Álgebras de Hopf

Lista 4

1) Mostre que um subespaço de codimensão finita $X \subseteq \mathbb{V}^*$ é fechado na topologia finita se, e somente se, $X^{\perp} = X^{\tilde{\perp}}$, onde

$$X^{\tilde{\perp}} = \{ \phi \in \mathbb{V}^{**} \, | \, \phi(f) = 0, \; \forall f \in X \}$$

- 2) Mostre que, se $\mathbb{V} = \bigoplus_{i \in I} \mathbb{V}_i$ então $\bigoplus_{i \in I} \mathbb{V}_i^*$ é denso na topologia finita de \mathbb{V}^* . 3) Seja $f : \mathbb{V} \to \mathbb{W}$ e $f^* : \mathbb{W}^* \to \mathbb{V}^*$ sua aplicação dual. Mostre que
- - a) Se $X \subseteq \mathbb{W}$, então $f^*(X^{\perp}) = f^{-1}(X)^{\perp}$.
 - **b)** Se $T \subseteq \mathbb{W}^*$, então $f^*(T)^{\perp} = f^{-1}(T^{\perp})$.
 - c) A imagem por f^* de um subespaço fechado é um subespaço fechado.
 - d) Se f é injetiva e $T \subseteq \mathbb{W}^*$ é um subespaco denso, então $f^*(T)$ também é denso em \mathbb{V}^* .
- 4) Seja C uma coálgebra. Mostre que as álgebras $(C^{cop})^*$ e $(C^*)^{op}$ coincidem.
- 5) Sejam A e B duas álgebras e $f:A\to B$ um morfismo de álgebras. Mostre que, se $I\subseteq B$ é um ideal de codimensão finita, então $f^{-1}(I)$ é um ideal de codimensão finita em A.
- 6) Seja G um grupo e A = kG a sua álgebra de grupo.
 - a) Mostre que $A^{\circ} = \text{Rep}(G)$.
 - b) Seja $\rho:G\to GL(n,k)$ uma representação de dimensão finita de G. Denote $\rho(g)=$ $(a_{ij}(g))$, onde $a_{ij}:G\to k$ são as respectivas funções coordenadas da matriz. Definindo o espaço vetorial $V(\rho) = \text{span}\{a_{ij} \mid 1 \leq i, j \leq n\}$. Mostre que $V(\rho)$ é um sub kG-bimódulo de dimensão finita de Rep(G).
 - c) Mostre que $\text{Rep}(G) = \sum_{\rho} V(\rho)$, onde a soma é sobre todas as representações de dimensão finita de G.
- 7) Seja A uma álgebra e A° seu dual finito. Mostre que os group likes de A° coincidem com os morfismos de álgebra $f: A \to k$.
- 8) Seja A uma álgebra e A° seu dual finito. Mostre que
 - a) Se S é uma subálgebra de A, então $S^{\perp} \cap A^{\circ}$ é um coideal de A° .
 - **b)** Se I é um coideal de A° , então I^{\perp} é uma subcoálgebra de A.
- 9) Sejam, C uma coálgebra, C^* sua álgebra dual, A uma álgebra e A° seu dual finito. Mostre
 - a) Se I é ideal à esquerda (à direita) de C^* , então I^{\perp} é um coideal à esquerda (à direita) de
 - b) Se J é coideal à esquerda (à direita) de C, então J^{\perp} é um ideal à esquerda (à direita) de
 - c) Se I é ideal à esquerda (à direita) de A, então $I^{\perp} \cap A^{\circ}$ é um coideal à esquerda (à direita)
 - d) Se J é coideal à esquerda (à direita) de A° , então J^{\perp} é um ideal à esquerda (à direita)
- 10) Mostre que, se $(X_i)_{i \in I}$ é uma família de subcoálgebras (coideais à esquerda, coideais à direita) de uma coálgebra C, então $\cap_{i \in I} X_i$ também é uma subcoálgebra (coideal à esquerda, coideal à direita) de C.