

As ∆(G) is not a trivial ideal (if G and R are not trivial), RG is not simple.

Proof. The first equality is shown below. The other set is a reformulation of
the first one (1RG = iG(g) =

∑
h δh,eh).

(⊇) If α =
∑

g (ag −
∑

h ahδg,e) g, then

ϵ(α) = ϵ

(∑
g

(
ag −

∑
h

ahδg,e

)
g

)
=
∑
g

ag−
∑
g

∑
h

ahδg,e) =
∑
g

ag−
∑
h

ah = 0

(⊆) Conversely, if α =
∑

g agg is such that ϵ(α) = 0, then

α =
∑
g

agg −

(∑
h

ah

)
e =

∑
g

(
ag −

(∑
h

ah

)
δg,e

)
g

Proposition 2.2.
RG

∆(G)
≃ R

Proof. It follows from the fact that ϵ is an epimorphism.

2.2 Relationship between subgroups of G and ideals of RG

There is a way to construct ideals of RG based on normal subgroups of G.
And conversely, normal subgroups of G can be build from ideals in RG. These
constructs work almost like an invertion, in the sense that:

if one starts with a normal subgroup H ⊴ G and “operates” two times
(one to get an ideal in RG, the other one to get a normal subgroup of G),
one recovers H

starting from an ideal I ⊴ RG, one goes to a normal subgroup of G and
then, to a smaller ideal of RG

The procedure to go from a normal subgroup to an ideal of the group ring is
given below. Consider H ⊴ G and let ω : G → G

H be the canonical projection.

Using the universal property of the group ring, with A = R
(
G
H

)
and f =
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iG
H

◦ ω : G → R
(
G
H

)
(noticing that f(g ∗ h) = f(g)f(h)), one obtains a ring

homomorphism ω : RG → R
(
G
H

)
, and

ω

∑
g∈G

agg

 =
∑
g∈G

agω(g) =
∑
g∈G

ag[g]

Moreover, ω is an epimorphism, because

n∑
i=1

a[gi][gi] =

n∑
i=1

a[gi]ω(gi) = ω

(
n∑

i=1

a[gi]gi

)
Definition 2.2. Given a normal subgroup H of G , define ∆R(G,H) := ker(ω)

Proposition 2.3. ∆R(G,H) is the ideal generated by the set {iG(h)−1RG : h ∈
H,h ̸= e}. So,

∆R(G,H) =

{∑
h

αh(iG(h)− 1RG) : h ∈ G, ag ∈ R

}
Proof. Let I be the ideal generated by the set {iG(h)− 1RG : h ∈ H,h ̸= e}.

(⊇) Let h ∈ H. One has iG(h)− 1RG ∈ ∆(G,H), because

ω(iG(h)− 1RG) = ω

(∑
g

δg,hg −
∑
g

δg,eg

)
=
∑
g

δg,hω(g)−
∑
g

δg,eω(g)

= iG
H
([h])− iG

H
([e]) = 0

Then I ⊆ ∆(G,H).

(⊆) Let α =
∑

g agg ∈ ker(ω) = ∆(G,H). Let τ be a set of representatives of
G
H . One can write α =

∑
i,j ai,jqi ∗ hj , with qi ∈ τ and hj ∈ H.

0 = ω(
∑
i,j

ai,jqi ∗ hj)

=
∑
i

∑
j

ai,j [qi ∗ hj ] =
∑
i

∑
j

ai,j

 [qi]

Then
∑

j ai,j = 0. So, one can write

α =
∑
i,j

ai,jqi ∗ hj

=
∑
i

∑
j

ai,jqi ∗ hj −
∑
i

∑
j

ai,j

 qi

=
∑
j

(∑
i

ai,jiG(qi)

)
(iG(hj)− 1RG)

Thus, α ∈ I.
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Considering H = G, one has ω = ϵ, the augmentation epimorphism, and
∆R(G,H) = ∆(G), the augmentation ideal of G.
As in that case, one has the following proposition:

Proposition 2.4. Let H ⊴ G. Then ∆R(G,H) is an ideal of RG and

RG

∆R(G,H)
≃ R

(
G

H

)
Proof. By the comment before the last definition, ω is an epimorphism, and the
result follows.

So ∆(G, ) takes a normal subgroup ofG as input and returns an ideal of RG.

On the other hand, let I ⊴ RG.

Definition 2.3. ∇(I) := {g ∈ G : iG(g)− iG(e) ∈ I}

It is easy to show that ∇(RG) = G.

Proposition 2.5. ∇(I) is a normal subgroup of G.

Proof.
∇(I) is non empty because e ∈ ∇(I) (iG(e)− iG(e) = 0 ∈ I).
g, h ∈ ∇(I) implies h−1 ∈ ∇(I) and g ∗ h−1 ∈ ∇(I):

iG(h)− iG(e) ∈ I =⇒ iG(h)iG(h
−1)− iG(e)iG(h

−1) = iG(e)− iG(h
−1) ∈ I

=⇒ iG(h
−1)− iG(e) ∈ I

iG(g ∗ h−1)− iG(e) = iG(g)iG(h
−1)− iG(g) + iG(g)− iG(e)

= iG(g) (iG(h
−1)− iG(e))︸ ︷︷ ︸

∈I

+ iG(g)− iG(e)︸ ︷︷ ︸
∈I

∈ I

So ∇(I) is a subgroup of G.
Now it is shown that ∇(I) is a normal subgroup. Given g ∈ G and h ∈ ∇(I),
one has

iG(g ∗ h ∗ g−1)− iG(e) = iG(g)iG(h)iG(g
−1)− iG(g)iG(e)iG(g

−1)

= iG(g) (iG(h)− iG(e))︸ ︷︷ ︸
∈I

iG(g
−1) ∈ I

Hence, ∇( ) takes an ideal of RG as input and returns normal subgroup ofG.

The relationship between the operations considered above is given in the propo-
sitions below.
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Proposition 2.6. Let H ⊴ G be a normal subgroup. Then

∇(∆(G,H)) = H

Proof.

(⊇) Let h ∈ H. One has iG(h)− iG(e) ∈ ∆(G,H), because

ω(iG(h)− iG(e)) = ω

(∑
g

δg,hg −
∑
g

δg,eg

)
=
∑
g

δg,hω(g)−
∑
g

δg,eω(g)

= iG
H
([h])− iG

H
([e]) = 0

Then h ∈ ∇(∆(G,H)).

(⊆) Let h ∈ ∇(∆(G,H)). Then iG(h)− iG(e) ∈ ∆(G,H) and

0 = ω(iG(h)− iG(e))

= ω

(∑
g

δg,hg −
∑
g

δg,eg

)
=
∑
g

δg,hω(g)−
∑
g

δg,eω(g)

= iG
H
([h])− iG

H
([e])

Hence iG
H
([h]) = iG

H
([e]) and [h] = [e]. This means that h ∈ H.

Proposition 2.7. Let I ⊴ RG be an ideal. Then

∆(G,∇(I)) ⊆ I

and the equality does not hold in general.

Proof.

(⊆) Let ω : G → G
∇(I) and ω : RG → R

(
G

∇(I)

)
.

Then ∆(G,∇(I)) = ker(ω). Denote H = ∇(I).
Let

∑
g agg ∈ ker(ω).

0 = ω(
∑
g

agg)

=
∑
g∈G

agω(g)

=
∑
σ∈G

H

∑
h∈σ

ahσ
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Therefore
∑

h∈σ ah = 0 for all σ ∈ G
H .

Now notice that

[g] = [h] =⇒ h ∗ g−1 ∈ H

=⇒ iG(h ∗ g−1)− iG(e) = iG(h)iG(g
−1)− iG(e) ∈ I

=⇒ iG(h)iG(g
−1)iG(g)− iG(e)iG(g) = iG(h)− iG(g) ∈ I

Then ∑
g

agg =
∑
σ∈G

H

∑
h∈σ

ahh

=
∑

[g]∈G
H

∑
h∈[g]

ahiG(h)−
∑

[g]∈ G
H

∑
h∈[g]

ah︸ ︷︷ ︸
=0

iG(g)

=
∑

[g]∈G
H

∑
h∈[g]

iR(ah)︸ ︷︷ ︸
∈RG

(iG(h)− iG(g))︸ ︷︷ ︸
∈I

∈ I

(⊉) Consider I = RG. Then ∇(I) = G and ∆(G,∇(I)) = ∆(G,G) ̸= RG.

2.3 Relationship between ideals in R and ideals in RG

Proposition 2.8. Let I ⊴ R. Then IG ⊴ RG and

RG

IG
≃
(
R

I

)
G

Proof.

• (IG ⊴ RG):
IG is a commutative group under +. Let α =

∑
g∈R agg ∈ RG and

β =
∑

h∈R bhh ∈ IG. Then

αβ =

(∑
g

agg

)(∑
h

bhh

)
=
∑
g,h

(agbh)︸ ︷︷ ︸
∈I

g ∗ h ∈ IG

Hence IG is an ideal of RG.

• (RG
IG ≃

(
R
I

)
G):

Define θ : RG
IG →

(
R
I

)
G by θ

(∑
g agg + IG

)
=
∑

g(ag + I)g. It is well

defined because:∑
g

agg + IG =
∑
g

bgg + IG =⇒
∑
g

agg −
∑
g

bgg =
∑
g

(ag − bg)g ∈ IG

=⇒ ag − bg ∈ I, ∀g
=⇒ ag + I = bg + I, ∀g

=⇒
∑
g

(ag + I)g =
∑
g

(bg + I)g
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It is clear that θ is an epimorphism. It is a monomorphism since∑
g

(ag + I)g = 0 =⇒ ag + I = 0, ∀g =⇒ ag ∈ I, ∀g

=⇒
∑
g

agg ∈ IR =⇒
∑
g

agg + IG = 0

3 Idempotents and a decomposition in RG

There is a standard procedure for constructing idempotents in RG from the
finite subgroups of G.

Lemma 3.1. Let R be a ring (with unity) and let H be a finite subgroup of a
group G. Suppose that |H| is invertible in R. Then, setting Ĥ :=

∑
h∈H iG(h),

eH :=
1

|H|
Ĥ

is an idempotent of the group ring RG. Moreover, if H is a normal subgroup,
then eH is central.

Proof.

• (eH is an idempotent:)
One has iG(h)Ĥ =

∑
h′∈H iG(h ∗ h′) =

∑
h′′∈H iG(h

′′) = Ĥ for all h ∈ H
(changing the index h′ to h′′ = h ∗ h′ in the sum, and h′ ∈ H ⇔ h′′ ∈ H )

eHeH =
1

|H|2
ĤĤ =

1

|H|2

(∑
h∈H

iG(h)

)
Ĥ =

1

|H|2
∑
h∈H

iG(h)Ĥ

=
1

|H|2
∑
h∈H

Ĥ =
1

|H|2
|H|Ĥ =

1

|H|
Ĥ = eH

• (eH is central if H ⊴ G:)
For all g ∈ G, one has g−1Hg = H. Hence

iG(g
−1)ĤiG(g) =

∑
h∈H

iG(g
−1 ∗ h ∗ g) =

∑
h′∈H

iG(h
′) = Ĥ

Lemma 3.2. Let R be a ring (with unity) and let H be a subgroup of a group
G. Then

Annr(∆(G,H)) ̸= 0 ⇐⇒ H is finite[
Annl(∆(G,H)) ̸= 0 ⇐⇒ H is finite

]
In that case,

Annr(∆(G,H)) = Ĥ RG[
Annl(∆(G,H)) = RG Ĥ

]
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Furthermore, if H ⊴ G, then

Annr(∆(G,H)) = Ĥ RG = RG Ĥ = Annl(∆(G,H))

Proof. The case in [ ] is analogous, so only the other case is proved.

(⇒) Let Annr(∆(G,H)) ̸= 0, and let α =
∑

g agg ∈ Annr(∆(G,H)) with
α ̸= 0.
For all h ∈ H, iG(h)− 1RG ∈ ∆(G,H), so (iG(h)− 1RG)α = 0.
Hence iG(h)α = α, and

∑
g agh ∗ g =

∑
g agg.

Let g0 ∈ supp α so ag0 ̸= 0. Then h ∗ g0 ∈ supp α, ∀h ∈ H. But supp α
is finite so H is finite.

(⇐) Conversely, let H be finite. Then setting Ĥ =
∑

g∈H iG(g),

(iG(h)− 1RG)Ĥ = iG(h)Ĥ − Ĥ =
∑
g∈H

iG(h ∗ g)− Ĥ =
∑
g∈H

iG(g)− Ĥ = 0

for all h ∈ H.
Since S = {iG(h)− 1RG : h ∈ H} generates the left ideal ∆(G,H) in RG,
then RG S = ∆(G,H) is anihilated in the right by Ĥ.

• Now assume Annr(∆(G,H)) ̸= 0. Now it is shown that Annr(∆(G,H)) =
Ĥ RG:

(⊆) Let α =
∑

g agg ∈ Annr(∆(G,H)), α ̸= 0. As before, in (⇒),

one has
∑

g agh
−1 ∗ g =

∑
g agg, so

∑
g ah∗gg =

∑
g agg, and ah∗g = ag.

Hence, setting τ a set of representatives of the classes in G
H ,

α =
∑
g

agg =
∑
g∈τ

∑
h∈H

ah∗g(h ∗ g) =
∑
g∈τ

∑
h∈H

ag(h ∗ g)

=
∑
h∈H

∑
g∈τ

agiG(h)iG(g) =
∑
h∈H

iG(h)

(∑
g∈τ

agiG(g)

)

= Ĥ

(∑
g∈τ

agiG(g)

)
∈ Ĥ RG

So Annr(∆(G,H)) ⊆ Ĥ RG

(⊇) It is clear from the proof of (⇐).

• If H ⊴ G, then Ĥ is central and

Annr(∆(G,H)) = Ĥ RG = RG Ĥ = Annl(∆(G,H))

Proposition 3.3. Let R be a ring (with unity) and let H be a finite normal
subgroup of a group G. Suppose that |H| is invertible in R. Set Ĥ :=

∑
h∈H iG(h)

and eH := 1
|H|Ĥ as above. Then one has the following decomposition

RG = RGeH ∔RG(1RG − eH)

where RGeH ≃ R
(
G
H

)
and RG(1RG − eH) = ∆(G,H) = Ann(RGeH)
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Proof.

• From a previous lemma, eH is a central idempotent in RG, and it follows
that RG = RGeH ∔RG(1RG − eH).

• RGeH ≃ R
(
G
H

)
:

One can show first that iG(G)
iG(H) ≃ iG(G)eH as groups. Indeed,

iG(G) is a group since iG is a group homomorphism

iG(G)eH is a group, with the operation iG(g)eH ·iG(h)eH = iG(gh)eH
and the inverse (iG(g)eH)−1 = iG(g

−1)eH

the map ϕ : iG(G) → iG(G)eh, ϕ(iG(g)) = iG(g)eH is a group epi-
morphism

ker(ϕ) = iG(H), since

ϕ(iG(g)) = iG(g)eH = iG(e)eH =⇒ iG(g)
1

|H|
∑
h∈H

iG(h) =
1

|H|
∑
h∈H

iG(h)

=⇒
∑
h∈H

iG(g ∗ h)−
∑
h′∈H

iG(h
′) = 0

=⇒ ∀h ∈ H, g ∗ h ∈ H =⇒ g ∈ H

and

g ∈ H =⇒ ϕ(iG(g)) = iG(g)
1

|H|
∑
h∈H

iG(h) =
1

|H|
∑
h∈H

iG(g ∗ h)

(∗)
=

1

|H|
∑
h∈H

iG(h) = eH

where in (∗), iG(g)Ĥ =
∑

h∈H iG(g ∗ h) =
∑

h′∈H iG(h
′) = Ĥ, ∀g ∈ H.

Therefore G
H ≃ iG(G)

iG(H) ≃ iG(G)eH and (RG)eH ≃ R(iG(G)eH) ≃
R
(
G
H

)
• RG(1RG − eH) = ∆(G,H):
Notice that Annr(∆(G,H)) = Ĥ RG = eHRG = RGeH = RG Ĥ =
Annl(∆(G,H)) from the previous lemma. And,

RG(1RG − eH) = {β = α− αeH : α ∈ RG} = Ann(RGeH)

because β = α− αeH ⇔ βeH = 0 ⇔ β ∈ Ann(RGeH).
It is proved below that ∆(G,H) = Ann(RGeH):

(⊆) Let h ∈ H. 1RG − iG(h) ∈ Ann(RGeH) since

(1RG − iG(h))αeH = (1RG − iG(h))
1

|H|

(∑
h′

iG(h
′)

)
α

=

 1

|H|
∑
h′

iG(h
′)− 1

|H|
∑
h′

iG(h)iG(h
′)︸ ︷︷ ︸

=Ĥ

α

= (eH − eH)α = 0
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As the elements (1RG− iG(h)) generate ∆(G,H), one has that ∆(G,H) ⊆
Ann(RGeH).

(⊇) Let α ∈ Ann(RGeH). Then αeH = 0, so

α = α− αeH = α(1RG − eH) = α

(
1

|H|
∑
h

1RG − 1

|H|
∑
h

h

)

= α
1

|H|
∑
h

(1RG − iG(h))︸ ︷︷ ︸
∈∆(G,H)

∈ ∆(G,H)

Definition 3.1. Let R be a ring and G a finite group with |G| invertible in R.
The idempotent eG = 1

|G| Ĝ is called the principal idempotent of RG.

In case eG = 1
|G| Ĝ is well defined, that is, when |G| is finite and invertible

in R, it is possible to conclude that RG has R as a direct summand of rings.

Corollary 3.4. Let R be a ring and G a finite group with |G| invertible in R.
Then

RG ≃ R∔∆(G)

Proof. Use the proposition with G = H:

RG ≃ R

(
G

G

)
∔∆(G,G) ≃ R∔∆(G)

Example 3.1. Let

• G = Z4 = {[0], [1], [2], [3]}

• H = 2Z4 = {[0], [2]} ⊴ H

• R = Q

G and H are considered as groups under ∗ := + and Q, a ring (actually a field)
under the usual operations. Then RG = QZ4 is a group ring, with adition and
multiplication denoted by + and · (or juxtaposition), respectively. The group
ring operations in QZ4 will also be denoted as + and · (or juxtaposition).
The usual abuse of notation iG(g) = g will be adopted. And the group operation
in Z4 is to be denoted by ∗ rather than +, in order not to be confused with the
sum in RG.
For example, [0] + [1] will denote an element in QZ4, and not the operation of
the group, which shall be written as [0]∗ [1] = [1]. And there will be expressions
such as [1] 12 ([1] + [2]) = 1

2 ([1] ∗ [1]) +
1
2 ([1] ∗ [2]) =

1
2 [2] +

1
2 [3], which would look

odd in the sum notation for Z4 (although this still looks odd in this ∗ notation).
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Since |H| = 2 ∈ Q is invertible, one can compute the idempotent associated to
H:

eH =
1

2
([0] + [2])

eHeH =

(
1

2
([0] + [2])

)
·
(
1

2
([0] + [2])

)
=

1

2

1

2

(
([0] ∗ [0]) + ([0] ∗ [2]) + ([2] ∗ [0]) + ([2] ∗ [2])

)
=

1

2

1

2
([0] + [2] + [2] + [0]) =

1

2
([0] + [2]) = eH

Thus, by proposition 3.3, one has the decomposition

QZ4 ≃ QZ4eH ∔QZ4([0]− eH)

with QZ4eH ≃ Q
(

Z4

2Z4

)
and QZ4([0]− eH) = ∆(Z4, 2Z4).

• Q
(

Z4

2Z4

)
= {[[0]], [[1]]} ≃

{[
q0 q1
q1 q0

]
: q0, q1 ∈ Q

}
Define the ring isomorphism

θ : Q
(

Z4

2Z4

)
→
{[

q0 q1
q1 q0

]
: q0, q1 ∈ Q

}
q0[[0]]+q1[[1]] 7→ [ q0 q1

q1 q0 ]

It is clear that this function is a bijection. To see that it is a homomor-
phism of rings, one notices that the additivity and the unity preservation
are trivial, and the multiplication property follows from

θ
((

q0[[0]] + q1[[1]]
)(
q′0[[0]] + q′1[[1]]

))
= θ
(
q0q

′
0[[0 ∗ 0]] + q0q

′
1[[0 ∗ 1]] + q1q

′
0[[1 ∗ 0]] + q1q

′
1[[1 ∗ 1]]

)
= θ
(
(q0q

′
0 + q1q

′
1)[[0]] + (q0q

′
1 + q1q

′
0)[[1]]

)
=

[
q0q

′
0 + q1q

′
1 q0q

′
1 + q1q

′
0

q0q
′
1 + q1q

′
0 q0q

′
0 + q1q

′
1

]
=

[
q0 q1
q1 q0

] [
q′0 q′1
q′1 q′0

]
= θ
(
q0[[0]] + q1[[1]]

)
θ
(
q′0[[0]] + q′1[[1]]

)
• QZ4([0]− eH) = ∆(Z4, 2Z4) ≃

{[
q0 q1
−q1 q0

]
: q0, q1 ∈ Q

}
First, the set ∆(G,H) will be determined explicitly. This set is the ideal
of QZ4 generated by {[0]− [2]}.
Calculating

[0]([0]− [2]) = [0] ∗ [0]− [0] ∗ [2] = [0]− [2]

[1]([0]− [2]) = [1] ∗ [0]− [1] ∗ [2] = [1]− [3]

[2]([0]− [2]) = [2] ∗ [0]− [2] ∗ [2] = [2]− [0]

[3]([0]− [2]) = [3] ∗ [0]− [3] ∗ [2] = [3]− [1]
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one obtains that

∆(G,H) = {q0([0]− [2]) + q1([1]− [3]) : q0, q1 ∈ Q}

Thus, define the ring isomorphism

θ : ∆(G,H) −→
{[

q0 q1
q1 q0

]
: q0, q1 ∈ Q

}
q0

1
2 ([0]−[2])+q1

1
2 ([1]−[3]) 7→

[ q0 q1
−q1 q0

]
As in the previous item, bijectivity, additivity and unity preservation are
trivial. One has

1
2 ([0]− [2]) 12 ([0]− [2]) = 1

2 ([0]− [2])
1
2 ([0]− [2]) 12 ([1]− [3]) = 1

2 ([1]− [3])
1
2 ([1]− [3]) 12 ([0]− [2]) = 1

2 ([1]− [3])
1
2 ([1]− [3]) 12 ([1]− [3]) = −1

2 ([0]− [2])

Thus,

θ
((

q0
1
2 ([0]− [2]) + q1

1
2 ([1]− [3])

)(
q′0

1
2 ([0]− [2]) + q′1

1
2 ([1]− [3])

))
= θ
(
q0q

′
0
1
2 ([0]− [2]) + q0q

′
1
1
2 ([1]− [3]) + q1q

′
0
1
2 ([1]− [3])− q1q

′
1
1
2 ([0]− [2])

)
= θ
(
(q0q

′
0 − q1q

′
1)

1
2 ([0]− [2]) + (q0q

′
1 + q1q

′
0)

1
2 ([1]− [3])

)
=

[
q0q

′
0 − q1q

′
1 q0q

′
1 + q1q

′
0

−q0q
′
1 − q1q

′
0 q0q

′
0 − q1q

′
1

]
=

[
q0 q1
−q1 q0

] [
q′0 q′1
−q′1 q′0

]
= θ
(
q0

1
2 ([0]− [2]) + q1

1
2 ([1]− [3])

)
θ
(
q′0

1
2 ([0]− [2]) + q′1

1
2 ([1]− [3])

)
Hence, one obtains

QZ4 ≃
{[

q0 q1
q1 q0

]
: q0, q1 ∈ Q

}
∔
{[

q0 q1
−q1 q0

]
: q0, q1 ∈ Q

}
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