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Chapter 1

Basic notions from category theory

1.1 Categories and functors

1.1.1 Categories
A category C consists of the following data:

• a class |C| = C0 = C of objects, denoted by X, Y, Z, . . .;

• for any two objects X, Y , a set HomC(X, Y ) = Hom(X, Y ) = C(X, Y ) of morphisms;

• for any three objects X, Y, Z a composition law for the morphisms:

◦ : Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z), (f, g) 7→ g ◦ f ;

• for any object X a unit morphism on X , denoted by 1X or X for short.

These data are subjected to the following compatibility conditions:

• for all objects X, Y, Z, U , and all morphisms f ∈ Hom(X, Y ), g ∈ Hom(Y, Z) and h ∈
Hom(Z,U), we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

• for all objects X, Y, Z, and all morphisms f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), we have

Y ◦ f = f g ◦ Y = g.

Remark 1.1.1 In general, the objects of a category constitute a class, not a set. The reason behind
this is the well-known set-theoretical problem that there exists no “set of all sets”. Without going
into detail, let us remind that a class is a set if and only if it belongs to some (other) class. For
similar reasons, there does not exist a “category of all categories”, unless this new category is “of
a larger type”. (A bit more precise: the categories defined above are Hom-Set categories, i.e. for
any two objects X, Y , we have that Hom(X, Y ) is a set. It is possible to build a category out of
this type of categories that will no longer be a Hom-Set category, but a Hom-Class category: in a
Hom-Class category Hom(X, Y ) is a class for any two objects X and Y . On the other hand, if we
restrict to so called small categories, i.e. categories with only a set of objects, then these form a
Hom-Set category.)
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Examples 1.1.2 1. The category Set whose objects are sets, and where the set of morphisms
between two sets is given by all mappings between those sets.

2. Let k be a commutative ring, then Mk denotes the category with as objects all (right) k-
modules, and with as morphisms between two k-modules all k-linear mappings.

3. If A is a non-commutative ring, we can consider also the category of right A-modulesMA,
the category of left A-modules AM, and the category of A-bimodules AMA. If B is an-
other ring, we can also consider the category of A-B bimodules AMB. Remark that if A is
commutative, thenMA and AM coincide, but they are different from AMA !

4. Top is the category of topological spaces with continuous mappings between them. Top0 is
the category of pointed topological spaces, i.e. topological spaces with a fixed base point,
and continuous mappings between them that preserve the base point.

5. Grp is the category of groups with group homomorphisms between them.

6. Ab is the category of Abelian groups with group homomorphisms between them. Remark
that Ab =MZ.

7. Rng is the category of rings with ring homomorphisms between them.

8. Algk is the category of k-algebras with k-algebra homomorphisms between them. We have
AlgZ = Rng.

9. All previous examples are concrete categories: their objects are sets (with additional struc-
ture), i.e. they allow for a faithful forgetful functor to Set (see below). An example of a
non-concrete category is as follows. Let M be a monoid, then we can consider this as a
category with one object ∗, where Hom(∗, ∗) = M .

10. The trivial category ∗ has only one object ∗, and one morphism, the identity morphism of ∗
(this is the previous example with M the trivial monoid).

11. Another example of a non-concrete category can be obtained by taking a category whose
class of objects is N0, and where Hom(n,m) = Mn,m(k): all n×m matrices with entries in
k (where k is e.g. a commutative ring).

12. If C is a category, then Cop is the category obtained by taking the same class of objects as in
C, but by reversing the arrows, i.e. HomCop(X, Y ) = HomC(Y,X). We call this the opposite
category of C.

13. If C and D are categories, then we can construct the product category C × D, whose objects
are pairs (C,D), with C ∈ C and D ∈ D, and morphisms (f, g) : (C,D) → (C ′, D′) are
pairs of morphisms f : C → C ′ in C and g : D → D′ in D.
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1.1.2 Functors
Let C and D be two categories. A (covariant) functor F : C → D consists of the following data:

• for any object X ∈ C, we have an object FX = F (X) ∈ D;

• for any morphism f : X → Y in C, there is a morphism Ff = F (f) : FX → FY in D;

satisfying the following conditions,

• for all f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), we have F (g ◦ f) = F (g) ◦ F (f);

• for all objects X , we have F (1X) = 1FX .

A contravariant functor F : C → D is a covariant functor F : Cop → D. Most or all functors that
we will encounter will be covariant, therefore if we say functor we will mean covariant functor,
unless we say differently. For any functor F : C → D, one can consider two functors F op : Cop →
D and F cop : C → Dop. Then F is contravariant if and only if F op and F cop are covariant (and visa
versa). The functor F op,cop : Cop → Dop is again contravariant.

Examples 1.1.3 1. The identity functor 1C : C → C, where 1C(C) = C for all objects C ∈ C
and 1C(f) = f for all morphisms f : C → C ′ in C.

2. The constant functor C → D at X , assigns to every object C ∈ C the same fixed object
X ∈ D, and assigns to every morphism f in C the identity morphism on X . Remark that
defining the constant functor, is equivalent to choosing an object D ∈ D.

3. The tensor functor −⊗− :Mk ×Mk →Mk, associates two k-modules X and Y to their
tensor product X ⊗ Y (see Section 1.3).

4. All “concrete” categories from Example 1.1.2 (1)–(8) allow for a forgetful functor to Set, that
sends the objects of the concrete category to the underlying set, and the homomorphisms to
the underlying mapping between the underlying sets.

5. π1 : Top0 → Grp is the functor that sends a pointed topological space (X, x0) to its funda-
mental group π1(X, x0).

6. An example of a contravariant functor is the following (−)∗ :Mk →Mk, which assigns to
every k-module X the dual module X∗ = Hom(X, k).

All functors between two categories C and D are gathered in Fun(C,D). In general, Fun(C,D) is
a class, but not necessarily a set. Hence, if one wants to define ‘a category of all categories’ where
the morphisms are functors, some care is needed (see above).

5



1.1.3 Natural transformations
Let F,G : C → D be two functors. A natural transformation α : F → G (sometimes denoted by
α : F ⇒ G), assigns to every object C ∈ C a morphism αC : FC → GC in D rendering for every
f : C → C ′ in C the following diagram in D commutative,

FC
Ff //

αC
��

FC ′

αC′

��
GC

Gf
// GC ′

Remark 1.1.4 If α : F → G is a natural transformation, we also say that αC : FC → GC is a
morphism that is natural in C. In such an expression, the functors F and G are often not explicitly
predescribed. E.g. the morphism X ⊗ Y ∗ → Hom(Y,X), x ⊗ f 7→ (y 7→ xf(y)), is natural
both in X and Y . Here X and Y are k-modules, x ∈ X , y ∈ Y , f ∈ Y ∗ = Hom(Y, k), the dual
k-module of Y .

If αC is an isomorphism in D for all C ∈ C, we say that α : F → G is a natural isomorphism.

Examples 1.1.5 1. If F : C → D is a functor, then 1F : F → F , defined by (1F )X = 1F (X) :
F (X)→ F (X) is the identity natural transformation on F .

2. The canonical injection ιX : X → X∗∗, ιX(x)(f) = f(x), for all x ∈ X and f ∈ X∗, from
a k-module X to the dual of its dual, defines a natural transformation ι : 1Mk

→ (−)∗∗. If
we restrict to the category of finitely generated and projective k-modules, then ι is a natural
isomorphism.

1.1.4 Adjoint functors
Let C and D be two categories, and L : C → D, R : D → C be two functors. We say that
(equivalently)

• L is a left adjoint for R;

• R is a right adjoint for L;

• (L,R) is an adjoint pair;

• the pair (L,R) is an adjunction,

if and only if any of following equivalent conditions hold:

(i) there is a natural isomorphism

θC,D : HomD(LC,D)→ HomC(C,RD), (1.1)

with C ∈ C and D ∈ D;
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(ii) there are natural transformations η : 1C → RL, called the unit, and ε : LR→ 1D, called the
counit, which render the following diagrams commutative for all C ∈ C and D ∈ D,

LC
LηC //

QQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ LRLC

εLC
��

LC

RD
ηRD //

QQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ RLRD

RεD
��

RD

This means that we have the following identities between natural transformations: 1L =
εL ◦ Lη and 1R = Rε ◦ ηR.

A proof of the equivalence between condition (i) and (ii) can be found in any standard book on
category theory. We also give the following list of examples as illustration, without proof. Some
of the examples will be used or proved later in the course.

Examples 1.1.6 1. Let U : Grp → Set be the forgetful functor that sends every group to the
underlying set. Then U has a left adjoint given by the functor F : Set→ Grp that associates
to every set the free group generated by the elements of this set. Remark that equation (1.1)
expresses that a group homomorphism (from a free group) is determined completely by its
action on generators.

2. Let X be a k-module. The functor − ⊗ X : Mk → Mk is a left adjoint for the functor
Hom(X,−) :Mk →Mk.

3. Let X be an A-B bimodule. The functor − ⊗A X : MA → MB is a left adjoint for the
functor HomB(X,−) :MB →MA.

4. Let ι : B → A be a morphism of k-algebras. Then the restriction of scalars functor R :
MA →MB is a right adjoint to the induction functor − ⊗B A : MB →MA. Recall that
for a right A-module X , R(X) = X as k-module, and the B-action on R(X) is given by the
formula

x · b = xι(b),

for all x ∈ X and b ∈ B.

5. Let k− : Grp → Algk be the functor that associates to any group G the group algebra kG
over k. Let U : Algk → Grp be the functor that associates to any k-algebra A its unit group
U(A). Then k− is a left adjoint for U .

1.1.5 Equivalences and isomorphisms of categories
Let F : C → D be a functor. Then F induces the following morphism that is natural in C,C ′ ∈ C,

FC,C′ : HomC(C,C
′)→ HomD(FC, FC ′).

The functor is said to be

• faithful if FC,C′ is injective,
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• full if FC,C′ is surjective,

• fully faithful if FC,C′ is bijective

for all C,C ′ ∈ C.
If (L,R) is an adjoint pair of functors with unit η and counit ε, then L is fully faithful if and only
if η is a natural isomorphism and R is fully faithful if and only if ε is an isomorphism.

Examples 1.1.7 1. All forgetful functors from a concrete category (as in Example 1.1.2 (1)–
(8)) to Set are faithful (in fact, admitting a faithful functor to Set, is the definition of being a
concrete category, and this faithful functor to Set is then called the forgetful functor).

2. Let ι : B → A be a surjective ring homomorphism, then the restriction of scalars functor
R :MA →MB is full.

3. The forgetful functor Ab→ Grp is fully faithful.

A functor F : C → D is called an equivalence of categories if and only if one of the following
equivalent conditions holds:

1. F is fully faithful and has a fully faithful right adjoint;

2. F is fully faithful and has a fully faithful left adjoint;

3. F is fully faithful and essentially surjective, i.e. each object D ∈ D is isomorphic to an
object of the form FC, for C ∈ C;

4. F has a left adjoint and the unit and counit of the adjunction are natural isomorphisms;

5. F has a right adjoint and the unit and counit of the adjunction are natural isomorphisms;

6. there is a functor G : D → C and natural isomorphisms GF → 1C and FG→ 1D.

There is a subtle difference between an equivalence of categories and the following stronger notion:
A functor F : C → D is called an isomorphism of categories if and only if there is a functor
G : D → C such that GF = 1C and FG = 1D.

Examples 1.1.8 1. Let k be a commutative ring and R = Mn(k) the n× n matrix ring over k.
Then the categoriesMk andMR are equivalent, (but not necessarily isomorphic if n 6= 1).

2. The categories Ab andMZ are isomorphic.

3. For any category C, we have an isomorphism C × ∗ ∼= C.
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1.2 Abelian categories

1.2.1 Equalizers and coequalizers
Let A be any category and consider two (parallel) morphisms f, g : X → Y in A. The equalizer
of the pair (f, g), is a couple (E, e) consisting of an object E and a morphism e : E → X , such
that f ◦ e = g ◦ e, and that satisfies the following universal property. For all pairs (T, t : T → X),
such that f ◦ t = g ◦ t, there must exist a unique morphism u : T → E such that t = e ◦ u.

E
e // X

f //
g

// Y

T

∃!u

OO

t

88ppppppppppppp

The dual notion of an equalizer is that of a coequalizer. Explicitly: the coequalizer of a pair (f, g)
is a couple (C, c), consisting of an object C and a morphism c : Y → C, such that c ◦ f = c ◦ g.
Moreover, (C, c) is required to satisfy the following universal property. For all pairs (T, t : Y →
C), such that t ◦ f = t ◦ g, there must exist a unique morphism u : C → T such that t = u ◦ c.

X
f //
g

// Y
c //

t
&&MMMMMMMMMMMMM C

∃!u
��
T

By the universal property, it can be proved that equalizers and coequalizers, if they exist, are unique
up to isomorphism. Explicitly, this property tells that if for a given pair (f, g), one finds to couples
(E, e) and (E ′, e′) such that f ◦ e = g ◦ e and f ◦ e′ = g ◦ e′ and both couples satisfy the universal
property, then there exists an isomorphism φ : E → E ′ in A, such that e = e′ ◦ φ.
Let (E, e) be the equalizer of a pair (f, g). An elementary but useful property of equalizers tells
that e is always a monomorphism. Similarly, for a coequalizer (C, c), c is an epimorphism.

1.2.2 Kernels and cokernels
A zero object for a categoryA, is an object 0 inA, such that for any other objectA inA, Hom(A, 0)
and Hom(0, A) consists of exactly one element. If it exits, the zero object ofA is unique. Suppose
that A has a zero object and let A and B be two objects of A. A morphism f : B → A is called
the zero morphism, if f factors trough 0, i.e. f = f1 ◦ f2 where f1 and f2 are the unique elements
in Hom(0, A) and Hom(B, 0), respectively. From now on, we denote any morphism from, to, or
factorizing trough 0 also by 0.
The kernel of a morphism f : B → A, is the equalizer of the pair (f, 0). The cokernel of f
is the coequalizer of the pair (f, 0). Remark that in contrast with the classical definition, in the
categorical definition of a kernel, a kernel consists of a pair (K,κ), where K is an object ofA, and
κ : K → B is a morphism in A. The monomorphism κ corresponds in the classical examples to
the canonical embedding of the kernel.
The image of a morphism f : B → A, is the cokernel of the kernel κ : K → B of f . The coimage
is the kernel of the cokernel.

9



1.2.3 Limits and colimits
Limits unify the notions of kernel, product and several other useful (algebraic) constructions, such
as pullbacks. Let Z be a small category (i.e. with only a set of objects), and consider a functor
F : Z → A. A cone on F is a couple (C, cZ), consisting of an object C ∈ A, and for each element
Z ∈ Z a morphism cZ : C → FZ, such that for any morphism f : Z → Z ′, the following diagram
commutes

C

cZ
''OOOOOOOOOOOOO

cZ′ // FZ ′

FZ

Ff

OO

The limit of F is a cone (L, lZ), such that for any other cone (C, cZ), there exists a unique morphism
u : C → L, such that for all Z ∈ Z , cZ = lZ ◦ u. If it exists, the limit of F is unique up to
isomorphism in A. We write limF = limF (Z) = (L, l)
Dually, a cocone on F , is a couple (M,mZ), where M ∈ A and mZ : F (Z)→ M is a morphism
in A, for all Z ∈ Z , such that

mZ = mZ′ ◦ F (f),

for all f : Z → Z ′ inZ . The colimit of F is a cocone (C, c) on F satisfying the following universal
property: if (M,m) is a cocone on F , then there exists a unique morhism such that

f ◦ cZ = mZ ,

for all Z ∈ Z . If it exists, the colimit is unique up to isomorphism. We write colimF =
colimF (Z) = (C, c).
Different types of categories Z give rise to different types of (co)limits.

1. Let Z be a discrete category (i.e. Hom(Z,Z ′) is empty if Z 6= Z ′ and exists of nothing but
the identity morphism otherwise), then for any functor F : Z → A, limF =

∏
Z∈Z F (Z),

the product in A of all F (Z) ∈ A for all Z ∈ Z and colimF =
∐

Z∈Z F (Z), the coproduct
in A of all F (Z) ∈ A for all Z ∈ Z .

2. Let Z be a category consisting of two objects X and Y , such that Hom(X,X) = {X},
Hom(Y, Y ) = {Y }, Hom(Y,X) = ∅ and Hom(X, Y ) = {f, g}. Then for any functor F :
Z → A, limF is the equalizer in A of the pair (F (f), F (g)) and colimF is the coequalizer
in A of the pair (F (f), F (g)).

3. A category J is called filtered when

• it is not empty,
• for every two objects j and j′ in J there exists an object k and two arrows f : j → k

and f ′ : j′ → k in J ,
• for every two parallel arrows u, v : i → j in J , there exists an object k and an arrow
w : j → k such that wu = wv.

Let I be a directed poset, the category associated to I , whose objects are the elements of
I , and where Hom(i, j) is the singleton if i ≤ j and the singleton otherwise, is a filtered
category. The (co)limit of a functor F : J → A, where J is a filtered category is called a
filtered (co)limit.
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1.2.4 Abelian categories and Grothendieck categories
A category is preadditive if it is enriched over the monoidal category Ab of abelian groups. This
means that all Hom-sets are abelian groups and the composition of morphisms is bilinear.
A preadditive categoryA is called additive if every finite set of objects has a biproduct. This means
that we can form finite direct sums and direct products (which are isomorphic as objects in A).
An additive category is preabelian if every morphism has both a kernel and a cokernel.
Finally, a preabelian category is abelian if every monomorphism is a kernel of some morphism
and every epimorphism is a cokernel of some morphism. In any preabelian category A, one can
construct for any morphism f : A→ B, the following diagram

ker(f) κ // A
f //

λ
��

B
π // coker(f)

coim(f)
f̄ // im(f)

µ

OO

One can prove that A is abelian if and only if f̄ is an isomorphism for all f .
The category Ab of abelian groups is the standard example of an abelian category. Other examples
areMk, where k is a commutative ring, or more general,MA and BMA, where A and B are not
necessarily commutative rings.
In any abelian category (in particular inMk), the equalizers of a pair (f, g) always exists and can
be computed as the kernel of f − g. Dually, the coequalizer also exists for every pair (f, g) and
can be computed as the cokernel of f − g, which is isomorphic to Y/Im (f − g).

1.2.5 Exact functors
Abelian categories provide a natural framework to study exact sequences and homology. In fact
it is possible to study homology already in the more general setting of semi-abelian categories,
of which the category of Groups form a natural example. For more details we refer to the course
“semi-abelse categorieën” on this subject.
A sequence of morphisms

A
f // B

g // C

is called exact if im(f) = ker(g). An arbitrary sequence of morphisms is called exact if every
subsequence of two consecutive morphisms is exact.
Let C and D be two preadditive categories. Then a functor F : C → D is called additive if
F (f+g) = F (f)+F (g), for any two objectsA,B ∈ C and any two morphisms f, g ∈ Hom(A,B).
Let C and D be two preabelian categories. A functor F : C → D is called right (resp. left) exact if
for any sequence of the form

0 // A
f // B

g // C // 0 (1.2)

in C, there is an exact sequence

F (A)
F (f) // F (B)

F (g) // F (C) // 0
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in D (respectively, there is an exact sequence

0 // F (A)
F (f) // F (B)

F (g) // F (C)

in D). A functor is exact if it is at the same time left and right exact, i.e. when the sequence

0 // F (A)
F (f) // F (B)

F (g) // F (C) // 0 (1.3)

is exact in D.
If the functor F is such that for any sequence of the form (1.2) in C, this sequence is exact in C if
the sequence (1.3) is exact in D, then we say that F reflects exact sequences.
Let A and B rings, and M an A-B-bimodule. Then the functor − ⊗A M : MA → MB is
right exact and the functor HomB(M,−) : MB → MA is left exact. By definition, the functor
− ⊗A M : MA → Ab is exact if and only if the left A-module M is flat. A module is called
faithfully flat, if it is flat and the functor −⊗AM :MA → Ab moreover reflects exact sequences.
If A is a field, then any A-module is faithfully flat.
LetA be an abelian category, and consider a pair of parallel morphisms f, g : X → Y . Then (E, e)

is the equalizer of the pair (f, g) inA if and only if the row 0 // E
e // X

f−g // Y
is exact (if and only if (E, e) is the kernel of the morphism f − g, see above). A dual statement
relates coequalizers, right short exact sequences and cokernels in abelian categories. Hence an
exact functor (resp. a functor that reflects exact sequences) between abelian categories preserves
(resp. reflects) also equalizers and coequalizers. A left exact functor only preserves equalizers (in
particular kernels), a right exact functor only preserves coequalizers (in particular cokernels).

1.2.6 Grothendieck categories
A Grothendieck category is an abelian category A such that

• A has a generator,

• A has colimits;

• filtered colimits are exact in the following sense: Let I be a directed set and

0→ Ai → Bi → Ci → 0

an exact sequence for each i ∈ I , then

0→ colim (Ai)→ colim (Bi)→ colim (Ci)→ 0

is also an exact sequence.

One of the basic properties of Grothendieck categories is that they also have limits.

Examples 1.2.1 • For any ring A, the categoryMA of (right) modules over A is the standard
example of a Grothendieck category. The forgetful functorMA → Ab preserves and reflects
exact sequences.
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• If a coring C is flat as a left A-module, then the category MC of right C-comodules is a
Grothendieck category. Moreover, in this case, the forgetful functorMC →MA preserves
and reflects exact sequences (hence (co)equalizers and (co)kernels), therefore, exactness,
(co)equalizers and (co)kernels can be computed already inMA (and even in Ab).

1.3 Tensor products of modules

1.3.1 Universal property
Let k be a commutative ring, and let Mk be the category with objects (right) k-modules and
morphisms k-linear maps. We denote the set of all k-linear maps between two k-modules X and
Y by Hom(X, Y ).
For any two k-modules X and Y , we know that the cartesian product X × Y is again a k-module
where

(x, y) + (x′, y′) = (x+ x′, y + y′) and (x, y) · a = (xa, ya)

for all x, x′ ∈ X , y, y′ ∈ Y and a ∈ k. For any third k-module Z, we can now consider the set
Bilk(X × Y, Z) of k-bilinear maps from X × Y to Z. The tensor product of X and Y is defined as
the unique k-module, denoted byX⊗Y , for which there exists a bilinear map φ : X×Y → X⊗Y ,
such that the map

ΦZ : Hom(X ⊗ Y, Z)→ Bil(X × Y, Z), ΦZ(f) = f ◦ φ

is bijective for all k-modules Z. The uniqueness of the tensor product is reflected in the fact that
it satisfies moreover the following universal property: if T is another k-module together with a k-
bilinear map ψ : X×Y → T such that the corresponding map ΨZ : Hom(T, Z)→ Bil(X×Y, Z)
is bijective for all Z, then there must exist a unique k-linear map τ : X ⊗ Y → T such that
ψ = τ ◦ φ. Indeed, just take τ = Φ−1

T (ψ).
Remark that this universal property indeed implies that the tensor product is unique. (Prove this as
exercise. In fact, many objects in category theory such as (co)equalisers, (co)products, (co)limits,
are unique because they satisfy a similar universal property.)

1.3.2 Existence of tensor product
We will now provide an explicit construction for the tensor product, which explicitly implies the
existence of (arbitrary) tensor products. Consider again k-modules X and Y . Let (X×Y )k be the
free k-module generated by a basis indexed by all elements of X × Y . I.e. elements of (X × Y )k
are (finite) linear combinations of vectors e(x,y), where x ∈ X and y ∈ Y . Now consider the
submodule I generated by the following elements:

e(x+x′,y) − e(x,y) − e(x′,y),

e(x,y+y′) − e(x,y) − e(x,y′),

e(xa,y) − e(x,y)a,

e(x,ya) − e(x,y)a.
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We claim that X ⊗ Y = (X × Y )k/I . Indeed, there is a map

φ : X × Y → X ⊗ Y, φ(x, y) = ex,y,

which is k-bilinear exactly because of the definition of I . Furthermore, for any k-module Z we
can define Φ−1

Z : Bil(X × Y, Z)→ Hom(X ⊗ Y, Z) as follows. For f ∈ Bil(X × Y, Z), we put

Φ−1
Z (f)(ex,y) = f(x, y)

and extend this linearly. Then it is straightforward to check that this defines indeed a two-sided
inverse for ΦZ .
From now on, we will denote the element ex,y ∈ X⊗Y just by x⊗y ∈ X⊗Y . A general element
of X ⊗ Y is therefore a finite sum of the form

∑
i xi ⊗ yi, where xi ∈ X and yi ∈ Y . Moreover,

these elements satisfy the following relations:

(x+ x′)⊗ y = x⊗ y + x′ ⊗ y
x⊗ (y + y′) = x⊗ y + x⊗ y′

(xa)⊗ y = x⊗ (ya) = (x⊗ y)a.

1.3.3 Iterated tensor products
A special tensor product is the tensor product where Y = k (or X = k). Let us compute this
particular case. Since X is a (right) k-module, multiplication with k provides a k-bilinear map

m : X × k → X, m(x, a) = ma.

By the universal property of the tensor product, this map can be transformed into a linear map
m′ : X ⊗ k → X, m′(

∑
i xi ⊗ ai) =

∑
i xiai. Now observe that the following map is k-linear:

r : X → X ⊗ k, r(x) = x⊗ 1.

Indeed, by the equivalence properties in the construction of the tensor product, we find that

r(xa) = xa⊗ 1 = (x⊗ 1)a = r(x)a.

Finally, we have that r and m are each others inverse:

r ◦m(
∑
i

xi ⊗ ai) = (
∑
i

xiai)⊗ 1 =
∑
i

((xiai)⊗ 1) =
∑
i

xi ⊗ ai

m ◦ r(x) = m(x⊗ 1) = x1 = x

So we conclude that X ⊗ k ∼= X . Similarly, one shows that k ⊗ Y ∼= Y .
Consider now three k-modules X , Y and Z. Then we can construct the tensor products X ⊗ Y
and Y ⊗ Z. Now we can take the tensor product of these modules respectively with Z on the
right and with X on the left. So we obtain (X ⊗ Y ) ⊗ Z and X ⊗ (Y ⊗ Z). We claim that
these modules are isomorphic. To prove this explicitly, we introduce the triple tensor product
space with a similar universal property as for the usual tensor product. Let Tri(X × Y × Z,U)
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be the set of all tri-linear maps f : X × Y × Z → U , where U is any fixed k-module. Then the
k-module ⊗(X, Y, Z) is defined to be the unique k-module for which there exists a trilinear map
φ : X × Y × Z → ⊗(X, Y, Z), such that for all k-modules U , the following map is bijective

ΦU : Hom(⊗(X, Y, Z), U)→ Tri(X × Y × Z,U),ΦU(f) = f ◦ φ.

As for the usual tensor product, one can construct ⊗(X, Y, Z) by dividing out the free module
k(X×Y ×Z) by an appropriate submodule. It is an easy exercise to check that both (X⊗Y )⊗Z
and X ⊗ (Y ⊗ Z) satisfy this universal property and therefore are isomorphic.
Of course, this procedure can be repeated to obtain iterated tensor products of any (finite) number
of k-modules. Up to isomorphism, the order of constructing the iterated tensor product out of usual
tensor products, is irrelevant.

1.3.4 Tensor products over fields
If k is a field, X and Y are vector spaces, then there is an easy expression for the basis of X ⊗ Y .
Let {eα}α∈A be a basis for X and {bβ}β∈B be a basis for Y . Then X ⊗ Y has a basis {eα ⊗
bβ | α ∈ A, β ∈ B}. The universal property in this case can also easily be obtained assuming
that X ⊗ Y has this basis. In particular, if X an Y are finite dimensional, then it follows that
dim(X ⊗ Y ) = dimX · dimY .

1.3.5 Tensor products over arbitrary algebras
Tensor products as a coequalizer

Let A be any (unital, associative) k-algebra. Consider a right A-module (M,µM) and a left A-
module (N,µN). The tensor product of M and N over A is the k-module defined by the following
coequalizer inMk,

M ⊗ A⊗N
µM⊗N //

M⊗µN
//M ⊗N //M ⊗A N.

(here the unadorned tensor product denotes the k-tensor product.)

Some basic properties

Consider three k-algebras A,B,C. One can check that the tensorproduct over B defines a functor

−⊗B − : AMB × BMC → AMC ,

where for all M ∈ AMB and N ∈ BMC , the left A-action (resp. right C-action) on M ⊗B N are
given by µA,M ⊗B N (resp. M ⊗B µN,C).
For any k-algebra A and any left A-module (M,µM), we have A ⊗A M ∼= M . To prove this, it
suffices to verify that (M,µM) is the coequalizer of the pair (µA ⊗M,A ⊗ µM). The statement
follows by the uniqueness of the coequalizer.
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1.4 Monoidal categories and algebras

1.4.1 Monoidal categories and coherence
Definition 1.4.1 A monoidal category (sometimes also termed tensor category) is a sixtuple C =
(C,⊗, k, a, l, r) where

• C is a category;

• k is an object of C, called the unit object of C;

• − ⊗− : C × C → C is a functor, called the (tensor) product;

• a : ⊗ ◦ (⊗× id)→ ⊗ ◦ (id×⊗) is a natural isomorphism;

• l : ⊗ ◦ (k × id)→ id and r : ⊗ ◦ (id× k)→ id are natural isomorphisms.

This means that we have isomorphisms

aM,N,P : (M ⊗N)⊗ P →M ⊗ (N ⊗ P );

lM : k ⊗M →M ; rM : M ⊗ k →M

for allM,N,P,Q ∈ C. We also require that the following diagrams commute, for allM,N,P,Q ∈
C:

((M ⊗N)⊗ P )⊗Q
aM⊗N,P,Q//

aM,N,P⊗Q
��

(M ⊗N)⊗ (P ⊗Q)
aM,N,P⊗Q//M ⊗ (N ⊗ (P ⊗Q))

(M ⊗ (N ⊗ P ))⊗Q
aM,N⊗P,Q //M ⊗ ((N ⊗ P )⊗Q)

M⊗aN,P,Q

OO
(1.4)

(M ⊗ k)⊗N
aM,k,N //

rM⊗N ''OOOOOOOOOOO
M ⊗ (k ⊗N)

M⊗lNwwooooooooooo

M ⊗N

(1.5)

a is called the associativity constraint, and l and r are called the left and right unit constraints of C.

Examples 1.4.2 1) (Sets,×, {∗}) is a monoidal category. Here {∗} is a fixed singleton.
2) For a commutative ring k, (kM,⊗, k) is a monoidal category.
3) Let G be a monoid. Then (kGM,⊗, k) is a monoidal category

In both examples, the associativity and unit constraints are the natural ones. For example, given 3
sets M , N and P , we have natural isomorphisms

aM,N,P : (M ×N)× P →M × (N × P ), aM,N,P ((m,n), p) = (m, (n, p)),

lM : {∗} ×M →M, lM(∗,m) = m.
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In many, but not all, important examples of monoidal categories, the associativity and unit con-
straints are trivial.
If the maps underlying the natural isomorphisms a, l and r are the identity maps, then we say that
the monoidal category is strict. We mention (without proof) the Theorem, sometimes referred to as
Mac Lane’s coherence Theorem that every monoidal category is monoidally equivalent to a strict
monoidal category. It states more precisely that for every monoidal category (C,⊗, I, a, l, r), there
exists a strict monoidal category (C ′,⊗′, I ′, a′, l′, r′) together with an equivalence of categories
F : C → C ′, where F is a strong monoidal functor. Since a′, l′ and r′ are identities, there is no
need to write them. Moreover, every diagram that is constructed out of these trivial morphisms
will automatically commute (as it consists only of identities). By the (monoidal) equivalence of
categories C ' C ′, also every diagram in C, constructed out of a, l and r will be commutative, this
clarifies the name ‘coherence’. As a consequence of this Theorem, we will omit to write the data
a, l, r in the remaining of this section, a monoidal category will be shortly denoted by (C,⊗, I).
We will make computations and definitions as if C was strict monoidal, however, by coherence,
everything we do and prove remains valid in the non-strict setting.

1.4.2 Monoidal functors
Definition 1.4.3 Let C1 and C2 be two monoidal categories. A monoidal functor or tensor functor
from C1 → C2 is a triple (F, ϕ0, ϕ) where

• F is a functor;

• ϕ0 : k2 → F (k1) is a C2-morphism;

• ϕ : ⊗◦ (F, F )→ F ◦⊗ is a natural transformation between functors C1×C1 → C2 - so we
have a family of morphisms

ϕM,N : F (M)⊗ F (N)→ F (M ⊗N)

such that the following diagrams commute, for all M,N,P ∈ C1:

(F (M)⊗ F (N))⊗ F (P )
aF (M),F (N),F (P )//

ϕM,N⊗F (P )

��

F (M)⊗ (F (N)⊗ F (P ))

F (M)⊗ϕP,Q
��

F (M ⊗N)⊗ F (P )

ϕM⊗N,P
��

F (M)⊗ F (N ⊗ P )

ϕM,N⊗P
��

F ((M ⊗N)⊗ P )
F (aM,N,P )

// F (M ⊗ (N ⊗ P ))

(1.6)

k2 ⊗ F (M)
lF (M) //

ϕ0⊗F (M)
��

F (M)

F (k1)⊗ F (M)
ϕk1,M // F (k1 ⊗M)

F (lM )

OO
F (M)⊗ k2

rF (M) //

F (M)⊗ϕ0

��

F (M)

F (M)⊗ F (k1)
ϕM,k1 // F (M ⊗ k1)

F (rM )

OO
(1.7)
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If ϕ0 is an isomorphism, and ϕ is a natural isomorphism, then we say that F is a strong monoidal
functor. If ϕ0 and the morphisms underlying ϕ are identity maps, then we say that F is strict
monoidal.
A functor F : C → D between the monoidal categories (C,⊗, I) and (D,�, J) is called an op-
monoidal, if and only if F op,cop : Cop → Dop has the structure of a monoidal functor. Hence an
op-monoidal functor consists of a triple (F, ψ0, ψ), where ψ0 : F (I)→ J is a morphism in D and
ψX,Y : F (X ⊗ Y )→ F (X)�F (Y ) are morphisms in D, natural in X, Y ∈ C, satisfying suitable
compatibility conditions.
A strong monoidal functor (F, φ0, φ) is automatically op-monoidal. Indeed, one can take ψ0 = φ−1

0

and ψ = φ−1.

Example 1.4.4 1) Consider the functor k− : Sets → kM mapping a set X to the vector space
kX with basis X . For a function f : X → Y , the corresponding linear map kf is given by the
formula

kf(
∑
x∈X

axx) =
∑
x∈X

axf(x).

The isomorphism ϕ0 : k → k∗ is given by ϕ0(a) = a∗.

ϕX,Y : kX ⊗ kY → k(X × Y )

is given by ϕX,Y (x⊗ y) = (x, y), for x ∈ X , y ∈ Y . Hence the linearizing functor k− is strongly
monoidal.

2) Let G be a monoid. The forgetful functor U : kGM → kM is strongly monoidal. The maps
ϕ : k → U(k) = k and ϕM,N : U(M) ⊗ U(N) = M ⊗ N → U(M ⊗ N) = M ⊗ N are the
identity maps. So U is a strict monoidal functor.

3) Hom(−, k) : Setop →Mk is a monoidal functor.

1.4.3 Symmetric and braided monoidal categories
Monoidal categories can be viewed as the categorical versions of monoids. Now we investigate
the categorical notion of commutative monoid. It appears that there are two versions. We state our
definition only for strict monoidal categories; it is left to the reader to write down the appropriate
definition in the general case.

Definition 1.4.5 Let (C,⊗, k) be a strict monoidal category, and consider the switch functor

τ : C × C → C × C; τ(C,C ′) = (C ′, C), τ(f, f ′) = (f ′, f).

A braiding on C is a natural isomorphism γ : id⇒ τ such that γk,C = γC,k = C and the following
diagrams commute, for all C,C ′, C ′′ ∈ C.

C ⊗ C ′ ⊗ C ′′

γC′,C⊗C′′ ((RRRRRRRRRRRRR

γC,C′⊗C′′ // C ′ ⊗ C ′′ ⊗ C

C ′ ⊗ C ⊗ C ′′
C′⊗γC,C′′

66lllllllllllll
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C ⊗ C ′ ⊗ C ′′

C⊗γC′,C′′ ((RRRRRRRRRRRRR

γC⊗C′,C′′ // C ′′ ⊗ C ⊗ C ′

C ⊗ C ′′ ⊗ C ′
γC,C′′⊗C′

66lllllllllllll

γ is called a symmetry if γ−1
C,C′ = γC′,C , for all C,C ′ ∈ C.

A monoidal category with a braiding (resp. a symmetry) is called a braided monoidal category
(resp. a symmetric monoidal category).

Examples 1.4.6 1. Set is a symmetric monoidal category, where the symmetry is given by the
swich map γX,Y : X × Y → Y ×X, γX,Y (x, y) = (y, x).

2. Mk is a symmetric monoidal category, where the symmetry is given by γX,Y : X ⊗ Y →
Y ⊗X, γX,Y (x⊗ y) = y ⊗ x (and linearly extended).

3. In general, there is no braiding on AMA, the category of A-bimodules.

Let (C,⊗, I, γ and (D,�, J, δ) be (strict) braided monoidal categories. A monoidal functor (F, ϕ0, ϕ) :
(C,⊗, I)→ (D,�, J) is called braided if it preserves the braiding, meaning that the following di-
agram commutes, for all X, Y ∈ C:

F (X)� F (Y )

φX,Y
��

δF (X),F (Y ) // F (Y )� F (X)

φY,X
��

F (X ⊗ Y )
F (γX,Y )

// F (Y ⊗X)
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Chapter 2

Hopf algebras

2.1 Monoidal categories and bialgebras
Let k be a field (or, more generally, a commutative ring). Recall that a k-algebra is a k-vector
space (a k-module in the case where we work over a commutative ring) A with an associative
multiplication A× A→ A, which is a k-bilinear map, and with a unit 1A. The multiplication can
be viewed as a k-linear map A⊗ A→ A, because of the universal property of the tensor product.
Examples of k-algebras include the n× n-matrix algebra Mn(k), the group algebra kG, and many
others.
Recall that kG is the free k-module with basis {σ | σ ∈ G} and with multiplication defined on the
basic elements by the multiplication in G. The group algebra kG is special in the sense that it has
the following property: if M and N are kG-modules, then M ⊗N is also a kG-module. The basic
elements act on M ⊗N as follows:

σ(m⊗ n) = σm⊗ σn.

This action can be extended linearly to the whole of kG. Also k is a kG-module, with action

(
∑
σ∈G

aσσ)x =
∑
σ∈G

σx.

We will now investigate whether there are other algebras that have a similar property.

Now let A be a k-algebra, and assume that we have a monoidal structure on AM such that the
forgetful functor U : AM→ kM is strongly monoidal, in such a way that the maps ϕ0 and ϕM,N

are the identity maps, as in Example 1.4.4 (2). This means in particular that the unit object of AM
is equal to k (after forgetting the A-module structure), and that the tensor product of M,N ∈ AM
is equal toM⊗N as a k-module. Also it follows from the commuting diagrams in Definition 1.4.3
that the associativity and unit constraints in AM are the same as in kM.

A ∈ AM via left multiplication. Thus A⊗ A ∈ AM. Consider the k-linear map

∆ : A→ A⊗ A, ∆(a) = a(1⊗ 1).
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For a ∈ A, we have that ∆(a) =
∑

i ai ⊗ a′i, with ai, a′i ∈ A. It is incovenient that the ai and
a′i are not uniquelly determined: an element in the tensor product of two modules can usually be
written in several different ways as a sum of tensor monomials. We will have situations where the
map ∆ will be applied several times, leading to multiple indices. In order to avoid this notational
complication, we introduce the following notation:

∆(a) =
∑
(a)

a(1) ⊗ a(2).

This notation is usually refered to as the Sweedler-Heyneman notation. It can be simplified further
by omitting the summation symbol. We then obtain

∆(a) = a(1) ⊗ a(2).

The reader has to keep in mind that the right hand side of this notation is in general not a monomial:
the presence of the Sweedler indices (1) and (2) implies implicitly that we have a (finite) sum of
monomials.

Once ∆ is known, the A-action on M ⊗ N is known for all M,N ∈ AM. Indeed, take m ∈ M
and n ∈ N , and consider the left A-linear maps

fm : A→M, fm(a) = am ; gn : A→ N, gn(a) = an.

From the functoriality of the tensor product, it follows that fm ⊗ gn is a morphism in AM, i.e.
fm ⊗ gn is left A-linear. In particular

a(m⊗ n) = a((fm ⊗ gn)(1⊗ 1)) = (fm ⊗ gn)(a(1⊗ 1)) = (fm ⊗ gn)(∆(a))

= (fm ⊗ gn)(a(1) ⊗ a(2)) = a(1)m⊗ a(2)n.

We conclude that
a(m⊗ n) = a(1)m⊗ a(2)n. (2.1)

The associativity constraint aA,A,A : (A ⊗ A) ⊗ A → A ⊗ (A ⊗ A) is also morphism in AM.
Hence

a(1⊗ (1⊗ 1)) = a(1) ⊗ a(2)(1⊗ 1) = a(1) ⊗∆(a(2))

is equal to

a(aA,A,A((1⊗1)⊗1)) = aA,A,A(a((1⊗1)⊗1)) = aA,A,A(a(1)(1⊗1)⊗a(2)) = aA,A,A(∆(a(1))⊗a(2)).

We conclude that
a(1) ⊗∆(a(2)) = ∆(a(1))⊗ a(2). (2.2)

This property is called the coassociativity of A. It can also be expressed as

(A⊗∆) ◦∆ = (∆⊗ A) ◦∆

We also use the following notation:

a(1) ⊗∆(a(2)) = ∆(a(1))⊗ a(2) = ∆2(a) = a(1) ⊗ a(2) ⊗ a(3).
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We also know that k ∈ AM. Consider the map

ε : A→ k, ε(a) = a · 1k.

Since the left unit map lA : k ⊗ A→ A, lA(x⊗ a) = xa is left A-linear, we have

a = alA(1k ⊗ 1A) = lA(a(1k ⊗ 1A) = lA(ε(a(1))⊗ a(2)) = ε(a(1))a(2).

We conclude that
ε(a(1))a(2) = a = a(1)ε(a(2)). (2.3)

The second equality follows from the left A-linearity of rA. This property is called the counit
property.
We can also compute

∆(ab) = (ab)(1⊗ 1) = a(b(1⊗ 1)) = a(b(1) ⊗ b(2)) = a(1)b(1) ⊗ a(2)b(2);

∆(1) = 1(1⊗ 1) = 1⊗ 1;

ε(ab) = (ab) · 1k = a · (b · 1k) = a · ε(b) = ε(a)ε(b)

ε(1) = 1 · 1k = 1k.

These four equalities can be expressed as follows: the maps ∆ and ε are algebra maps. Here A⊗A
is a k-algebra with the following multiplication:

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

Theorem 2.1.1 Let A be a k-algebra. There is a bijective correspondence between

• monoidal structures on AM that are such that the forgetful functor AM → kM is strict
monoidal, and ϕ0 and ϕM,N are the identity maps;

• couples of k-algebra maps (∆ : A → A ⊗ A, ε : A → k) satisfying the coassociativity
property (2.2) and the counit property (2.3).

Proof. We have already seen how we construct ∆ and ε if a monoidal structure is given. Conversely,
given ∆ and ε, a left A-module structure is defined on M ⊗ N by (2.1). k is made into a left A-
module by the formula a · x = ε(a)x. It is straightforward to verify that this makes AM into a
monoidal category. �

Definition 2.1.2 A k-bialgebra is a k-algebra together with two k-algebra maps ∆ : A→ A⊗A
and ε : A → k satisfying the coassociativity property (2.2) and the counit property (2.3). ∆ is
called the comultiplication or the diagonal map. ε is called the counit or augmentation map.

Example 2.1.3 Let G be a monoid. Then kG is a bialgebra. The comultiplication ∆ and the
augmentation ε are given by the formulas

∆(σ) = σ ⊗ σ ; ε(σ) = 1
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A k-module C together with two k-linear maps ∆ : C → C ⊗ C and ε : C → k satisfying the
coassociativity property (2.2) and the counit property (2.3) is called a coalgebra.

A k-linear map f : C → D between two coalgebras is called a coalgebra map if εD ◦ f = εC and
∆D ◦ f = (f ⊗ f) ◦∆C , that is

εD(f(c)) = εC(c) and f(c)(1) ⊗ f(c)(2) = f(c(1))⊗ f(c(2)).

Thus a bialgebra A is a k-module with simultaneously a k-algebra and a k-coalgebra structure,
such that ∆ and ε are algebra maps, or, equivalently, the multiplication m : A ⊗ A → A and the
unit map η : k → A, η(x) = x1 are coalgebra maps.

Let A and B be bialgebras. A k-linear map f : A→ B is called a bialgebra map if it is an algebra
map and a coalgebra map.

2.2 Hopf algebras and duality

2.2.1 The convolution product, the antipode and Hopf algebras
Let C be a coalgebra, and A an algebra. We can now define a product ∗ on Hom(C,A) as follows:
for f, g : C → A, let f ∗ g be defined by

f ∗ g = mA ◦ (f ⊗ g) ◦∆C (2.4)

or
(f ∗ g)(c) = f(c(1))g(c(2)) (2.5)

∗ is called the convolution product. Observe that ∗ is associative, and that for any f ∈ Hom(C,A),
we have that

f ∗ (ηA ◦ εC) = (ηA ◦ εC) ∗ f = f

so the convolution product makes Homk(C,A) into a k-algebra with unit.
Now suppose that H is a bialgebra, and take H = A = C in the above construction. If the identity
H of H has a convolution inverse S = SH , then we say that H is a Hopf algebra. S = SH is called
the antipode of H . The antipode therefore satisfies the following property: S ∗H = H ∗S = η ◦ ε
or

h(1)S(h(2)) = S(h(1))h(2) = η(ε(h)) (2.6)

for all h ∈ H . A bialgebra homomorphism f : H → K is called a Hopf algebra homomorphism
if SK ◦ f = f ◦ SH .

Proposition 2.2.1 Let H and K be Hopf algebras. If f : H → K is a bialgebra map, then it is a
Hopf algebra map.

Proof. We show that SK ◦ f and f ◦ SH have the same inverse in the convolution algebra
Hom(H,K). Indeed, for all h ∈ H , we have

((SK ◦ f) ∗ f)(h) = SK(f(h(1)))f(h(2)) = SK(f(h)(1))f(h)(2)

= εK(f(h))1K = εH(h)1K .
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and

(f ∗ (f ◦ SH))(h) = f(h(1))f(SH(h(2))) = f(h(1)SH(h(2))

= f(εH(h)1H) = εH(h)1K .

This shows that SK ◦ f is a left inverse of f , and f ◦ SH is a right inverse of f . If an element of
an algebra has a left inverse and a right inverse, then the left and right inverse are equal, and are a
two-sided inverse. Indeed, if xa = ay = 1, then xay = x1 = x and xay = 1y = y. �

Example 2.2.2 LetG be a group. The group algebra kG is a Hopf algebra: the antipode S is given
by the formula

S(
∑
σ∈G

aσσ) =
∑
σ∈G

aσσ
−1.

Proposition 2.2.3 Let H be a Hopf algebra.

1. S(hg) = S(g)S(h), for all g, h ∈ H;

2. S(1) = 1;

3. ∆(S(h)) = S(h(2))⊗ S(h(1)), for all h ∈ H;

4. ε(S(h)) = ε(h).

In other words, S : H → Hop is an algebra map, and S : H → Hcop is a colagebra map.

Proof. 1) We consider the convolution algebra Hom(H ⊗ H,H). Take F,G,M : H ⊗ H → H
defined by

F (h⊗ g) = S(g)S(h); G(h⊗ g) = S(hg); M(h⊗ g) = hg.

A straightforward computation shows that M is a left inverse for F and a right inverse for G. This
implies that F = G, and the result follows.
2) 1 = ε(1)1 = S(1(1))1(2) = S(1).
3) Now we consider the convolution algebra Hom(H,H ⊗H), and F,G : H → H ⊗H given by

F (h) = ∆(S(h)); G(h) = S(h(2))⊗ S(h(1)).

Then ∆ is a left inverse for F and a right inverse for G, hence F = G.
4) Apply ε to the relation h(1)S(h(2)) = ε(h)1. This gives

ε(h) = ε(h(1))ε(S(h(2))) = ε(S(ε(h(1))h(2))) = ε(S(h)).

�

Proposition 2.2.4 Let H be a Hopf algebra. The following assertions are equivalent.

1. S(h(2))h(1) = ε(h)1, for all h ∈ H;

2. h(2)S(h(1)) = ε(h)1, for all h ∈ H;
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3. S ◦ S = H .

Proof. 1)⇒ 3). We show that S2 = S ◦ S is a right convolution inverse for S. Since H is a (left)
convolution inverse of S, it then follows that S ◦ S = H .

(S ∗ S2)(h) = S(h(1))S
2(h(2)) = S(S(h(2))h(1))

= S(ε(h)1) = ε(h)1.

3)⇒ 1). Apply S to the equality S(h(1))h(2) = ε(h)1.
2)⇒ 3). We show that S2 = S ◦ S is a leftt convolution inverse for S.
3)⇒ 2). Apply S to the equality h(1)S(h(2)) = ε(h)1. �

Corollary 2.2.5 If H is commutative or cocommutative, then S ◦ S = H .

2.2.2 Projective modules
Let V be a k-module. Recall that V is projective if it has a dual basis; this is a set

{(ei, e∗i ) | i ∈ I} ⊂ V × V ∗

such that for each v ∈ V
#{i ∈ I | 〈e∗i , v〉 6= 0} <∞

and
v =

∑
i∈I

〈e∗i , v〉ei (2.7)

If I is a finite set, then V is called finitely generated projective.
Let V and W be k-modules. Then we have a natural map

i : V ∗ ⊗W ∗ → (V ⊗W )∗

given by
〈i(v∗ ⊗ w∗), v ⊗ w〉 = 〈v∗, v〉〈w∗, w〉

If k is a field, then every k-vector space is projective, and a vector space is finitely generated
projective if and only if it is finite dimensional. If this is the case, then we have for all v ∈ V and
v∗ ∈ V ∗:

〈v∗, v〉 =
∑
i

〈e∗i , v〉〈v∗, ei〉

hence
v∗ =

∑
i

〈v∗, ei〉e∗i . (2.8)

Proposition 2.2.6 A k-module M is finitely generated projective if and only if the map

ι : M ⊗M∗ → End(M), ι(m⊗m∗)(n) = 〈m∗, n〉m

is bijective.
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Proof. First assume that ι is bijective. Let ι−1(M) =
∑

i ei ⊗ e∗i . Then for all m ∈M ,

m = ι(
∑
i

ei ⊗ e∗i )(m) =
∑
i

〈e∗i ,m〉ei

so {(ei, e∗i )} is a finite dual basis of M .
Conversely, take a finite dual basis {(ei, e∗i )} of M , and define

κ : End(M)→M ⊗M∗

by
κ(f) =

∑
i

f(ei)⊗ e∗i .

For all f ∈ End(M), m,n ∈M and m∗ ∈M∗, we have

ι(κ(f))(n) =
∑
i

〈e∗i , n〉f(ei)

= f(
∑
i

〈e∗i , n〉ei) = f(n);

κ(ι(m⊗m∗)) =
∑
i

ι(m⊗m∗)(ei)⊗ e∗i

=
∑
i

〈m∗, ei〉m⊗ e∗i

= m⊗
∑
i

〈m∗, ei〉e∗i = m⊗m∗,

and this shows that κ is the inverse of ι. �

Proposition 2.2.7 If V and W are finitely generated projective, then i : V ∗ ⊗W ∗ → (V ⊗W )∗

is bijective.

Proof. Let {(ei, e∗i ) | i ∈ I} ⊂ V × V ∗ and {(fj, f ∗j ) | j ∈ J} ⊂ W ×W ∗ be finite dual bases for
V and W . We define i−1 by

i−1(ϕ) =
∑
i,j

〈ϕ, ei ⊗ fj〉e∗i ⊗ f ∗j

A straightforward computation shows that i−1 is the inverse of i. �

2.2.3 Duality
Our next aim is to give a categorical interpretation of the definition of a Hopf algebra.

Definition 2.2.8 A monoidal category C has left duality if for all M ∈ C, there exists M∗ ∈ C and
two maps

coevM : k →M ⊗M∗ ; evM : M∗ ⊗M → k
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such that

(M ⊗ evM) ◦ (coevM ⊗M) = M and (evM ⊗M∗) ◦ (M∗ ⊗ coevM) = M∗

This means that the two following diagrams are commutative:

M
coevM⊗M //

=
))SSSSSSSSSSSSSSSSSS M ⊗M∗ ⊗M

M⊗evM
��
M

M∗ M∗⊗coevM //

=
))SSSSSSSSSSSSSSSSSS M∗ ⊗M ⊗M∗

evM⊗M∗
��

M∗

Example 2.2.9 kMf , the full subcategory of kM consisting of finitely generated projective k-
modules, is a category with left duality. M∗ = Hom(M,k) is the linear dual of M and the
evaluation and coevaluation maps are given by the formulas

evM(m∗ ⊗m) = 〈m∗,m〉 ; coev(1k) =
∑
i

ei ⊗ e∗i ,

where {(ei, e∗i )} is a finite dual basis of M .

Proposition 2.2.10 For a Hopf algebra H , the category HMf of left H-modules that are finitely
generated and projective as a k-module has left duality.

Proof. Take a left H-module M . It is easy to see that M∗ is a right H-module as follows:

〈m∗↼h,m〉 = 〈m∗, hm〉.

But we have to make M∗ into a left H-module. To this end, we apply the antipode:

h ·m∗ = m∗↼S(h),

or
〈h ·m∗,m〉 = 〈m∗, S(h)m〉.

We are done if we can show that evM and coevM are left H-linear. We first prove that evM is left
H-linear:

evM(h · (m∗ ⊗m)) = evM(h(1) ·m∗ ⊗ h(2)m)

= 〈h(1) ·m∗, h(2)m〉 = 〈m∗, S(h(1))h(2)m〉 = ε(h)evM(m∗ ⊗m).

Before we show that coevM is left H-linear, we observe that End(M) is a left H-module under
the following action:

(h · f)(n) = h(1)f(S(h(2))n).

This action is such that ι : M ⊗M∗ → End(M) is an isomorphism of left H-modules. Indeed,
for all m,n ∈M and m∗ ∈M∗, we have

ι(h(m⊗m∗))(n) = ι(h(1)m⊗ h(2)m
∗)(n)

= 〈m∗, S(h(2))n〉h(1)m = (h · ι(m⊗m∗))(n).
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Now it suffices to show that ι ◦ coevM : k → End(M) is left H-linear. For x ∈ k, we have that
(ι ◦ coevM)(x) = xIM , multiplication by the scalar x ∈ k. Here we wrote IM for the identity of
M . It is now easy to compute that

((h · (ι ◦ coevM))(x))(m) = (h · xIM)(m) = h(1)xS(h(2))m = xε(h)m,

hence
(h · (ι ◦ coevM))(x) = xε(h)IM = (ι ◦ coevM)(ε(h)x),

as needed. �

2.3 Properties of coalgebras

2.3.1 Examples of coalgebras
Examples 2.3.1 1) Let S be a nonempty set, and let C = kS be the free k-module with basis S.
Define ∆ and ε by

∆(s) = s⊗ s and ε(s) = 1

for all s ∈ S. Then (C,∆, ε) is a coalgebra.

2) Let C be the free k-module with basis {cm |m ∈ N}. Now define ∆ and ε by

∆(cm) =
m∑
i=0

ci ⊗ cm−i and ε(cm) = δ0,m

This coalgebra is called the divided power coalgebra.

3) k is a coalgebra; ∆ and ε are the canonical isomorphisms.

4) Let Mn(k) be free k-module of dimension n2 with k-basis {eij | i, j = 1, · · · , n}. We define a
comultiplication ∆ and a counit ε by the formulas

∆(eij) =
n∑
k=1

eik ⊗ ekj and ε(eij) = δij

Mn(k) is called the matrix coalgebra.

5) Let C be the free k-module with basis {gm, dm | m ∈ N∗}.We define a comultiplication ∆ and
a counit ε by the formulas

∆(gm) = gm ⊗ gm ; ε(gm) = 1

∆(dm) = gm ⊗ dm + dm ⊗ gm+1 ; ε(dm) = 0

6) Let C be the free k-module with basis {s, c}. We define ∆ : C → C ⊗ C and ε : C → k by

∆(s) = s⊗ c+ c⊗ s ; ε(s) = 0
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∆(c) = c⊗ c+ s⊗ s ; ε(c) = 1

C is called the trigonometric coalgebra.

7) Let C = (C,∆, ε). Then Ccop = (C,∆cop = τ ◦∆, ε) is also a coalgebra, called the opposite
coalgebra. The comultiplication in Ccop is given by the formula

∆cop(c) = c(2) ⊗ c(1)

8) If C and D are coalgebra, then C ⊗D is also coalgebra. The structure maps are

εC⊗D = εC ⊗ εD and ∆C⊗D = (IC ⊗ τ ⊗ ID) ◦∆C ⊗∆D

that is,

εC⊗D(c⊗ d) = εC(c)εD(d) and ∆C⊗D(c⊗ d) = (c(1) ⊗ d(1))⊗ (c(2) ⊗ d(2))

g ∈ C is called a grouplike element if ∆(g) = g ⊗ g and ε(g) = 1 (see Example 1.4.2 1). The set
of grouplike elements of C is denoted by G(C).
Let g and h be grouplike elements. x ∈ C is called (g, h)-primitive if ∆(x) = g ⊗ x + x⊗ h and
ε(x) = 0. A (1, 1)-primitive element is called primitive. The set of (g, h)-primitive elements of C
is denoted Pg,h(C).

Duality

Let C be a coalgebra. Then C∗ is an algebra, with multiplication

mC∗ = ∆∗ ◦ i : C∗ ⊗ C∗ → (C ⊗ C)∗ → C∗

and unit ε. C∗ is called the dual algebra of C. The multiplication is given by

(c∗ ∗ d∗)(c) = 〈c∗, c(1)〉〈d∗, c(2)〉

This multiplication is called the convolution.

Conversely, let A be an algebra that is finitely generated and projective as a k-module. Then A∗ is
a coalgebra, with comultiplication

∆A∗ = i−1 ◦m∗A : A∗ → (A⊗ A)∗ → A∗ ⊗ A∗

and counit
εA∗(a

∗) = 〈a∗, 1〉.

The comultiplication ∆A∗ can be described explicitly in terms of the dual basis {(ei, e∗i )} of A:

∆(h∗) =
∑
i,j

〈h∗, eiej〉e∗i ⊗ e∗j . (2.9)
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Examples 2.3.2 1) Let S be a set, and consider the coalgebra kS from Example 2.3.1 1). Then
(kS)∗ is isomorphic to Map(S, k), the algebra of functions from S to k: to a morphism f ∈ (kS)∗,
we associate its restriction to S, and, conversely, a map f : S ⊗ k can be extended linearly to a
map kS → k. The multiplication on Map(S, k) is then just pointwise multiplication. If S is finite
then (kS)∗ is isomorphic as an algebra to the direct sum of a number of copies of k indexed by S.
2) Consider the coalgebra C from Example 2.3.1 2). The multiplication on C∗ is given by

(f ∗ g)(cm) =
m∑
i=0

f(ci)g(cm−i)

As an algebra, C∗ ∼= k[[X]], the algebra of formal power series in one variable. The connecting
isomorphism φ is given by

φ(f) =
∞∑
n=0

f(cn)Xn

3) Consider the matrix coalgebra Mn(k). Its dual is isomorphic to the matrix algebra Mn(k). This
can be seen as follows: define e∗ij : Mn(k)→ k by

〈e∗ij, ekl〉 = δikδjl

Then It can be verified immediately that the e∗ij multiply under convolution as elementary matrices.
4) Let A be a finitely generated projective k-algebra. Then G(A∗) = Alg(A, k).

2.3.2 Subcoalgebras and coideals
Let C = (C,∆, ε) be a coalgebra, and D a k-submodule of C. D is called a subcoalgebra of C if
the comultiplication ∆ restricts and corestricts to

∆|D : D → D ⊗D

in this case, D = (D,∆|D, ε|D) is itself a coalgebra.

Exercise 2.3.3 Let (Ci)i∈I be a family of subcoalgebras of C. Show that
∑

i∈I Ci is a again a
subcoalgebra of C.

A k-submodule I of C is called
- a left coideal if ∆(I) ⊂ C ⊗ I;
- a right coideal if ∆(I) ⊂ I ⊗ C;
- a coideal if ∆(I) ⊂ I ⊗ C + C ⊗ I and ε(I) = 0.

Exercise 2.3.4 Let k be a field, I be a left and right coideal of the coalgebra C; show that I is
a subcoalgebra. Use the following property. If X ⊂ V and Y ⊂ W are vector spaces, then
(V ⊗ Y ) ∩ (X ⊗W ) = X ⊗ Y .

The following result is called the Fundamental Theorem of Coalgebras; it illustrates the intrinsic
finiteness property of coalgebras.
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Theorem 2.3.5 Let C be a coalgebra over a field k. Every element c ∈ C is contained in a finite
dimensional subcoalgebra of C.

Proof. Fix a basis {ci | i ∈ I} of C; we can write

(I ⊗∆)∆(c) =
∑
i,j∈I

ci ⊗ xij ⊗ cj. (2.10)

Only a finite number of the xij are different from 0. Let X be the subspace of C generated by the
xij . Applying ε⊗ C ⊗ ε to (2.10), we find that

c =
∑
i,j

ε(ci)ε(cj) ∈ X.

From the coassociativity of ∆, it follows that∑
i,j∈I

ci ⊗∆(xij)⊗ cj =
∑
i,j∈I

∆(ci)⊗ xij ⊗ cj

Since {cj | j ∈ I} is linearly independent, we have, for all j ∈ I∑
i∈I

ci ⊗∆(xij) =
∑
i∈I

∆(ci)⊗ xij

It follows that
∑

i∈I ci ⊗∆(xij) ∈ C ⊗ C ⊗X , and, because {ci | i ∈ I} is linearly independent,

∆(xij) ∈ C ⊗X

In a similar way, we prove that ∆(xij) ∈ X ⊗ C and it follows that

∆(xij) ∈ C ⊗X ∩X ⊗ C = X ⊗X

and X is a finite dimensional subcoalgebra of C containing c. �

Exercise 2.3.6 Let f : C → D be a morphism of coalgebras. Prove that Im (f) is a subcoalgebra
of D and Ker (f) is a coideal in C.

Proposition 2.3.7 Let I be a coideal in a coalgebra C, and p : C → C/I the canonical projec-
tion.
1) There exists a unique coalgebra structure on C/I such that p is a coalgebra map.
2) If f : C → D is a coalgebra morphism with I ⊂ Ker (f), then f factors through C/I: there
exists a unique coalgebra morphism f : C/I → D such that f ◦ p = f .

Corollary 2.3.8 Let f : C → D be a surjective coalgebra map. Then we have a canonical
coalgebra isomorphism C/Ker (f) ∼= D.
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2.4 Comodules
The definition of a comodule over a coalgebra is a dual version of the definition of module over
an algebra. Let k be a commutative ring, and C a k-coalgebra. A right C-comodule (M,ρ) is a
k-module M together with a k-linear map ρ : M → M ⊗ C such that the following diagrams
commute:

M
ρ //

ρ

��

M ⊗ C
ρ⊗C
��

M ⊗ C M⊗∆ //M ⊗ C ⊗ C

M
ρ //

M
��

M ⊗ C
M⊗ε
��

M
rM //M ⊗ k

We will also say that C coacts on M , or that ρ defines a coaction on M . We will use the following
version of the Sweedler-Heynemann notation: if M is a comodule, and m ∈M , then we write

ρ(m) = m[0] ⊗m[1]

(ρ⊗ IC)ρ(m) = (IM ⊗∆)ρ(m) = m[0] ⊗m[1] ⊗m[2]

and so on. The second commutative diagram takes the form

ε(m[1])m[0] = m

A morphism between two comodules M and N is a k-linear map f : M → N such that

ρ(f(m)) = f(m)[0] ⊗ f(m)[1] = f(m[0])⊗m[1]

for all m ∈ M . We say that f is C-colinear. The category of right C-comodules and C-colinear
maps will be denoted byMC . We can also define left C-comodules. If ρ defines a left C-coaction
on M , then we write

ρ(m) = m[−1] ⊗m[0] ∈ C ⊗M

LetC andD be coalgebras. If we have a leftC-coaction ρl and a rightD-coaction ρr on a k-module
M such that

(ρl ⊗ ID) ◦ ρr = (IC ⊗ ρr) ◦ ρl

then we call (M,ρl, ρr) a (C,D)-bicomodule. We then write

(ρl ⊗ ID)ρr(m) = (IC ⊗ ρr)ρl(m) = m[−1] ⊗m[0] ⊗m[1]

Examples 2.4.1 1) (C,∆) is a right (and left) C-comodule.
2) Let V be a k-module. Then (V ⊗ C, IV ⊗∆) is a right C-comodule.

Let S be a set. An S-graded k-module is a k-module M together with a decomposition as a direct
sum of submodules indexed by S:

M = ⊕s∈SMs

This means that every m ∈ M can be written in a unique way as a sum m =
∑

s∈Sms with ms

in Ms. ms is called the homogeneous component of degree s of m, and we write deg(ms) = s. A
map between two S-graded modules M and N is called graded if it preserves the degree, that is
f(Ms) ⊂ Ns. The category of S-graded k-modules and graded homomorphisms is denoted grS .
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Proposition 2.4.2 Let S be a set and k a commutative ring. The category grS of graded modules
is isomorphic to the categoryMkS of right kS-comodules.

Proof. We define a functor F : grS →MkS as follows: F (M) is M as a k-module, with coaction
given by

ρ(m) =
∑
s∈S

ms ⊗ s

if m =
∑

s∈Sms is the homogeneous decomposition of m ∈ M . F is the identity on the mor-
phisms. Straightforward computations show that F is a well-defined functor.
Now we define a functor G : MkS → grS . Take a right kS-comodule M , and let

Ms = {m ∈M | ρ(m) = m⊗ s}

Let m ∈ M , and write ρ(m) =
∑

s∈Sms ⊗ s. From the coassociativity of the coaction, it follows
that ∑

s∈S

ρ(ms)⊗ s =
∑
s∈S

ms ⊗ s⊗ s

in M ⊗ kS ⊗ kS. Since S is a free basis of kS, it follows that ρ(ms) = ms ⊗ s for every s ∈ S,
hence ms ∈Ms. Therefore

m = (IM ⊗ ε)ρ(m) =
∑
s∈S

msε(s) =
∑
s∈S

ms ∈
∑
s∈S

Ms

and this proves that M =
∑

s∈SMs. This is a direct sum: if m ∈Ms ∩Mt, then ρ(m) = m⊗ s =
m⊗ t, and from the fact that kS is free with basis S, it follows that m = 0 or s = t. Thus we have
defined a grading on M , and G(M) will be M as a k-module with this grading. G is the identity
on the morphisms.
G is a well-defined functor, and F and G are each others inverses. �

Proposition 2.4.3 Let C be a coalgebra over a commutative ring k. Then we have a functor F :
MC → C∗M. If C is finitely generated and projective as a k-module, then F is an isomorphism
of categories.

Proof. Take a right C-comodule M , and let F (M) = M as a k-module, with left C∗-action given
by

c∗ ·m = 〈c∗,m[1]〉m[0].

It is straightforward to verify that this is a well-defined C∗-action. Furthermore, if f : M → N is
rightC-colinear, then f is also leftC∗-linear; so we define F (f) = f on the level of the morphisms,
and we obtain a functor F .
Suppose that C is finitely generated and projective, and let {(ci, c∗i ) | i = 1, · · · , n} be a finite dual
basis for C. We define a functor G : C∗M→MC as follows: G(M) = M , with right C-coaction

ρ(m) =
n∑
i=1

c∗i ·m⊗ ci.

A straightforward computation shows that G is a functor, which is inverse to F . �
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Theorem 2.4.4 Let C be a coalgebra over a field k, and M ∈ MC . Then any element m ∈ M is
contained in a finite dimensional subcomodule of M .

Proof. Let {ci | i ∈ I} be a basis of C, and write

ρ(m) =
′∑
i∈I

mi ⊗ ci,

where only finitely many of the mi are different from 0. The subspace N of M spanned by the mi

is finite dimensional. We can write

∆(ci) =
∑
j,k

aijkcj ⊗ ck,

and then ∑
i

ρ(mi)⊗ ci =
∑
i,j,k

mi ⊗ aijkcj ⊗ ck,

hence
ρ(mk) =

∑
i,j

mi ⊗ aijkcj ∈ N ⊗ C,

so N is a subcomodule of M . �

Proposition 2.4.5 Let C be a coalgebra. Then the categoriesMC and CcopM are isomorphic.

Proposition 2.4.6 If N ⊂M is a subcomodule, then M/N is also a comodule.

Proposition 2.4.7 Let f : M → N be right C-colinear. Then Im (f) is a C-comodule. If C is flat
as a k-module, then Ker f is also a C-comodule.

Proof. The first statement is straightforward: for any m ∈M , we have

ρN(f(m)) = (f ⊗ C)(ρM(m)) ∈ Im f ⊗ C.

To prove the second statement, we proceed as follows. We have an exact sequence of k-modules

0→ Ker f →M
f−→N

Since C is flat, the sequence

0→ Ker f ⊗ C →M ⊗ C f⊗C−→N ⊗ C

is also exact, hence Ker f ⊗ C = Ker (f ⊗ C). If m ∈ Ker f , then

f(m[0])⊗m[1] = ρN(f(m)) = 0,

hence ρM(m) ∈ Ker (f ⊗ C) = Ker f ⊗ C, as needed. �
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Proposition 2.4.8 Assume that C ∈M is flat, and let f : M → N inMC . There exists a unique
isomorphism f : M/Ker f → Im f inMC such that the diagram

M
f //

p

��

N

M/Ker f
f // Im (f)

i

OO

commutes, where p is the canonical projection, and i is the inclusion.

Proposition 2.4.9 The categoryMC has coproducts.

Proof. Let {Mi | i ∈ I} be a family of right C-comodules, with structure maps ρi. Let ⊕i∈IMi be
the coproduct of the Mi inM, and qj : Mj → ⊕i∈IMi the canonical injection. By the definition
of the coproduct, there exists a unique k-linear map ρ : ⊕i∈IMi → ⊕i∈IMi ⊗ C such that for
every j ∈ I , the diagram

Mj
qj //

(qj⊗C)◦ρj ((RRRRRRRRRRRRRRR ⊕i∈IMi

ρ

��
⊕i∈IMi ⊗ C

commutes. It is easy to check that ρ is a coaction on ⊕i∈IMi, and that ⊕i∈IMi is the coproduct of
the Mi inMC . �

Corollary 2.4.10 If C is flat, thenMC is an abelian category. In particular, if k is a field, then
MC is an abelian category.

Troughout the rest of this Section, k will be a field. Let C be a coalgebra, and M a vector space.
We have a k-linear map

ψ : Hom(M,M ⊗ C)→ Hom(C∗ ⊗M,M)

defined as follows: if ω(m) =
∑

imi ⊗ ci, then

ψω(c∗ ⊗m) =
∑
i

〈c∗, ci〉mi.

Proposition 2.4.11 (M,ω) is a right C-comodule if and only if (M,ψω) is a left C∗-module.

Proposition 2.4.12 The map

µM : M ⊗ C → Hom(C∗,M), µM(m⊗ c)(c∗) = 〈c∗, c〉m

is injective.

Proof. Let {ci | i ∈ I} be a basis of C, and let c∗i : C → k be the projection defined by

〈c∗i , cj〉 = δij.
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If
∑

imi ⊗ ci ∈ KerµM , then for all j ∈ I:

0 = µM(
∑
i

mi ⊗ ci)(c∗j) =
∑
i

〈c∗j , ci〉mi = mj,

hence mj = 0, and
∑

imi ⊗ ci = 0. �

Let M be a left C∗-module, with action ψ : C∗ ⊗M →M . Consider the map

ρM : M → Hom(C∗,M), ρM(m)(c∗) = c∗m.

We say thatM is a rationalC∗-module if ρM factorizes through µM , that is, ρM(M) ⊂ µM(M⊗C).
This means that, for all m ∈M , there exists∑

i

mi ⊗ ci ∈M ⊗ C

such that
c∗m =

∑
i

〈c∗, ci〉mi,

for all c∗ ∈ C∗. It follows from the fact that µM is injective that
∑

imi ⊗ ci ∈M ⊗ C is unique.
Rat(C∗M) will be the full subcategory of C∗M consisting of rational left C∗-modules.

Theorem 2.4.13 Let k be a field. Then the categoriesMC and Rat(C∗M) are isomorphic.

Proof. We know from Proposition 2.4.3 that we have a functor F : MC → C∗M, and it follows
immediately from the construction of F that F (M) is a rational C∗-module if M is a right C-
comodule.
Now let M be a rational left C∗-module. Then the map ρM : M → Hom(C∗,M) factorizes
through a unique map ρ : M →M ⊗ C. Then

ψρ(c
∗ ⊗m) =

∑
i

〈c∗, ci〉mi = c∗m,

and it follows from Proposition 2.4.11 that (M,ρ) is a comodule. We define G(M) = (M,ρ).
Then observe that ρ(m) = m[0] ⊗m[1] if and only if

c∗m = 〈c∗,m[1]〉m[0], (2.11)

for all c∗ ∈ C∗.
Let f : M → N be a C∗-linear map between two rational left C∗-modules, and let us show that f
is right C-colinear. This is equivalent to

ρ(f(m)) = f(m[0])⊗m[1],

for all m ∈M ; using (2.11), this is equivalent to

c∗f(m) = 〈c∗,m[1]〉f(m[0]),

for all m ∈M and c∗ ∈ C∗. This is easily verified:

c∗f(m) = f(c∗m) = f(〈c∗,m[1]〉m[0]) = 〈c∗,m[1]〉f(m[0]).

�
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2.5 Examples of Hopf algebras
Proposition 2.5.1 Let H be a bialgebra that is finitely generated and projective as a k-module.
Then H∗ is also a bialgebra.

Proof. We have seen that H∗ is an algebra and a coalgebra. Let us show that ∆H∗ = m∗ respects
the convolution product, that is,

∆H∗(h
∗) ∗∆H∗(k

∗) = ∆H∗(h
∗ ∗ k∗).

Indeed, for all h, k ∈ H , we have

〈∆H∗(h
∗) ∗∆H∗(k

∗), h⊗ k〉 = 〈∆H∗(h
∗), h(1) ⊗ k(1)〉〈∆H∗(k

∗), h(2) ⊗ k(2)〉
= 〈h∗, h(1)k(1)〉〈k∗, h(2)k(2)〉 = 〈h∗, (hk)(1)〉〈k∗, (hk)(2)〉
= 〈h∗ ∗ k∗, hk〉 = 〈∆H∗(h

∗ ∗ k∗), h⊗ k〉.

�

Proposition 2.5.2 Let H be a Hopf algebra which is finitely generated and projective as a k-
module, then H∗ is a Hopf algebra with antipode S∗.

Proof. We have to show that
S∗(h∗(1)) ∗ h∗(2) = 〈h∗, 1〉ε.

Indeed, for all h ∈ H , we have

〈S∗(h∗(1)) ∗ h∗(2), h〉 = 〈S∗(h∗(1)), h(1)〉〈h∗(2), h(2)〉 = 〈h∗(1), S(h(1))〉〈h∗(2), h(2)〉
= 〈h∗, S(h(1))h(2)〉 = 〈h∗, ε(h)1〉 = 〈h∗, 1〉ε(h)

�

Let H be a Hopf algebra. g ∈ H is called grouplike if ∆(g) = g ⊗ g and ε(g) = 1. The product
of two grouplike elements is again grouplike. If g is grouplike, then gS(g) = S(g)g = 1, hence
G(H), the set of grouplike elements of H , is a group.

Example 2.5.3 Let G be a group. Then the groupring kG is a Hopf algebra. The comultiplication
and counit are given by

∆(g) = g ⊗ g and ε(g) = 1,

for all g ∈ G. The antipode is given by

S(g) = g−1.

If G is a finite group, then we can consider the dual Hopf algebra (kG)∗ = Gk. We have that

(kG)∗ =
⊕
g∈G

kvg,
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with vg : kG→ k the projection onto the g-component:

〈vg, h〉 = δg,h.

The vg form a set of orthogonal idempotents in (kG)∗:∑
g∈G

vg = ε and vg ∗ vh = δg,hvg.

The comultiplication on (kG)∗ is given by the formula

∆(vg) =
∑
x∈G

vx ⊗ vx−1g.

The antipode is
S∗(vg) = vg−1 .

If G is a finite abelian group, then Gk is again a group ring, if the order of G is invertible in k, and
if k contains enough roots of unity. Before we show this, let us recall the following elementary
Lemma.

Lemma 2.5.4 Let k be a commutative ring in which the positive integer n is not a zero-divisor. If
k contains a primitive n-th root of unity η, then

(1− η)(1− η2) · · · (1− ηn−1) = n (2.12)

If the greatest common divisor of n and i equals 1, then 1 + η + η2 + · · ·+ ηi−1 is invertible in k.

Proof. In k[x], we have that

xn − 1 = (x− 1)(x− η) · · · (x− ηn−1)

and
xn−1 + xn−2 + · · ·+ 1 = (x− η) · · · (x− ηn−1)

(2.12) follows after we take x = 1. If (n, i) = 1, then

{1, η, η2, . . . , ηn−1} = {1, ηi, η2i, . . . , η(n−1)i}

and
(x− 1)(x− η) · · · (x− ηn−1) = (x− 1)(x− ηi) · · · (x− η(n−1)i)

and
x− ηi

x− η
x− η2i

x− η2
· · · x− η

(n−1)i

x− ηn−1
= 1

Take x = 1. The first factor of the left hand side is 1 + η + η2 + · · ·+ ηi−1, and divides 1. �

Theorem 2.5.5 Let k be a connected commutative ring, and G a finite abelian group such that
|G| is invertible in k, and such that k has a primitive exp(G)-th root of unity. Then we have an
isomorphism

kG ∼= k(G∗) ∼= Gk
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Proof. Recall that G∗ = Hom(G,Gm(k)). If k has enough roots of unity, then G ∼= G∗. Consider
the map

f : k(G∗)→ (kG)∗

defined as follows: for σ∗ ∈ G∗, we define f(uσ∗) by

〈f(uσ∗), uτ 〉 = 〈σ∗, τ〉.

We will show that f is an isomorphism of Hopf algebras. It is clear that f is a Hopf algebra ho-
momorphism. Indeed, it preserves multiplication, and also comultiplication, since uσ∗ and f(uσ∗)
are both grouplike elements. f(uσ∗) is grouplike because it is a multiplicative map. It suffices now
to show that f is bijective, in the case where G = Cq, the cyclic group of order q, where q is a
primary number. Indeed, since G is a finite abelian group, we have

G = Cq1 × Cq2 × · · · × Cqr ; kG = kCq1 ⊗ kCq2 ⊗ · · · ⊗ kCqr
G∗ = C∗q1 × C

∗
q2
× · · · × C∗qr ; (kG)∗ = (kCq1)

∗ ⊗ (kCq2)
∗ ⊗ · · · ⊗ (kCqr)

∗

From now on, let us assume that G = Cq =< σ >, with q a primary number. Let η be a
primitive q-th root of unity in k, and define σ∗ ∈ G∗ by 〈σ∗, σ〉 = η. In the sequel, we will write
u = f(uσ∗) ∈ (RG)∗. It is clear that G∗ =< σ∗ >∼= G.
To show that f is bijective, it will be sufficient to show that {ui|i = 0, 1, . . . , q − 1} is a basis of
the free k-module Gk = (kG)∗, or, equivalently, that every vσk may be written in a unique way as
a linear combination of the ui. This comes down to showing that the equation

q−1∑
i=0

αiu
i = vσk

has a unique solution for every k. This is equivalent to showing that the linear system

q−1∑
i=0

αi〈ui, uσj〉 = 〈vσk , uσj〉

or
q−1∑
i=0

αiη
ij = δkj (2.13)

has a unique solution for every k ∈ {0, 1, . . . , q − 1}. The determinant D of (2.13) is a Vander-
monde determinant and is equal to

D =
∏

0<i<j<q

(ηi − ηj)

To show that D is invertible, it suffices to show that every factor of D is invertible. Dividing by the
powers of η, it follows that it suffices to show that for all i = 1, 2, . . . , q − 1, 1 − ηi is invertible,
or, equivalently, that ∏

0<i<q

(1− ηi) = q

is invertible. q is invertible by assumption. �

39



Example 2.5.6 (Tensor algebra) LetM be a k-module. Recall the definition of the tensor algebra

T (M) =
∞⊕
n=0

T n(M),

with T 0(M) = k and T n+1(M) = T n(M) ⊗ M . The multiplication is the following: if x =
m1 ⊗ · · · ⊗mn ∈ T n(M) and y = h1 ⊗ · · · ⊗ hr ∈ T r(M), then

x · y = m1 ⊗ · · · ⊗mn ⊗ h1 ⊗ · · · ⊗ hr ∈ T n+r(M).

The multiplication of two arbitrary elements is then obtained by linearity. 1 ∈ k = T 0(M) is
the unit element, and we have a k-linear map i : M = T 1(M) → T (M), and i(M) = T 1(M)
generates T (M) as a k-algebra.
The tensor algebra can be defined using its universal property: ifA is a k-algebra, and f : M → A
is a k-linear map, then there exists a unique algebra map f : T (M) → A such that the following
diagram commutes:

M
i //

f
''OOOOOOOOOOOOOOO T (M)

f

��
A

Another way of introducing T is the following: T : M→ Alg is a functor, and is the left adjoint
of the forgetful functor U : Alg →M.
We will show that T (M) is a Hopf algebra. The tensor product of T (M) with itself will be denoted
by T (M)⊗T (M). Using the universal property, we can extend the k-linear map

i : M → T (M)⊗T (M), i(m) = m⊗1 + 1⊗m

to a k-algebra map
∆ : T (M)→ T (M)⊗T (M).

Let us show that ∆ is coassociative, or

(∆⊗T (M))⊗∆ = (T (M)⊗∆)⊗∆.

The maps on both sides are algebra maps, so it suffices to show that they are equal on a set of
algebra generators of T (M), namely M . For m ∈M , we have

(∆⊗T (M))(∆(m)) = (∆⊗T (M))(m⊗1 + 1⊗m)

= m⊗1⊗1 + 1⊗m⊗1 + 1⊗1⊗m
= (T (M)⊗∆)(m⊗1 + 1⊗m)

= (T (M)⊗∆)(∆(m)).

The counit ε : T (M) → k is obtained by extending the null morphism 0 : M → k using the
universal property. Let us show that

(ε⊗T (M)) ◦∆ = T (M).
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The maps on both sides are algebra maps, so it suffices to show this on M . For m ∈M , we have

(ε⊗T (M))(∆(m)) = ε(m)⊗1 + ε(1)⊗m = 1⊗m = m,

as needed. In a similar way, we prove that

(T (M)⊗ε) ◦∆ = T (M).

We now construct the antipode. Consider the k-linear map

g : M → T (M)op, g(m) = −m.

From the universal property, it follows that there exists an algebra morphism

S : T (M)→ T (M)op

such that S(m) = −m, for every m ∈ T 1(M). For m1 ⊗ · · · ⊗mn ∈ T n(M), we have S(m1 ⊗
· · · ⊗mn) = (−1)nm1 ⊗ · · · ⊗mn. For m ∈ T 1(M), we have

m(1) ⊗m(2) = m⊗1 + 1⊗m and ε(m) = 0,

hence
S(m(1))m(2) = m(1)S(m(2)) = ε(m)1.

The property for the antipode thus holds for a set of algebra generators, hence for the whole of
T (M), by Lemma 2.5.7.

Lemma 2.5.7 Let H be a bialgebra, and S : H → H an algebra antimorphism. Let a, b ∈ H . If
a and b satisfy the equation

S(x(1))x(2) = x(1)S(x(2)) = ε(x)1,

then ab also satisfies this equation.

Example 2.5.8 (Symmetric algebra) Let M be a k-module. We recall the definition of the sym-
metric algebra S(M). Consider the ideal I of T (M) generated by elements of the form x⊗y−y⊗x,
and let S(M) = T (M)/I(M). The map j = p ◦ i : M → T (M) → S(M) is injective. S(M)
satisfies the following universal property: if A is a commutative algebra, and f : M → A is
k-linear, then there exists a unique algebra map f : S(M)→ A such that f ◦ j = f .
S is a left adjoint of the forgetful functor from commutative k-algebras to k-modules.
We will show that S(M) = T (M)/I is a Hopf algebra. It suffices to show that I is a Hopf ideal.
We have to show that

∆(x) ∈ I⊗T (M) + T (M)⊗I, ε(x) = 0, S(x) ∈ I

for all x ∈ I . Since ∆ and ε are multiplicative and S is antimultiplicative, it suffices to show this
for the generators of I . Indeed, for m,n ∈M , we have

∆(m⊗ n− n⊗m) = ∆(m)∆(n)−∆(n)∆(m)

= (m⊗1 + 1⊗m)(n⊗1 + 1⊗n)− (n⊗1 + 1⊗n)(m⊗1 + 1⊗m)

= (m⊗ n− n⊗m)⊗1 + 1⊗(m⊗ n− n⊗m) ∈ I⊗T (M) + T (M)⊗I.
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Moreover,
ε(m⊗ n− n⊗m) = ε(m)ε(n)− ε(n)ε(m) = 0,

and

S(m⊗ n− n⊗m) = S(n)S(m)− S(m)S(n) = (−n)⊗ (−m)− (−m)⊗ (−n) ∈ I.

Observe that S(M) is a commutative and cocommutative Hopf algebra.

Example 2.5.9 (Enveloping algebra of a Lie algebra) Let L be a Lie algebra. The enveloping
algebra of the Lie algebra L is the factor algebra U(L) = T (L)/I , where I is the ideal generated
by elements of the form [x, y]− x⊗ y + y ⊗ x, with x, y ∈ L. We can then show that

∆([x, y]−x⊗y+y⊗x) = ([x, y]−x⊗y+y⊗x)⊗1 = 1⊗([x, y]−x⊗y+y⊗x) ∈ I⊗T (M)+T (M)⊗I

ε([x, y]− x⊗ y + y ⊗ x) = 0

S([x, y]− x⊗ y + y ⊗ x) = −([x, y]− x⊗ y + y ⊗ x) ∈ I

Hence I is a Hopf ideal and U(L) is a (cocommutative) Hopf algebra.

Example 2.5.10 (Sweedler’s 4-dimensional Hopf algebra) Let k be a field of characteristic dif-
ferent from 2. Let H be generated as a k-algebra by x and c, with multiplication rules

c2 = 1, x2 = 0, xc = −cx.

We define a comultiplication and counit on H as follows:

∆(c) = c⊗ c, ∆(x) = c⊗ x+ x⊗ 1

ε(c) = 1, ε(x) = 0.

i.e. c is grouplike and x is (c, 1)-primitive. Then H is a bialgebra. The antipode of H is given by
the formulas

S(c) = c, S(x) = −cx.

Example 2.5.11 (Taft algebra) Let n ≥ 2, en k a field with characteristic prime to n, and with a
primite n-th root of unity η. Let H be the algebra with generators c and x, and multiplication rules

cn = 1, xn = 0, xc = λcx.

Comultiplication:
∆(c) = c⊗ c, ∆(x) = c⊗ x+ x⊗ 1

Counit:
ε(c) = 1, ε(x) = 0

Antipode:
S(c) = c−1, S(x) = −c−1x.
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Example 2.5.12 Let k be a commutative domain, with 2 6= 0. Assume that we have a factorization
2 = ab in k. Consider the commutative k-algebra

Ha = k[X]/(X2 + aX)

with comultiplication and counit

∆(x) = 1⊗ x+ x⊗ 1 + bx⊗ x, ε(x) = 0

Observe that u = 1 + bx is grouplike.
S(x) = x.

Exercise 2.5.13 Let k be a field. Classify all Hopf algebras of dimension 2.

Sketch of solution. Let H be Hopf algebra of dimension 2. Then H = k ⊕ Ker ε. Hence
dim Ker ε = 1. Take a basis {x} of Ker ε. Since Ker ε is an ideal, x2 = ax.
We can write

∆(x) = α1⊗ 1 + βx⊗ 1 + γ1⊗ x+ δx⊗ x

Applying the counit property, we find that

α = 0, β = γ = 1

Now from ∆(x2) = ∆(x)∆(x) = ∆(ax), it follows that

aδ = −1 or aδ = −2

From S(x(1))x(2) = 0, it follows that aδ = −1 is impossible, hence aδ = −2.
1) chark 6= 2. Then a 6= 0, and 1 and 1− 2

a
x are two distinct grouplike elements ofH , soH ∼= kC2.

2) chark = 2. Then aδ = 0.
a) a = 0, δ 6= 0. Then 1 and 1 + δx are grouplike elements of H , so H ∼= kC2.
b) a = δ = 0. Then x2 = 0, and x is primitive:

∆(x) = 1⊗ x+ x⊗ 1

The antipode is given by S(x) = x. This Hopf algebra is selfdual.
c) a 6= 0, δ = 0. Replacing x by x/a, we may assume that a = 1. Thus we have a Hopf algebra
with

x2 = x, ∆(x) = 1⊗ x+ x⊗ 1, ε(x) = 0

This Hopf algebra is the dual of kC2.

43



Chapter 3

Hopf modules and integral theory

3.1 Integrals and separability
LetA be a k-algebra. A Casimir element is an element e = e1⊗e2 ∈ A⊗A (summation implicitely
understood) such that

ae1 ⊗ e2 = e1 ⊗ e2a (3.1)

for all a ∈ A. The k-module consisting of all Casimir elements will be denote by WA.
A is called a separable if there exists e ∈ WA such that

e1e2 = 1. (3.2)

In this situation, e is called a separability idempotent. It is an idempotent element of the algebra
A⊗ Aop. Indeed, in A⊗ Aop, we have

ee = (e1 ⊗ e2) · (E1 ⊗ E2) = e1E1 ⊗ E2e2 = E1 ⊗ E2e1e2 = E1 ⊗ E2 = e.

Here e = E1 ⊗ E2 is a second copy of e.
A is called a Frobenius algebra if there exists e ∈ WA and ν ∈ A∗ such that

e1ν(e2) = ν(e1)e2 = 1. (3.3)

Let A be a k-algebra. Then A∗ is an A-bimodule:

〈a · a∗ · b, c〉 = 〈a∗, bca〉.

Proposition 3.1.1 For a k-algebra A, the following assertions are equivalent

1. A is Frobenius;

2. a) A is finitely generated and projective as a k-module;

b) A and A∗ are isomorphic as right A-modules;

3. a) A is finitely generated and projective as a k-module;

b) A and A∗ are isomorphic as left A-modules.
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Proof. 1) =⇒ 2). For all a ∈ A, we have that

e1ν(e2a) = ae1ν(e2) = a,

so {(e1, ν(e2−))} is a finite dual basis for A. Define

φ : A∗ → A, φ(a∗) = 〈a∗, e1〉e2;

ψ : A→ A∗, 〈ψ(a), b〉 = 〈ν, ab〉.
ϕ and ψ are right A-linear:

φ(a∗ · a) = 〈a∗, ae1〉e2 = 〈a∗, e1〉e2a = φ(a∗)a;

〈ψ(ac), b〉 = ν(acb) = 〈ψ(a), cb〉 = 〈ψ(a) · c, b〉.
φ and ψ are inverses:

(φ ◦ ψ)(a) = 〈ψ(a), e1〉e2 = ν(ae1)e2 = ν(e1)e2a = a

〈(ψ ◦ φ)(a∗), a〉 = 〈ν, φ(a∗)a〉 = 〈ν, 〈a∗, e1〉e2a)〉
= 〈a∗, e1〉〈ν, e2a〉 = 〈a∗, ae1〈ν, e2)〉〉 = 〈a∗, a〉.

2) =⇒ 1). Suppose that φ : A∗ → A is an isomorphism inMA, with inverse ψ. Let {(ei, e∗i ) | i =
1, · · · , n} be a finite dual basis of A. Let ν = ψ(1), and yi = φ(e∗i ). Then e∗i = ψ(yi) = ψ(1) ·yi =
ν · yi. For all a ∈ A, we have

a =
∑
i

ei〈e∗i , a〉 =
∑
i

ei〈ν, yia〉.

Taking a = 1, we obtain that ∑
i

ei〈ν, yi〉 = 1.

Since A is finitely generated and projective, we have an isomorphism

i : A⊗ A∗ → Endk(A), i(a⊗ a∗)(b) = 〈a∗, b〉a.

The inverse of i is given by the formula

i−1(f) =
∑
i

f(ei)⊗ e∗i .

Now consider the isomorphism

Φ = i ◦ (A⊗ ψ) : A⊗ A→ Endk(A).

Φ and Φ−1 are described by the following formulas:

Φ(a⊗ b)(c) = aν(bc) ; Φ−1(f) =
∑
i

f(ei)⊗ yi.
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For all a, b ∈ A, we have

a⊗ b = (Φ−1 ◦ Φ)(a⊗ b) =
∑
i

aν(bei)⊗ yi =
∑
i

a⊗ ν(bei)yi.

Taking a = b = 1, we find
1⊗ 1 = 1⊗

∑
i

ν(ei)yi,

and it follows that 1 =
∑

i ν(ei)yi. We are done if we can show that e =
∑

i ei ⊗ yi is a Casimir
element. We compute that

Φ(
∑
i

aei ⊗ yi)(b) =
∑
i

aeiν(yib) = ab;

Φ(
∑
i

ei ⊗ yia)(b) =
∑
i

eiν(yiab) =
∑
i

aeiν(yib) = ab.

It follows that Φ(
∑

i aei ⊗ yi) = Φ(
∑

i ei ⊗ yia), and
∑

i aei ⊗ yi =
∑

i ei ⊗ yia, since Φ is
injective.
1)⇐⇒ 3) is proved in a similar way. �

Integrals can be used as tools to discuss when a Hopf algebra is separable or Frobenius.
t ∈ H is called a left (resp. right) integral in H if

ht = ε(h)t resp. th = ε(h)t

for all h ∈ H .
∫ l
H

(resp.
∫ r
H

) denote the k-modules consisting respectively of left and right integrals
in H . In a similar way, we introduce left and right integral in H∗ (or on H). These are functionals
ϕ ∈ H∗ that have to verify respectively

h∗ ∗ ϕ = 〈h∗, 1〉ϕ resp. ϕ ∗ h∗ = 〈h∗, 1〉ϕ

for all h∗ ∈ H∗. The k-modules consisting of left and right integral in H∗ are denoted by
∫ l
H∗

and∫ r
H∗

.

Proposition 3.1.2 Let H be a Hopf algebra. We have the following maps

p : WH →
∫ l

H

; p(e) = e1ε(e2)

p′ : WH →
∫ r

H

; p′(e) = ε(e1)e2

i :

∫ l

H

→ WH ; i(t) = t(1) ⊗ S(t(2))

i′ :

∫ r

H

→ WH ; i′(t) = S(t(1))⊗ t(2)

satisfying
(p ◦ i)(t) = t ; (p′ ◦ i′)(t) = t

for every left (resp. right) integral t.
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Proof. We will show that i(t) ∈ WH if t is a left integral, and leave all the other assertions to the
reader.

ht(1) ⊗ S(t(2)) = h(1)t(1) ⊗ S(t(2))S(h(2))h(3)

= (h(1)t)(1) ⊗ S((h(1)t)(2))h(2)

= (ε(h(1))t)(1) ⊗ S((ε(h(1))t)(2))h(2)

= t(1) ⊗ S(t(2))h

�

Corollary 3.1.3 A Hopf algebra H is separable if and only if there exists a (left or right) integral
t ∈ H such that ε(t) = 1.

Proof. If t is a left integral with ε(t) = 1, then e = i(t) ∈ WH satisfies
∑
e1e2 =

∑
t(1)S(t(2)) =

ε(t) = 1. The converse is similar: if
∑
e1e2 = 1, then ε(p(e)) =

∑
ε(e1e2) = 1. �

Proposition 3.1.4 A separable algebra A over a field k is semisimple.

Proof. Let e =
∑
e1⊗ e2 ∈ A⊗A be a separability idempotent and N an A-submodule of a right

A-module M . As k is a field, the inclusion i : N → M splits in the category of k-vector spaces.
Let f : M → N be a k-linear map such that f(n) = n, for all n ∈ N . Then

f̃ : M → N, f̃(m) =
∑

f(me1)e2

is a right A-module map that splits the inclusion i. Thus N is an A-direct factor of M , and it
follows that M is completely reducible. This shows that A is semisimple. �

Corollary 3.1.5 A finite dimensional Hopf algebra H over a field k is semisimple if and only if
there exists a (left or right) integral t ∈ H such that ε(t) = 1.

Proof. One direction follows immediately from Corollary 3.1.3 and Proposition 3.1.4. Conversely,
if H is semisimple, then H = I ⊕ Ker (ε) for some left ideal I of H . We claim that I ⊂

∫ l
H

:
For z ∈ I , and h ∈ H , we have h − ε(h) ∈ Ker (ε), so (h − ε(h))z ∈ I ∩ Ker ε = {0}, hence
hz = ε(h)z, and z is a left integral. Choose z 6= 0 in I (this is possible since I is one-dimensional).
ε(z) 6= 0 since z 6∈ Ker (ε), and t = z/ε(z) is a left integral with ε(t) = 1. �

3.2 Hopf modules and the fundamental theorem
A Hopf module is a k-module together with a right H-action and a right H-coaction such that

ρ(mh) = m[0]h(1) ⊗m[1]h(2), (3.4)

for all m ∈ M and h ∈ H . A morphism between two Hopf modules is a k-linear map that is
H-linear and H-colinear. MH

H is the category of Hopf modules and morphisms between Hopf
modules.
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Let N ∈ M. Then N ⊗ H , with H-action and H-coaction induced by the multiplication and
comultiplication on H , namely

(n⊗ h)k = n⊗ hk ; ρ(n⊗ h) = n⊗ h(1) ⊗ h(2),

is a Hopf module. This construction is functorial, so we have a functor

F = −⊗H : M→MH
H .

If M is a Hopf module, then

M coH = {m ∈M | ρ(m) = m⊗ 1}

is a k-module. This construction is also functorial, so we have a functor

G = (−)coH : MH
H →M.

Proposition 3.2.1 (F,G) is a pair of adjoint functors.

Proof. The unit and the counit of the adjunction are defined as follows. For M ∈MH
H , let

εM : FG(M) = M coH ⊗H →M, εM(m⊗ h) = mh.

It is obvious that εM is right H-linear; it follows from (3.4) that εM is right H-colinear. For
N ∈M, let

ηN : N → (N ⊗H)coH , ηN(n) = n⊗ 1.

An easy verification shows that

εN⊗H ◦ ηN ⊗H = N ⊗H;

εcoH
M ◦ ηMcoH = M coH ,

for all M ∈MH
H and N ∈M, and this proves that (F,G) is an adjoint pair of functors. �

Theorem 3.2.2 (Fundamental Theorem for Hopf modules) (F,G) is a pair of inverse equiva-
lences. In other words, η and ε are natural isomorphisms.

Proof. Let M be a Hopf module. For any m ∈M , m[0]S(m[1]) ∈M coH , since

ρ(m[0]S(m[1])) = m[0][0]S(m[1])(1) ⊗m[0][1]S(m[1])(2)

= m[0]S(m[3])⊗m[1]S(m[2]) = m[0]S(m[2])⊗ ε(m[1])1H

= m[0]S(m[1])⊗ 1

Now define α : M →M coH ⊗H as follows:

α(m) = m[0]S(m[1])⊗m[2]

α is the inverse of εM : for all m ∈M , we have

(ε ◦ α)(m) = m[0]S(m[1])m[2] = m,
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and, for m′ ∈M coH ,

α(εM(m′ ⊗ h)) = m′[0]h(1)S(m′[1]h(2))⊗m′[2]h(3) = m′h(1)S(h(2))⊗ h(3) = m′ ⊗ h.

Now take N ∈M, and q =
∑

i ni ⊗ hi ∈ (N ⊗H)coH . We then have that

ρ(q) =
∑
i

ni ⊗ hi(1) ⊗ hi(2) = q ⊗ 1 =
∑
i

ni ⊗ hi ⊗ 1.

We apply N ⊗ ε⊗H to both sides of this equation. We then find that

q =
∑
i

ni ⊗ hi =
∑
i

ni ⊗ ε(hi)⊗ 1.

Now define
β : (N ⊗H)coH → N, β(

∑
i

ni ⊗ hi) =
∑
i

ni ⊗ ε(hi).

β and ηN are inverses. For all n ∈ N , we have

(β ◦ ηN)(n) = β(n⊗ 1) = n,

and for all q =
∑

i ni ⊗ hi ∈ (N ⊗H)coH , we have

(ηN ◦ β)(q) =
∑
i

ni ⊗ ε(hi)⊗ 1 = q.

�

An immediate application is the following:

Proposition 3.2.3 Let H be a finitely generated projective Hopf algebra. H∗ is a left H∗-module
(by multiplication), and therefore a right H-comodule. It is also a right H-module, we let

〈h∗↼h, k〉 = 〈h∗, kS(h)〉

for all h∗ ∈ H∗, and h, k ∈ H . With these structure maps, H∗ is a right-right Hopf module, and
(H∗)coH ∼=

∫ l
H∗

. Consequently we have an isomorphism

α :

∫ l

H∗
⊗H → H∗ ; α(ϕ⊗ h) = ϕ↼h (3.5)

of right-right Hopf modules. In particular, it follows that
∫ l
H∗

is a rank one projective k-module.
Similar results hold for the right integral space.

Proof. Remark that the rightH-action onH∗ is not the usual one. Recall that the usualH-bimodule
structure on H∗ is given by

〈h · h∗ · k, l〉 = 〈h∗, klh〉
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an we see immediately that
h∗↼h = S(h) · h∗

Also observe that the rightH-coaction onH∗ can be rewritten in terms of a dual basis {(hi, h∗i ) | i =
1, · · · , n} of H:

ρ(h∗) =
∑
i

h∗i ∗ h∗ ⊗ hi

The only thing we have to check is the Hopf compatibility relation for H∗, i.e.

ρ(h∗↼h) = h∗[0]↼h(1) ⊗ h∗[1]h(2)

for all h ∈ H , h∗ ∈ H∗. It suffices to prove that

〈(h∗↼h)[0], k〉(h∗↼h)[1] = 〈h∗[0]↼h(1), k〉h∗[1]h(2) (3.6)

for all k ∈ H . We first compute the left hand side:

ρ(h∗↼h) =
∑
i

(h∗i ∗ S(h) · h∗)⊗ hi

so

〈(h∗↼h)[0], k〉(h∗↼h)[1] =
∑
i

〈h∗i ∗ S(h) · h∗, k〉hi

=
∑
i

〈h∗i , k(1)〉〈h∗, k(2)S(h)〉hi = 〈h∗, k(2)S(h)〉k(1)

The right hand side of (3.6) equals∑
i

〈h∗i ∗ h∗, kS(h(1))〉hih(2) = 〈h∗i , k(1)S(h(2))〉〈h∗, k(2)S(h(1))〉hih(3)

= 〈h∗, k(2)S(h(1))〉k(1)S(h(2))h(3) = 〈h∗, k(2)S(h(1))〉k(1)

as needed. �

As an application of Proposition 3.2.3, we can prove that the antipode of a finitely generated
projective Hopf algebra is always bijective.

Proposition 3.2.4 The antipode of a finitely generated projective Hopf algebra is bijective.

Proof. We know from Proposition 3.2.3 that J =
∫ l
H∗

is projective of rank one. This implies that
we have an isomorphism

J∗ ⊗ J → k ; p⊗ ϕ 7→ p(ϕ)

Let
∑

l pl ⊗ ϕl be the inverse image of 1:∑
l

pl(ϕl) = 1
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The isomorphism α of Proposition 3.2.3 induces another isomorphism

α̃ : H → J∗ ⊗H∗ ; α̃(h) =
∑
l

pl ⊗ α(ϕl ⊗ h) =
∑
l

pl ⊗ S(h) · ϕl

If S(h) = 0, then it follows from the above formula that α̃(h) = 0, hence h = 0, since α̃ is
injective. Hence S is injective.
The fact that S is surjective follows from a local global argument. Let Q = Coker (S). For
every prime ideal p of k, Coker (Sp) = Qp, since localization at a prime ideal is an exact functor.
Now Hp/pHp is a finite dimensional Hopf algebra over the field kp/pkp, with antipode induced
by Sp, the antipode of the localized kp-Hopf algebra Hp. The antipode of Hp/pHp is injective,
hence bijective, by counting dimensions. Nakayama’s Lemma implies that Sp is surjective, for all
p ∈ Spec (k), and it follows that S is bijective. �

Here is another application of Proposition 3.2.3:

Proposition 3.2.5 Let H be a finitely generated projective Hopf algebra. Then there exist ϕj ∈∫ l
H∗

and hj ∈ H such that ∑
j

〈ϕj, hj〉 = 1

and tj ∈
∫ l
H

and h∗j ∈ H∗ such that ∑
j

〈h∗j , tj〉 = 1

Proof. Take α−1(ε) =
∑

j ϕj ⊗ S−1(hj) (the antipode is bijective by Proposition 3.2.4). Then

1k = 〈εH , 1H〉 =
∑
j

〈ϕj↼S−1(hj), 1H〉 =
∑
j

〈ϕj, hj〉

the second statement follows after we apply the first one with H replaced by H∗. �

The main result is now the following:

Theorem 3.2.6 For a Hopf algebra H , the following assertions are equivalent:
1) H/k is Frobenius;
2) H is finitely generated and projective, and H∗/k is Frobenius;
3) H is finitely generated and projective, and

∫ l
H

is free of rank one;
4) H is finitely generated and projective, and

∫ r
H

is free of rank one;
5) H is finitely generated and projective, and

∫ l
H∗

is free of rank one;
6) H is finitely generated and projective, and

∫ r
H∗

is free of rank one.

Proof. 1)⇒ 3). There exist ν ∈ H∗ and e ∈ WA such that ν(e1)e2 = e1ν(e2) = 1. Take

t = p(e) = ε(e2)e1 ∈
∫ l
H

. We claim that
∫ l
H

is free with basis {t}. Take another left integral
u ∈

∫ l
H

. Then

u = ue1ν(e2) = e1ν(e2u) = e1ν(ε(e2)u)

= ε(e2)e1ν(u) = ν(u)t
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and it follows that the map k →
∫ l
H

sending x ∈ k to xt is surjective. This map is also injective: if

xt = xε(e2)e1 = 0

then
0 = ν(xε(e2)e1) = ν(e1)xε(e2) = xε(e2ν(e1)) = x

5)⇒ 2) and 5)⇒ 1). Assume that
∫ l
H∗

= kϕ, with ϕ a left integral, and consider the Hopf module
isomorphism

α : kϕ⊗H → H∗

from Proposition 3.2.3. We first consider the map

Θ : H → H∗ ; Θ(h) = α(ϕ⊗ h) = S(h) · ϕ

α and Θ are right H-colinear, hence left H∗-linear. Θ is therefore an isomorphism of left H∗-
modules, and it follows that H∗ is Frobenius.
A slightly more subtle argument shows that H is Frobenius: we consider the map

φ = Θ ◦ S−1 : H → H∗, i.e. φ(h) = h · ϕ

We know from Proposition 3.2.4 that S is bijective, so φ is well-defined, and is a bijection. φ is
left H-linear since

φ(kh) = (kh) · ϕ = k · (h · ϕ) = k · φ(h)

All the other implications follow after we apply the above implications 1)⇒ 3) an 5)⇒ 1) with
H replaced by H∗ (H is finitely generated and projective) or by Hop (the Frobenius property is
symmetric). �

Assume that H is Frobenius and that we know a generator ϕ for
∫ l
H∗

. We want to answer the
following questions.

1. How do we find a generator t for
∫ l
H

?

2. Can we explicitly describe a Frobenius system for H?

3. What is the inverse of the isomorphism φ : H → H∗?

Before answering this question, we make two observations that are valid in any Hopf algebra.

Lemma 3.2.7 Let H be a Hopf algebra with invertible algebra ϕ ∈
∫ l
H∗

and t ∈
∫ l
H

. For every
h ∈ H , we have that

〈ϕ, h(2)〉S−1(h(1)) = 〈ϕ, h〉1. (3.7)

Moreover, t(2) ⊗ S−1(t(1)) ∈ WH .

Proof. If ϕ ∈
∫ l
H∗

, then 〈ϕ, h(2)〉h(1) = 〈ϕ, h〉1, for all h ∈ H , hence

〈ϕ, h(2)〉S−1(h(1)) = 〈ϕ, h〉S−1(1) = 〈ϕ, h〉1.
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From Proposition 3.1.2 we know that t(1) ⊗ S(t(2)) ∈ WH . Applying this property to the Hopf
algebra Hcop, and keeping in mind that the antipode of Hcop is S−1, we find that t(2)⊗S−1(t(1)) ∈
WH . This can also be proved directly: for all h ∈ H , we have

ht(2) ⊗ S−1(t(1)) = h(3)t(2) ⊗ S−1(t(1))S
−1(h(2))h(1)

= (h(2)t)(2) ⊗ S−1(h(2)t)(1))h(1)

= 〈ε, h〉t(2) ⊗ S−1(t(1))h(1)

= t(2) ⊗ S−1(t(1))h.

�

Recall from the proof of 5)⇒ 1) in Theorem 3.2.6 that we have an isomorphism of leftH-modules

φ : H → H∗ ; φ(h) = h · ϕ

Let φ−1(ε) = t, this means that φ(t) = t · ϕ = ε, or

ϕ(ht) = ε(h)

for all h ∈ H . In particular, we have that

〈ϕ, t〉 = 1. (3.8)

We claim that t is a free generator for
∫ l
H

.
First, t is a left integral, since

〈φ(ht), k〉 = 〈(ht) · ϕ, k〉 = 〈t · ϕ, kh〉
= ε(kh) = ε(k)ε(h) = ε(h)〈φ(t), k〉

for all h, k ∈ H , implying that φ(ht) = ε(h)φ(t), and ht = ε(h)t, and t is an integral.
If u is another left integral, then

〈φ(u), h〉 = 〈u · ϕ, h〉 = 〈ϕ, hu〉 = ε(h)〈ϕ, u〉 = 〈ϕ, ht〉〈ϕ, u〉
= 〈ϕ, hϕ(u)t〉 = 〈(ϕ(u)t) · ϕ, h〉 = 〈φ(ϕ(u)t), h〉

implying φ(u) = φ(ϕ(u)t) and u = ϕ(u)t.
Assume that xt = 0, for some x ∈ k. Then φ−1(xε) = 0, hence xε = 0, and x = 0. This proves
that t is a free generator for

∫ l
H

.
In the proof of 5)⇒ 2) of Theorem 3.2.6, we constructed a left H∗-linear isomorphism Θ : H →
H∗. We write down this map, but for the Hopf algebra H∗ instead of H . Since t is a free generator
of
∫ l
H

, we find a left H-linear isomorphism

Λ : H∗ → H, Λ(h∗) = S∗(h∗) • t = 〈h∗, S(t(2))〉t(1).

Now take this isomorphism, applied to the Hopf algebra Hcop. Since the antipode of Hcop is S−1

and the left H-action on H and H∗ only involves the algebra action on H , we find a left H-linear
isomorphism

Ω : H∗ → H, Ω(h∗) = 〈h∗, S−1(t(1))〉t(2).
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We now show that φ is left inverse of Ω. Indeed, for all h ∈ H and h∗ ∈ H∗, we have

〈(φ ◦ Ω)(h∗), h〉 = 〈Ω(h∗) · ϕ, h〉
= 〈ϕ, ht(2)〉〈h∗, S−1(t(1))〉
∗
= 〈ϕ, t(2)〉〈h∗, S−1(t(1))h〉

(3.7)
= 〈h∗, 〈ϕ, t〉h〉

(3.7)
= 〈h∗, h〉.

Since φ and Ω are isomorphisms, φ is also a right inverse of Ω, and we conclude that Ω = φ−1. In
particular,

1 = (Ω ◦ φ)(1) = Ω(ϕ) = 〈ϕ, S−1(t(1))〉t(2). (3.9)

It now follows that (t(2) ⊗ S−1(t(1)), ϕ) is a Frobenius system for H . Indeed, we have seen in
Lemma 3.2.7 that t(2) ⊗ S−1(t(1)) ∈ WH . From (3.7-3.8), it follows that 〈ϕ, t(2)〉S−1(t(1)) = 1,
and finally we have (3.9). We summarize our results as follows.

Theorem 3.2.8 Let H be a Frobenius Hopf algebra, and assume that ϕ is a free generator of
∫ l
H∗

.
Then

φ : H → H∗ ; φ(h) = h · ϕ

is a left H-linear isomorphism. t = φ−1(ε) is a free generator for
∫ l
H

, and

φ−1 : H∗ → H, φ−1(h∗) = 〈h∗, S−1(t(1))〉t(2).

Moreover 〈ϕ, t〉 = 1, and (t(2) ⊗ S−1(t(1)), ϕ) is a Frobenius system for H .

Theorem 3.2.9 A Hopf algebra H (with bijective antipode) is Frobenius if and only if there exist
t ∈
∫ l
H

and ϕ ∈
∫ l
H∗

such that 〈ϕ, t〉 = 1.

Proof. One application already follows from Theorem 3.2.8. Conversely, assume that there exist
t ∈
∫ l
H

and ϕ ∈
∫ l
H∗

such that 〈ϕ, t〉 = 1. It follows from (3.7) that

〈ϕ, t(2)〉S−1(t(1)) = 1. (3.10)

We will show that S−1(t) is a free generator of
∫ r
H

. Then the proof will be finished after we apply
Theorem 3.2.6. For v ∈

∫ r
H

, we have

v
(3.10)
= 〈ϕ, t(2)〉S−1(t(1))v

(∗)
=〈ϕ, vt(2)〉S−1(t(1))

(∗∗)
= 〈ϕ, ε(t(2))v〉S−1(t(1)) = 〈ϕ, v〉S−1(t).

(∗): we used Lemma 3.2.7; (∗∗): t is a right integral. This shows that the map k →
∫ r
H

mapping x
to xS−1(t) is surjective. Let us show that it is also injective. If xS−1(t) = 0, then

0 = S(xS−1(t)) = xt = x〈ε, S−1(t(1))〉t(2);

0 = x〈ε, S−1(t(1))〉〈ϕ, t(2)〉
(3.10)
= x〈ε, 1〉 = x.

�
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Remark 3.2.10 1) It follows from the preceding Theorem that any finite dimensional Hopf algebra
over a field k is Frobenius.
2) In Proposition 3.1.2, we have seen that we have a map p : WA →

∫ l
H

, with a right inverse i.
The map p is not an isomorphism. To see this, take a Frobenius Hopf algebra H (e.g. any finite
dimensional Hopf algebra over a field).
First we observe that, if H is finitely generated and projective, we have an isomorphism

WA
∼= HomH(H∗, H).

Actually, this isomorphism is used implicitly in the proof of Proposition 3.1.1. To see this, we
define first

ϕ : WA → HomH(H∗, H), ϕ(e1 ⊗ e2)(h∗) = 〈h∗, e1〉e2.

Let us check that ϕ(e1 ⊗ e2) is right H-linear:

ϕ(e1 ⊗ e2)(h∗ · h) = 〈h∗, he1〉e2 = 〈h∗, e1〉e2h = ϕ(e1 ⊗ e2)(h∗)h.

Next we define
ψ : HomH(H∗, H)→ WA, ψ(f) =

∑
i

hi → f(h∗i ),

where {(hi, h∗i ) | i = 1, · · · , n} is a finite dual basis of H . Let us show that ψ(f) ∈ WA. Since∑
i

hi〈h∗i , hk〉 = hk =
∑
i

hhi〈h∗i , k〉,

for all h, k ∈ H , we have, for all h ∈ H:∑
i

hi ⊗ h∗i · h =
∑
i

hhi ⊗ h∗i ,

hence ∑
i

hhi ⊗ f(h∗i ) =
∑
i

hi ⊗ f(h∗i · h) =
∑
i

hi ⊗ f(hi)h.

Now ψ and ϕ are inverses:

(ψ ◦ ϕ)(e1 ⊗ e2) =
∑
i

hi ⊗ 〈h∗i , e1〉e2 = e1 ⊗ e2;

((ϕ ◦ ψ)(f))(h∗) = ϕ(
∑
i

hi ⊗ f(h∗i ))(h
∗) =

∑
i

〈h∗, hi〉f(h∗i ) = f(h∗).

Using the fact that H∗ ∼= H as right H-modules (see Proposition 3.1.1), we now find

WA
∼= HomH(H∗, H) ∼= HomH(H,H) ∼= H

and the rank of W1 equals the rank of H as a k-module.
As we have seen, the rank of

∫ l
H

is one.
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3) Assume thatH is Frobenius, and that ψ is a free generator of
∫ r
H∗

. Then we have a rightH-linear
isomorphism

Ψ : H → H∗, Ψ(h) = ψ · h.
Ψ−1(ε) = u is then a free generator of

∫ r
H

, and 〈ψ, u〉 = 1. Now let ϕ and t as in Theorems 3.2.8
and 3.2.9. Then take u = S(t) and ψ = ϕ ◦ S−1. It is clear that u and ψ are right integrals, and
that 〈ψ, u〉 = 1. We also have a commutative diagram

H
φ //

S
��

H∗

(S∗)−1

��
H

Ψ // H∗

We can easily compute Ψ−1:

Ψ−1(h∗) = (S ◦ φ−1)(h∗ ◦ S) = 〈h∗, t(1)〉S(t(2)) = 〈h∗, S−1(u(2))〉u(1).

(t(1) ⊗ S(t(2)) = S−1(u(2))⊗ u(1), ϕ ◦ S−1 = ψ) is a Frobenius system for H .

We generalize the definition of integrals as follows: take α ∈ Alg(H, k) and g ∈ G(H), and define∫ l

α

= {t ∈ H | ht = α(h)t, for all h ∈ H}∫ r

α

= {t ∈ H | th = α(h)t, for all h ∈ H}∫ l

g

= {ϕ ∈ H∗ | h∗ ∗ ϕ = 〈h∗, g〉ϕ, for all h∗ ∈ H∗}∫ r

g

= {ϕ ∈ H∗ | ϕ ∗ h∗ = 〈h∗, g〉ϕ, for all h∗ ∈ H∗}

Of course we recover the previous definitions if α = ε and g = 1. We have the following general-
ization of Theorem 3.2.6.

Proposition 3.2.11 Let H be a Hopf algebra, and assume that H/k is Frobenius. Then for all
α ∈ Alg(H, k) and g ∈ G(H), the integral spaces

∫ l
α
,
∫ l
α
,
∫ l
g

and
∫ r
g

are free k-modules of rank
one.

Proof. Take t = α(e1)e2. Arguments almost identical to the ones used in the proof of 1) ⇒ 3) in
Theorem 3.2.6 prove that t is a free generator of

∫ l
α
. The statements for the other integral spaces

follow by duality arguments. �

Now assume that H is Frobenius, and write
∫ l
H

= kt. It is easy to prove that th ∈
∫ l
H

, for all
h ∈ H . Indeed,

k(th) = (kt)h = ε(k)th

for all k ∈ H . It follows that there exists a unique α(h) ∈ k such that

th = α(h)t
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α : H → k is multiplicative, so we can restate our observation by saying that t ∈
∫ r
α

. We call α
the distinguished element of H∗. If α = ε, then we say that H is unimodular.

Proposition 3.2.12 Let H be a Frobenius Hopf algebra, and α ∈ H∗ the distinguished element.
Then

∫ r
α

=
∫ l
H

, and H is unimodular if and only if∫ r

H

=

∫ l

H

Proof. We know from Proposition 3.2.11 that
∫ r
α

= kt′ is free of rank one. For all h ∈ H , we have
that ht′ ∈

∫ r
α

, hence we find a unique multiplicative map β : H → k such that

ht′ = β(h)t′

for all h ∈ H . Now we have that t = xt′ for some x ∈ k, since t ∈
∫ r
α

. Thus

ε(h)t = ht = xht′ = xβ(h)t′ = β(h)t

for all h ∈ H . This implies that β = ε, since t is a free generator of
∫ l
H

. It follows that t′ ∈
∫ l
H

,
proving the first statement.
If α = ε, then it follows that

∫ r
H

=
∫ l
H

. Conversely, if
∫ r
H

=
∫ l
H

, then t ∈
∫ r
H

, and this means that
the distinguished element is equal to ε. �
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Chapter 4

Galois Theory

4.1 Algebras and coalgebras in monoidal categories
Let C = (C,⊗, k) be a monoidal category. An algebra in C is a triple A = (A,m, η), where A ∈ C
and m : A ⊗ A → A and η : k → A are morphisms in C such that the following diagrams
commute:

A⊗ A⊗ A m⊗A //

A⊗m
��

A⊗ A
m

��
A⊗ A m // A

k ⊗ A
η⊗A //

lA %%KKKKKKKKKK A⊗ A
m

��

A⊗ k
A⊗ηoo

rA
yyssssssssss

A

A coalgebra in C is an algebra in the opposite category Cop.

Example 4.1.1 Let k be a commutative ring. An algebra inMk is a k-algebra, and a coalgebra in
Mk is a k-coalgebra.

Example 4.1.2 An algebra in Sets is a monoid. Every set X has a unique structure of coalgebra
in Sets. The comultiplication ∆ : X → X×X is the diagonal map ∆(x) = (x, x), and the counit
is the unique map ε : X → {∗}.
It is easy to see that (X,∆, ε) is a coalgebra. Conversely, let (X,∆, ε) is a coalgebra. Then ε is the
unique map X → {∗}. Take x ∈ X , and assume that ∆(x) = (a, b). From the left counit property,
it follows that

x = ((ε×X) ◦∆)(x) = b.

In a similar way, we find that x = a, hence ∆(x) = (x, x).

A (co)algebra in C is also called a (co)monoid in C

Example 4.1.3 LetA be a ring with unit. The category of bimodules AMA is a monoidal category;
the tensor is given by the tensor product ⊗A, and the unit object A. An algebra in AMA is called
an A-ring, and a coalgebra in AMA is called an A-coring. Corings will be studied in Section 4.2.
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Example 4.1.4 Let H be a bialgebra. We know that HM is a monoidal category. An algebra A in
HM is called a left H-module algebra. Then A is a left H-module, and a k-algebra such that the
multiplication and unit maps are left H-linear, which comes down to

h · (ab) = (h(1) · a)(h(2) · b) ; h · 1A = ε(h)1A.

A coalgebra in in HM is called a left H-module coalgebra.
For a monoid G, a left kG-module algebra is a left G-module algebra in the classical sense, that is,
it is an algebra with a left G-action such that

σ · (ab) = (σ · a)(σ · b) ; σ · 1A = 1A.

Of course, we can also consider right H-module (co)algebras.

Example 4.1.5 Let H be a bialgebra, and consider the category of right H-comodulesMH . It is
also a monoidal category, with tensor ⊗k and unit object k. For M,N ∈ MH , M ⊗ N is again a
right H-comodule, with right H-coaction

ρ(m⊗ n) = m[0] ⊗ n[0] ⊗m[1]n[1].

k ∈MH with right H-coaction ρ(1k) = 1k ⊗ 1A.
An algebra A inMH is called a right H-comodule algebra. Then A is a right H-comodule, and a
k-algebra, such that the multiplication and unit maps are right H-colinear, which comes down to

ρ(ab) = a[0]b[0] ⊗ a[1]b[1] ; ρ(1A) = 1A ⊗ 1H .

For a monoid G, a kG-comodule algebra A is a G-graded ring A, that is,

A =
⊕
σ∈G

Aσ,

with
AσAτ ⊂ Aστ ; 1A ∈ Ae.

A coalgebra inMH is called a right H-comodule coalgebra. Of course, we can also consider right
H-comodule (co)algebras.

4.2 Corings
Let A be a ring with unit. An A-coring is a triple C = (C,∆C, εC), where

• C is an A-bimodule;

• ∆C : C→ C⊗A C is an A-bimodule map;

• εC : C→ A is an A-bimodule map
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such that
(∆C ⊗A IC) ◦∆C = (IC ⊗A ∆C) ◦∆C, (4.1)

and
(IC ⊗A εC) ◦∆C = (εC ⊗A IC) ◦∆C = IC. (4.2)

Sometimes corings are considered as coalgebras over noncommutative rings. This point of view
is not entirely correct: a coalgebra over a commutative ring k is a k-coring, but not conversely: it
could be that the left and and right action of k on the coring are different.

The Sweedler-Heyneman notation is also used for a coring C, namely

∆C(c) = c(1) ⊗A c(2),

where the summation is implicitely understood. (4.2) can then be written as

εC(c(1))c(2) = c(1)εC(c(2)) = c.

This formula looks like the corresponding formula for usual coalgebras. Notice however that the
order matters in the above formula, since εC now takes values in A which is noncommutative in
general. Even worse, the expression c(2)εC(c(1)) makes no sense at all, since we have no well-
defined switch map C⊗A C→ C⊗A C.
A morphism between two corings C and D is an A-bimodule map f : C→ D such that

∆D(f(c)) = f(c(1))⊗A f(c(2)) and εD(f(c)) = εC(c),

for all c ∈ C. A right C-comodule M = (M,ρ) consists of a right A-module M together with a
right A-linear map ρ : M →M ⊗A C such that:

(ρ⊗A IC) ◦ ρ = (IM ⊗A ∆C) ◦ ρ, (4.3)

and
(IM ⊗A εC) ◦ ρ = IM . (4.4)

We then say that C coacts from the right on M . Left C-comodules and C-bicomodules can be
defined in a similar way. We use the Sweedler-Heyneman notation also for comodules:

ρ(m) = m[0] ⊗A m[1].

(4.4) then takes the form m[0]εC(m[1]) = m. A right A-linear map f : M → N between two right
C-comodules M and N is called right C-colinear if ρ(f(m)) = f(m[0])⊗m[1], for all m ∈M .

Example 4.2.1 Let i : B → A be a ring morphism; then D = A⊗B A is an A-coring. We define

∆D : D → D ⊗A D ∼= A⊗B A⊗B A

and
εD : D = A⊗B A→ A
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by
∆D(a⊗B b) = (a⊗B 1A)⊗A (1A ⊗B b) ∼= a⊗B 1A ⊗B b

and
εD(a⊗B b) = ab.

Then D = (D,∆D, εD) is an A-coring. It is called the Sweedler canonical coring associated to the
ring morphism i.

Example 4.2.2 Let k be a commutative ring, G a finite group, and A a G-module algebra. Let
C = ⊕σ∈GAvσ be the left free A-module with basis indexed by G, and let pσ : C → A be the
projection onto the free component Avσ. We make C into a right A-module by putting

vσa = σ(a)vσ.

A comultiplication and counit on C are defined by putting

∆C(avσ) =
∑
τ∈G

avτ ⊗A vτ−1σ and εC = pe,

where e is the unit element of G. It is straightforward to verify that C is an A-coring. Notice
that, in the case where A is commutative, we have an example of an A-coring, which is not an
A-coalgebra, since the left and right A-action on C do not coincide.
Let us give a description of the right C-comodules. Assume thatM = (M,ρ) is a right C-comodule.
For every m ∈M and σ ∈ G, let σ(m) = mσ = IM ⊗A pσ)(ρ(m)). Then we have

ρ(m) =
∑
σ∈G

mσ ⊗A vσ.

e is the identity, since m = (IM ⊗A εC) ◦ ρ(m) = me. Using the coassociativity of the comultipli-
cation, we find∑

σ∈G

ρ(mσ)⊗ vσ =
∑
σ,τ∈G

mσ ⊗A vτ ⊗A vτ−1σ =
∑
ρ,τ∈G

mτρ ⊗A vτ ⊗A vρ,

hence ρ(mσ) =
∑

τ∈Gmτσ ⊗A vτ , and τ(σ(m)) = mτσ = τσ(m), so G acts as a group of
k-automorphisms on M . Moreover, since ρ is right A-linear, we have that

ρ(ma) =
∑
σ∈G

σ(ma)⊗A vσ =
∑
σ∈G

σ(m)⊗A vσa =
∑
σ∈G

σ(m)σ(a)⊗A vσ

so σ is A-semilinear: σ(ma) = σ(m)σ(a), for all m ∈ M and a ∈ A. Conversely, if G acts as a
group of right A-semilinear automorphims on M , then the formula

ρ(m) =
∑
σ∈G

σ(m)⊗A vσ

defines a right C-comodule structure onM.
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Example 4.2.3 Now let k be a commutative ring, G an arbitrary group, and A a G-graded k-
algebra. Again let C be the free left A-module with basis indexed by G:

C = ⊕σ∈GAuσ

Right A-action, comultiplication and counit are now defined by

uσa =
∑
τ∈G

aτuστ ; ∆C(uσ) = uσ ⊗A uσ ; εC(uσ) = 1.

C is an A-coring; let M = (M,ρ) be a right A-comodule, and let Mσ = {m ∈ M | ρ(m) =
m ⊗A uσ}. It is then clear that Mσ ∩Mτ = {0} if σ 6= τ . For any m ∈ M , we can write in a
unique way:

ρ(m) =
∑
σ∈G

mσ ⊗A uσ.

Using the coassociativity, we find that mσ ∈ Mσ, and using the counit property, we find that
m =

∑
σmσ. So M = ⊕σ∈GMσ. Finally, if m ∈ Mσ and a ∈ Aτ , then it follows from the right

A-linearity of ρ that
ρ(ma) = (m⊗A uσ)a = ma⊗A uστ ,

so ma ∈ Mστ , and MσAτ ⊂ Mστ , and M is a right G-graded A-module. Conversely, every right
G-graded A-module can be made into a right C-comodule.

Example 4.2.4 Let H be a bialgebra over a commutative ring k, and A a right H-comodule alge-
bra. Now take C = A⊗H , with A-bimodule structure

a′(b⊗ h)a = a′ba[0] ⊗ ha[1].

Now identify (A ⊗ H) ⊗A (A ⊗ H) ∼= A ⊗ H ⊗ H , and define the comultiplication and counit
on C, by putting ∆C = IA ⊗∆H and εC = IA ⊗ εH . Then C is an A-coring. The categoryMC is
isomorphic to the category of relative Hopf modules. These are k-modulesM with a rightA-action
and a right H-coaction ρ, such that

ρ(ma) = m[0]a[0] ⊗A m[1]a[1]

for all m ∈M and a ∈ A.

Duality

If C is an A-coring, then its left dual ∗C = AHom(C, A) is a ring, with (associative) multiplication
given by the formula

f#g = g ◦ (IC ⊗A f) ◦∆C or (f#g)(c) = g(c(1)f(c(2))), (4.5)

for all left A-linear f, g : C → A and c ∈ C. The unit is εC . We have a ring homomorphism
i : A→ ∗C, i(a)(c) = εC(c)a. We easily compute that

(i(a)#f)(c) = f(ca) and (f#i(a))(c) = f(c)a, (4.6)
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for all f ∈ ∗C, a ∈ A and c ∈ C. We have a functor F : MC → M∗C , where F (M) = M as a
right A-module, with right ∗C-action given by m · f = m[0]f(m[1]), for all m ∈M , f ∈ ∗C. If C is
finitely generated and projective as a left A-module, then F is an isomorphism of categories: given
a right ∗C-action onM , we recover the right C-coaction by putting ρ(m) =

∑
j(m·fj)⊗Acj , where

{(cj, fj) | j = 1, · · · , n} is a finite dual basis of C as a left A-module. ∗C is a right A-module, by
(4.6): (f · a)(c) = f(c)a, and we can consider the double dual (∗C)∗ = HomA(∗C, A). We have a
canonical morphism i : C → (∗C)∗, i(c)(f) = f(c), and we call C reflexive (as a left A-module)
if i is an isomorphism. If C is finitely generated projective as a left A-module, then C is reflexive.
For any ϕ ∈ (∗C)∗, we then have that ϕ = i(

∑
j ϕ(fj)cj).

Grouplike elements

Let C be an A-coring, and suppose that C coacts on A. Then we have a map ρ : A→ A⊗A C ∼= C.
The fact that ρ is right A-linear implies that ρ is completely determined by ρ(1A) = x: ρ(a) = xa.
The coassociativity of the coaction yields that ∆C(x) = x ⊗A x and the counit property gives us
that εC(x) = 1A. We say that x is a grouplike element of C and we denote G(C) for the set of all
grouplike elements of C. If x ∈ G(C) is grouplike, then the associated C-coaction on A is given by
ρ(a) = xa.
If x ∈ G(C), then we call (C, x) a coring with a fixed grouplike element. For M ∈MC , we call

M coC = {m ∈M | ρ(m) = m⊗A x}

the submodule of coinvariants ofM ; note that this definition depends on the choice of the grouplike
element. Also observe that

AcoC = {b ∈ A | bx = xb}

is a subring of A.

An adjoint pair of functors

Let i : B → A be a ring morphism. i factorizes through AcoC if and only if

x ∈ G(C)B = {x ∈ G(C) | xb = bx, for all b ∈ B}.

We then have a pair of adjoint functors (F,G) between the categoriesMB andMC . For N ∈MB

and M ∈MC ,
F (N) = N ⊗B A and G(M) = M coC.

The unit and counit of the adjunction are

νN : N → (N ⊗B A)coC, νN(n) = n⊗B 1;

ζM : M coC ⊗B A→M, ζM(m⊗B a) = ma.

We want to discuss when (F,G) is a category equivalence. We will do this first in the case where
C is the Sweedler canonical coring, and x = 1⊗B 1.
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4.3 Faithfully flat descent
Let i : B → A be a ring morphism. The problem of descent theory is the following: suppose
that we have a rightA-moduleM . When do we have a rightB-moduleN such thatN = M⊗BA?

Let D = A ⊗B A be the associated Sweedler canonical coring. Let M = (M,ρ) be a right D-
comodule. We will identifyM⊗AD ∼= M⊗BA using the natural isomorphism. The coassociativity
and the counit property then take the form

ρ(m[0])⊗m[1] = m[0] ⊗B 1A ⊗B m[1] and m[0]m[1] = m. (4.7)

1A ⊗B 1A is a grouplike element of D. As we have seen at the end of Section 4.2, we havea pair
of adjoint functors, betweenMB andMD, which we will denote by (K,R). The unit and counit
of the adjunction will be denoted by η and ε. K is called the comparison functor. If (K,R) is an
equivalence of categories, then the “descent problem” is solved: M ∈ MA is isomorphic to some
N ⊗B A if and only if we can define a right D-coaction on M .

Proposition 4.3.1 If A ∈ BM is flat, then R is fully faithful, that is, εM is bijective, for all
M ∈MD.

Proof. Consider the map

iM : M →M ⊗B A, iM(m) = m⊗B 1.

Then M coD = {m ∈M | ρ(m) = m⊗B 1} fits into the exact sequence

0 //M coD j //M
ρ //

iM
//M ⊗B A

Since A ∈ BM is flat, we have an exact sequence

0 //M coD ⊗B A
j⊗BA //M ⊗B A

ρ⊗BA //

iM⊗BA
//M ⊗B A⊗B A

Now ρ corestricts to ρ : M →M coD ⊗B A. Indeed, for all m ∈M , we have, using (4.7)

(ρ⊗B A)(m[0] ⊗B m[1]) = m[0] ⊗ 1⊗B m[1] = (iM ⊗B A)(m[0] ⊗B m[1]).

This corestriction of ρ is the inverse of εM : (εM ◦ ρ)(m) = m by the counit property (4.7), and for
all m ∈M coD and a ∈ A, we have that

(ρ ◦ εM)(m⊗B a) = ρ(ma) = m[0] ⊗B m[1]a = m⊗B a.

�

Proposition 4.3.2 Assume that A ∈ BM is flat. Then the following assertions are equivalent.

1. A ∈ BM is faithfully flat;
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2. (K,R) is a pair of inverse equivalences.

Proof. 1) =⇒ 2). We know form Proposition 4.3.1 that R is fully faithful, so we only need
to show that K is fully faithful, that is, ηN is bijective for all N ∈ BM. We will show that
iN : N → N ⊗B A is injective. Since A ∈ BM is faithfully flat, it suffices to show that
iN ⊗B A : N ⊗B A→ N ⊗B A⊗B A is injective. Assume that

0 = (iN ⊗B A)(
∑
i

ni ⊗B ai) =
∑
i

ni ⊗B 1⊗B ai.

Multiply the second and third tensor factor. It then follows that
∑

i ni ⊗B ai = 0. We have a
commutative diagram

N
ηN //

iN ((RRRRRRRRRRRRRRRR (N ⊗B A)coD

⊂
��

N ⊗B A

and it follows that ηN is injective. In order to prove that ηN is surjective, take a =
∑

i ni ⊗B ai ∈
(N ⊗B A)coD. Then

ρ(q) =
∑
i

ni ⊗B ai ⊗B 1 =
∑
i

ni ⊗B 1⊗B ai. (4.8)

Now let P = (N ⊗B A)/i(N), and let π : N ⊗B A → P be the canonical projection. Apply
π ⊗B A to (4.8):

π(q)⊗B 1 =
∑
i

π(ni ⊗B 1)⊗B ai = 0 ∈ P ⊗B A.

Since iP is injective, it follows that π(q) = 0, so q ∈ Im (iN).

2) =⇒ 1). If A ∈ BM is flat, then D = A ⊗B A ∈ AM is flat, andMD is an abelian category,
in such a way that the forgetful functorMD →MA is exact. The proof is similar to the proof of
Corollary 2.4.10. Now let

N ′
f // N

g // N ′′

be a sequence in BM and assume that

N ′ ⊗B A
f⊗BA // N ⊗B A

g⊗BA // N ′′ ⊗B A

is exact inMA. Then this sequence is also exact inMD, since the forgetful functor is faithfully
exact. Now (K,R) is a pair of inverse equivalences. In particular, R is a right adjoint of K, so R
preserves kernels. R is also a left adjoint of K, so R also preserves cokernels (see prref3.3.3). So
R is exact, and

0 // N ′
f // N

g // N ′′ // 0

is exact inMB. �
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Proposition 4.3.3 Let (F,G) be a pair of adjoint functors between the categories C and D. Then
F preserves cokernels and G preserves kernels.

Proof. One of the equivalent characterizations of adjoint functors is the following: for C ∈ C and
D ∈ D, we have isomorphisms

αC,D : HomD(F (C), D)→ HomC(C,G(D)),

natural in C and D. The naturality in C and D means the following: for f : C → C ′ in C, and
g : F (C)→ D, h : D → D′ in D, we have

αC′,D′(h ◦ g ◦ F (f)) = G(h) ◦ αC,D(g) ◦ f. (4.9)

Take f : C → C ′ in C, with cokernel k : C ′ → K. We will show that the cokernel of F (f) is
F (k). It is clear that F (k) ◦ F (f) = F (k ◦ f) = 0.
Assume that g : F (C ′)→ D is such that g ◦ F (f) = 0:

F (C)
F (f) // F (C ′)

F (k) //

g

((QQQQQQQQQQQQQQ F (K)

D

Then 0 = αC,D(g ◦ F (f))
(4.9)
= αC′,D(g) ◦ f . Since k is the cokernel of f , there exists a unique

l : K → G(D) such that the diagram

C
f // C ′

k //

αC′,D(g) ''OOOOOOOOOOOOO K

∃!l
��

G(D)

commutes. Now

g = α−1
C′,D(αC′,D(g)) = α−1

C′,D(l ◦ k)
(4.9)
= α−1

K,D(l) ◦ F (k),

so α−1
K,D(l) makes the following diagram commute:

F (C)
F (f) // F (C ′)

F (k) //

g

((QQQQQQQQQQQQQQ F (K)

α−1
K,D(l)

��
D

We still have to show that this is the unique map that makes the diagram commutative. Assume
that m : F (k)→ D is such that g = m ◦ F (k). Then

l ◦ k = αC′,D(g)
(4.9)
= αK,D(m) ◦ k.

From the uniqueness of l, it follows that l = αK,D(m), and α−1
K,D(l) = m. �
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The commutative case

Now we consider the special case where A and B are commutative. In this situation, an alternative
description of the categoryMD can be given. For M ∈MA, we consider A⊗B M and M ⊗B M
as right A⊗B A-modules.

Lemma 4.3.4 We have an isomorphism α : HomA(M,M ⊗B A)→ HomA⊗BA(A⊗B M,M ⊗B
A).

Proof. For ρ : M →M ⊗B A, α(ρ) = g is given by

g(a⊗B m) = m[0]a⊗B m[1],

where we denote ρ(m) = m[0] ⊗m[1]. Conversely, given g ∈ HomA⊗BA(A⊗B M,M ⊗B A), we
let α−1(g) = ρ given by ρ(m) = g(1⊗B m). �

For g ∈ HomA⊗BA(A⊗B M,M ⊗B A), we can consider the three following morphisms of A⊗B
⊗BA-modules:

g1 = A⊗B g : A⊗B A⊗B M → A⊗B M ⊗B A
g3 = g ⊗B A : A⊗B M ⊗B A→M ⊗B A⊗B A

g2 : A⊗B A⊗B M →M ⊗B A⊗B A
g2 is given by the formula

g(a⊗B a′ ⊗B m) = m[0]a⊗B a′ ⊗B m[1]

Lemma 4.3.5 Take ρ ∈ HomA(M,M ⊗B A), and let g = α(ρ).

1. ρ is coassociative if and only if g2 = g3 ◦ g1;

2. ρ has the counit property if and only if (ψM ◦ g)(1 ⊗B m) = m, for all m ∈ M . ψM :
M ⊗B A→M is the right A-action on M .

Proof. 1) We easily compute that

g2(1⊗B 1⊗B m) = m[0] ⊗B 1⊗B m[1]

(g3 ◦ g1)(m) = g3(1⊗B m[0] ⊗B m[1]) = ρ(m[0])⊗B m[1]

and the first assertion follows.
2) is obvious. �

If the conditions of Lemma 4.3.5 are satisfied, then (M, g) is called a descent datum. Let Desc(A/B)
be the category with descent data as objects. A morphism (M, g) → (M ′, g′) consists of a mor-
phism f : M →M ′ inMA such that the diagram

A⊗B M
g //

A⊗Bf
��

M ⊗B A
f⊗BA
��

A⊗B M ′ g′ //M ′ ⊗B A

commutes.
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Proposition 4.3.6 The categories Desc(A/B) andMD are isomorphic.

Proof. (M,ρ) ∈ MD is sent to (M,α(ρ)) ∈ MD. If f : M → M ′ is a morphism inMD, then it
is also a morphism in Desc(A/B). �

Proposition 4.3.7 Assume that g ∈ HomA⊗BA(A ⊗B M,M ⊗B A) satisfies the condition g2 =
g3 ◦ g1. Then condition 2) of Lemma 4.3.5 is satisfied if and only if g is a bijection.

Proof. =⇒. The inverse of g is given by the formula

g−1(m⊗B a) = m[1] ⊗m[0]a.

Indeed:

(g−1 ◦ g)(a⊗B m) = g−1(m[0]a⊗B m[1])

= m[0][1]a⊗B m[0][0]m[1]

= a⊗B m[0]m[1]

= a⊗B m
(g ◦ g−1)(m⊗B a) = g(m[1] ⊗B m[0]a)

= m[0][0]m[1] ⊗B m[0][1]a

= m[0]m[1] ⊗B a
= m⊗B a

⇐=. We compute that

g(1⊗B m[0]m[1]) = m[0][0] ⊗B m[0][1]m[1]

= m[0] ⊗B m[1] = g(1⊗B m).

Since g is bijective, it follows that

1⊗B m[0]m[1] = 1⊗B m

and m[0]m[1] = m. �

If (M, g) is a decent datum, then the descended module M coD is given by the formula

M coD = {m ∈M | g(1⊗B m) = m⊗B 1}.

4.4 Galois corings
Let (C, x) be an A-coring with a fixed grouplike element x, and let i : B → AcoC be a ring
morphism. Then we have a morphism of corings

can : D = A⊗B A→ C, can(a⊗B a′) = axa′.

Recall from Section 4.2 that we have a pair of adjoint functors (F,G) betweenMB andMC .
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Proposition 4.4.1 1) If F is fully faithful, then i : B → AcoC is an isomorphism;
2) if G is fully faithful, then can is an isomorphism.

Proof. 1) νB = i is an isomorphism.
2) (C,∆) is a right C-comodule. The map

f : A→ CcoC, f(ax)

is an (A,B)-bimodule isomorphism; the inverse g is the restriction of ε to CcoC . Indeed, (g◦f)(a) =
ε(ax) = aε(x) = a. If c ∈ CcoC , then ∆(c) = c ⊗A x, so ε(c)x = ε(c(1))c(2) = c. Then we find
that

(f ◦ g)(c) = f(ε(c)) = ε(c)x = c.

Now we compute that

(ζC ◦ (f ⊗B A))(a⊗B a′) = ζC(ax⊗B a′) = axa′ = can(a⊗B a′),

so can = ζC ◦ (f ⊗B A) is an isomorphism. �

Proposition 4.4.1 leads us to the following Definition.

Definition 4.4.2 Let (C, x) be anA-coring with a fixed grouplike, and letB = AcoC . We call (C, x)
a Galois coring if the canonical coring morphism can : D = A ⊗B A → C, can(a ⊗B b) = axb
is an isomorphism.

Let i : B → A be a ring morphism. If x ∈ G(C)B, then we can define a functor

Γ : MD →MC, Γ(M,ρ) = (M, ρ̃)

with ρ̃(m) = m[0] ⊗A xm[1] ∈ M ⊗A C if ρ(m) = m[0] ⊗B m[1] ∈ M ⊗B A. It is easy to see that
Γ ◦K = F , and therefore we have the following result.

Proposition 4.4.3 Let (C, x) be a Galois A-coring. Then Γ is an isomorphism of categories. Con-
sequently R (resp. K) is fully faithful if and only if G (resp. F ) is fully faithful.

Proposition 4.4.4 Let (C, x) be an A-coring with fixed grouplike element, and B = AcoC . Assume
that A is flat as a left B-module. Then the following statements are equivalent.

1. (C, x) is Galois;

2. G is fully faithful.

Proof. 1)⇒ 2) follows from Propositions 4.3.1 and 4.4.3. 2)⇒ 1) follows from Proposition 4.4.1.
�

Proposition 4.4.5 Let (C, x) be an A-coring with fixed grouplike element, and B = AcoC . Assume
that A is flat as a left B-module. Then the following statements are equivalent.

1. (C, x) is Galois and A is faithfully flat as a left B-module;

2. (F,G) is a pair of inverse equivalences.

Proof. The equivalence of 1) and 2) follows from Propositions 4.3.2 and 4.4.3. �
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4.5 Morita Theory
Definition 4.5.1 Let A and B be rings. A Morita context connecting A and B is a sixtuple
(A,B, P,Q, f, g) where

• P ∈ AMB, Q ∈ BMA;

• f : P ⊗B Q→ A in AMA, g : Q⊗A P → B in BMA;

• the following two diagrams are commutative:

Q⊗A P ⊗B Q
g⊗BQ //

Q⊗Af
��

B ⊗B Q
∼=
��

Q⊗A A
∼= // Q

P ⊗B Q⊗A P
f⊗AP //

P⊗Bg
��

A⊗A P
∼=
��

P ⊗B B
∼= // P

or
qf(p⊗B q′) = g(q ⊗A p)p′ ; pg(q ⊗A p′) = f(p⊗B q)p′, (4.10)

for all p, p′ ∈ P ′ and q, q′ ∈ Q.

Recall that M ∈ AM is called a generator of AM if there exist mi ∈ M and fi ∈ AHom(M,A)
such that

∑
i fi(mi) = 1A.

Theorem 4.5.2 Let (A,B, P,Q, f, g) be a Morita context, and assume that f is surjective. Then
we have the following properties.

1. f is bijective;

2. P ∈ AM and Q ∈MA are generators;

3. P ∈MB and Q ∈ BM are finitely generated projective;

4. P ∼= BHom(Q,B) in AMB and Q ∼= HomB(P,B) in BMA;

5. A ∼= BEnd(Q)op ∼= EndB(P ) as rings;

6. (F̃ = −⊗A P, G̃ = −⊗B Q) is a pair of adjoint functors betweenMA andMB;

7. M ⊗B Q ∼= M ⊗B HomB(P,B) ∼= HomB(P,M), for all M ∈ MB; in other words, the
functor G̃ is isomorphic to HomB(−,M).

Proof. Since f is surjective, we know that there exist pi ∈ P , qi ∈ Q (i = 1, · · · , n) such that

n∑
i=1

f(pi ⊗B qi) = 1A. (4.11)
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1) If
∑

j p
′
j ⊗B q′j ∈ Ker (f), then∑

j

p′j ⊗B q′j
(4.11)
=
∑
i,j

p′j ⊗B q′jf(pi ⊗B qi)

(4.10)
=

∑
i,j

p′j ⊗B g(q′j ⊗A pi)qi =
∑
i,j

p′jg(q′j ⊗A pi)⊗B qi

(4.10)
=

∑
i,j

f(p′j ⊗B q′j)pi ⊗B qi = 0.

2) For i = 1, · · · , n, define fi ∈ AHom(P,A) by fi(p) = f(p⊗B qi). Then

n∑
i=1

fi(pi) =
n∑
i=1

f(pi ⊗B qi)
(4.11)
= 1A,

so P ∈ AM is a generator.

3) For all p ∈ P , we have

p =
∑
i

f(pi ⊗B qi)p
(4.10)
= pig(qi ⊗A p),

and it follows that {(pi, g(qi ⊗A −) | i = 1, · · · , n} is a finite dual basis of P ∈MB.

4) BHom(Q,B) ∈ AMB, with the following left A-action and right B-action:

(a · ϕ · b)(q) = ϕ(qa)b,

for all a ∈ A, b ∈ B, q ∈ Q and ϕ ∈ BHom(Q,B). Now we define

α : P → BHom(Q,B)

as follows:
α(p)(q) = g(q ⊗A p).

α is an (A,B)-bimodule map since

α(apb)(q) = g(q ⊗A apb) = g(qa⊗A p)b = (α(p)(qa))b = (a · α(p) · b)(q).

α is injective: if α(p) = 0, then

p =
∑
i

f(pi ⊗B qi)p =
∑
i

pig(qi ⊗A p) =
∑
i

pi(α(p)(qi)) = 0.

α is surjective: for ψ ∈ BHom(Q,B), we have

ϕ(q) =
∑
i

ϕ(qf(pi ⊗B qi))
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=
∑
i

ϕ(g(q ⊗A pi)qi)

=
∑
i

g(q ⊗A pi)ϕ(qi)

= g(q ⊗
∑
i

piϕ(qi))

= α(
∑
i

piϕ(qi))(q).

hence ϕ = α(
∑

i piϕ(qi)).
In a similar way, HomB(P,B) ∈ BMA via

(b · ψ · a)(p) = bψ(ap),

and the isomorphism β : Q→ HomB(P,B) is given by the formula

β(q)(p) = g(q ⊗A p).

5) The map
γ : A→ BEnd(Q)op, γ(a)(q) = qa

is a ring morphism:
γ(ab)(q) = qab = (γ(b) ◦ γ(a))(q).

γ is injective: if γ(a) = 0, then

a =
∑
i

f(pi ⊗B qi)a =
∑
i

f(pi ⊗B qia) =
∑
i

f(pi ⊗B γ(a)(qi)) = 0.

γ is surjective: for k ∈ BEnd(Q)op, we have

k(q) =
∑
i

k(qf(pi ⊗B qi))

=
∑
i

k(g(q ⊗A pi)qi)

=
∑
i

g(q ⊗A pi)k(qi)

=
∑
i

qf(pi ⊗B k(qi))

= γ(
∑
i

f(pi ⊗B k(qi)))(q),

so k = γ(
∑

i f(pi ⊗B k(qi))).
The other ring automorphism is

δ : A→ EndB(P ), δ(a)(p) = ap.
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6) The unit and the counit of the adjunction are defined as follows:

ηN = η ⊗A f−1 : N ⊗N ⊗A P ⊗B Q ; εM = M ⊗B g : M ⊗B Q⊗A →M,

for N ∈MA and M ∈MB. F is fully faithful since ηN is bijective.

7) For M ∈MB, we have an homomorphism

αM : M ⊗B HomB(P,B)→ HomB(P,M), αM(m⊗B f) = ϕ,

with ϕ(p) = mf(p). Now we know that P ∈ MB is finitely generated projective, with finite dual
basis {(pi, fi = g(qi ⊗A −) | i = 1, · · · , n}. The inverse of αM is now given by the formula

α−1
M (ϕ) =

∑
i

ϕ(pi)⊗B fi.

�

A left (resp.) right A-module that is finitely generated and projective and a generator is called a
left (resp. right) A-progenerator A Morita context (A,B, P,Q, f, g) is called strict if f and g are
surjective. In this case, both f and f and g are injective, and P and Q are A- and B-progenerators.
In this case the adjunction (F̃ , G̃) of Theorem 4.5.2 6) is a pair of inverse equivalences.

The Morita context associated to a module

Let B be a ring, and P ∈ MB. We construct a Morita context as follows. Let A = EndB(P ),
Q = HomB(P,B). Then P is an (A,B)-bimodule, with left A-action

a · p = a(p);

Q is a (B,A)-bimodule with actions

(b · q)(p) = bq(p) ; q · a = q ◦ a.

Then the maps
f : P ⊗B Q→ A, f(p⊗B q)(p′) = pq(p′);

g : Q⊗A P → B, g(q ⊗A p) = g(p)

are well-defined bimodule maps.

Proposition 4.5.3 With notation as above, (A,B, P,Q, f, g) is a Morita context.
The map f is surjective if and only if P ∈MB is finitely generated projective.
The map g is surjective if and only if P ∈MB is a generator.
Consequently, the Morita context is strict if and only if P is a right B-progenerator.
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Proof. The proof of the first statement is straightforward.
If f is surjective, then it follows from Theorem 4.5.2 3) that P ∈MB is finitely generated projec-
tive. Conversely, assume that {(pi, qi) | i = 1, · · · , n} is a finite dual basis of P . For all p′ ∈ P , we
have that

f(
∑
i

pi ⊗B qi)(p′) = f(
∑
i

pi ⊗B qi)p′ =
∑
i

pig(qi ⊗A p′) =
∑
i

piqi(p
′) = p′,

hence f(
∑

i pi ⊗B qi) = 1A, and f is surjective.
If g is surjective, then it follows from Theorem 4.5.2 2) that P ∈ MB is a generator. Conversely,
if P is a generator, then there exist pi ∈ Pi and qi ∈ Q = HomB(P,B) such that

1B =
∑
i

qi(pi) = g(
∑
i

qi ⊗A pi),

and it follows that g is surjective. �

Progenerators are faithfully flat

Proposition 4.5.4 Let M ∈MA be finitely generated projective. Then M is a flat left A-module.

Proof. Let {(mi, fi) | i = 1, · · · , n} is a finite dual basis of M . Let ϕ : P → Q be a monomor-
phism in AM. We have to show that ϕ⊗AM : P⊗M → Q⊗AM is a monomorphism of abelian
groups. Take

∑
j nj ⊗A pj ∈ Ker (ϕ⊗AM). Then

0 = r(ϕ⊗AM)(
∑
j

nj ⊗A pj) =
∑
j

mj ⊗A ϕ(pj).

It follows that we have, for all f ∈ HomA(M,A):

0 =
∑
j

f(mj)ϕ(pj) = ϕ(
∑
j

f(mj)pj),

and, since ϕ is injective, ∑
j

f(mj)pj) = 0.

We now conclude that∑
j

nj ⊗A pj =
∑
i,j

mifi(nj)⊗A pj =
∑
i

mi ⊗A
∑
j

fi(nj)pj = 0.

�

Proposition 4.5.5 Let M ∈ MA be a generator. Then M ⊗A − : AM → Ab reflects exact
sequences.
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Proof. Since M is a generator, there exist mi ∈M , fi ∈ HomA(M,A) such that
∑

i fi(mi) = 1.
Consider a sequence

P
ϕ−→Q ψ−→R (4.12)

inMA, and assume that
M ⊗A P

M⊗Aϕ−→ M ⊗A Q
M⊗Aψ−→ M ⊗A R

is exact in Ab. Then we have to show that (4.12) is exact.
We first show that ψ ◦ ϕ = 0. For all p ∈ P , we have

0 = ((M ⊗A ψ) ◦ (M ⊗A ϕ))(mi ⊗A p) = mi ⊗A (ψ ◦ ϕ)(p),

hence
(ψ ◦ ϕ)(p) =

∑
i

f(mi)(ψ ◦ ϕ)(p) = 0.

Next, assume that q ∈ Ker (ψ). Then (M ⊗A ψ)(mi ⊗A q) = 0, so there exists
∑

j nj ⊗A pj ∈
M ⊗A P such that

mi ⊗A q = (M ⊗A ϕ)(
∑
j

nj ⊗A pj) =
∑
j

nj ⊗A ϕ(pj).

Then
q =

∑
i

fi(mi)q =
∑
i,j

fi(nj)ϕ(pj) = ϕ(
∑
i,j

fi(nj)pj) ∈ Im (ϕ).

�

Corollary 4.5.6 If M ∈MA is a progenerator, then M ∈MA is faithfully flat.

Progenerators over commutative rings

Let M be a finitely generated projective module over a commutative ring k. We will show that M
is a generator if and only if M is faithful. We introduced the following ideals of k:

Annk(M) = {x ∈ k |Mx = 0}

Trk(M) = {
∑
i

〈m∗,m〉 |mi ∈M,m∗i ∈M∗}

Annk(M) is called the annihiliator of M , and Trk(M) is called the trace ideal of M . Clearly M
is faithful if and only if Annk(M) = 0, and M is a generator if and only if Trk(M) = k.

Proposition 4.5.7 Let I be an ideal of k, and M a finitely generated k-module. Then

MI = M ⇐⇒ I + Annk(M) = k.
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Proof. ⇐=. There exist x ∈ I and y ∈ Annk(M) such that x + y = 1. Then for all m ∈ M we
have that m = mx+my = mx ∈MI .

=⇒. Let {m1,m2, · · ·mn} be a set of generators of M . For i = 1, · · · , n, let

Mi = mik +mi+1k + · · ·+mnk

be the submodule of M generated by {mi,mi+1, · · · ,mn}. Let Mn+1 = 0. We will prove the
following statement:

∀i ∈ {1, · · · , n+ 1} : ∃xi ∈ I : M(1− xi) ⊂Mi. (4.13)

We construct the xi recursevely. Let x1 = 0. Assume that we have found xi ∈ I such that (4.13) is
satisfied. Then

M(1− xi) = MI(1− xi) = M(1− xi)I ⊂MiI,

so there exist xji ∈ I such that

mi(1− xi) =
n∑
j=i

mjxji,

and

mi(1− xi − xii) =
n∑

j=i+1

mjxji ∈Mi+1.

Then it follows that

M(1− xi)(1− xi − xii) ⊂Mi(1− xi − xii) ⊂Mi+1,

or
M(1− (2xi + xii − x2

i − xixii)) ⊂Mi+1.

Then xi+1 = 2xi + xii − x2
i − xixii ∈ I satisfies (4.13).

Now M(1− xn+1) ⊂Mn+1 = 0, hence 1 = xn+1 + (1− xn+1) ∈ I + Annk(M). �

Corollary 4.5.8 (Nakayama Lemma) Let M be a finitely generated k-module. If Mm = M for
every maximal ideal m of k, then M = 0.

Proof. IfM 6= 0, then Annk(M) 6= k, so there exists a maximal ideal m of k containing Annk(M).
Then m + Annk(M) = m 6= k, and it follows from Proposition 4.5.7 that Mm 6= M . �

Proposition 4.5.9 Let M be a finitely generated projective k-module. Then

Trk(M)⊕ Annk(M) = k.

Consequently M is a generator if and only if M is faithful.
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Proof. Let {(mi,m
∗
i ) | i = 1, · · ·n} be a finite dual basis of M . For all m ∈M , we have

m =
n∑
i=1

〈m∗i ,m〉mi ∈ Trk(M)M,

so M = Trk(M)M , and it follows from Proposition 4.5.7 that

Trk(M) + Annk(M) = k.

We are left to show that this sum is direct. For all x ∈ Annk(M), m ∈M and m∗ ∈M∗, we have

〈m∗,m〉x = 〈m∗,mx〉 = 0,

so Trk(M)Annk(M) = 0. There exist t ∈ Trk(M) and a ∈ Annk(M) such that t + m = 1. If
x ∈ Trk(M) ∩ Annk(M), then

x = xt+ xu = 0.

�

The Eilenberg-Watts Theorem

We have seen that a strict Morita context connecting two rings A and B gives rise to a pair of
inverse equivalences between the categories of modules over A and B. We will now prove the
converse result: every pair of inverse equivalences between module categories comes from a strict
Morita context. First we need a few classical results from category theory.
We first recall one of the characterizing properties of pairs of adjoint functors. Let F : A → B
and G : B → A be two functors. Then (F,G) is an adjoint pair of functors if and only if for every
A ∈ A, B ∈ B, we have an isomorphism

θA,B : HomB(F (A), B)→ HomA(A,G(B))

that is natural in A and B. The naturality means the following: for all f : A′ → A in A and
g : B → B′ in B, we have

θA′,B′(g ◦ ϕ ◦ F (f)) = G(g) ◦ θA,B(ϕ) ◦ f. (4.14)

We also recall the definition of the coproduct. Let (Ai)i∈I be a family of objects in the category. A
coproduct

∐
i∈I Ai is an object A =

∐
i∈I Ai ∈ A together with morphisms pi : Ai → A such that

the following universal property holds: given A′ ∈ A and a collection of morphisms qi : Ai → A′,
there exists a unique l : A→ A′ such that the diagram

Ai
pi //

qi   A
AA

AA
AA

A A

∃!l
��
A′

(4.15)

commutes.
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Proposition 4.5.10 Let (F,G) be an adjoint pair of functors between the categories A and B. If
(Ai)i∈I is a family of objects in A such that the coproduct

∐
i∈I Ai exists in A, then the coproduct∐

i∈I F (Ai) exists in B, and ∐
i∈I

F (Ai) = F (
∐
i∈I

Ai).

Proof. Let A =
∐

i∈I Ai. We will show that the family of morphisms F (pi) : F (Ai) → F (A)
in B satisfies the necessary universal property. Take B ∈ B, and assume that we have a family of
morphisms qi : F (Ai)→ B in B. Let ri = θAi,B(qi) : Ai → G(B). By the universal property of
the coproduct

∐
i∈I Ai, there exists a unique l : A→ G(B) making the diagram

Ai
pi //

ri ""E
EE

EE
EE

E A

∃!l
��

G(B)

Then
qi = θ−1

Ai,B
(ri) = θ−1

Ai,B
(l ◦ pi)

(4.14)
= θ−1

A,B(l) ◦ F (pi),

so the diagram

F (Ai)
F (pi) //

qi
$$IIIIIIIIII
F (A)

θ−1
A,B(l)

��
B

commutes. We are done if we can prove the uniqueness of the map making the diagram commuta-
tive. Assume that k : F (A)→ B is such that k ◦ F (Pi) = qi, for all i ∈ I . Then

ri = θAi,B(qi)
(4.14)
= θA,B(k) ◦ pi,

and, by the uniqueness in (4.15), l = θA,B(k), and k = θ−1
A,B(l). �

Proposition 4.5.11 Let (F,G) and (F ′, G′) be two adjoint pairs of functors between the categories
A and B, and let (Ai)i∈I be a family of objects in A such that the coproduct A =

∐
i∈I Ai exists

in A. If γ : F → F ′ is a natural transformation such that γAi is an isomorphism for each i, then
γA : F (A)→ F (A′) is also an isomorphism.

Proof. For all i ∈ I , we consider the commutative diagram

F (Ai)
γAi //

F (pi)
��

F ′(Ai)

F ′(pi)
��

F (A)
γA // F ′(A)

Since F ′(A) =
∐

i∈I F
′(Ai), there exists a morphism ψ : F ′(A)→ F (A) in B such that

ψ ◦ F ′(pi) = F (pi) ◦ γ−1
Ai
.
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Then
F (pi) = ψ ◦ F ′(pi) ◦ γAi = ψ ◦ γA ◦ F (pi).

From the uniqueness in the universal property of the coproduct F (A) =
∐

i∈I F (Ai), it follows
that ψ ◦ γA = F (A).
We also have

γA ◦ ψ ◦ F ′(pi) = γA ◦ F (pi) ◦ γ−1
Ai

= F ′(pi) ◦ γAi ◦ γ−1
Ai

= F ′(pi).

From the uniqueness in the universal property of the coproduct F ′(A) =
∐

i∈I F
′(Ai), it follows

that γA ◦ ψ = F ′(A). �

We have seen in Proposition 4.5.10 that left adjoints preserve coproducts. Similar arguments show
that they also preserve cokernels.

Proposition 4.5.12 Let (F,G) be an adjoint pair of functors between the categories A and B.
Let f : A1 → A2 be a morphism in A with cokernel u : A2 → f . Then Coker (F (f)) =
F (Coker (f)) = F (u) : F (A2)→ F (E).

Proof. It is clear that F (u) ◦ F (f) = F (u ◦ f) = 0, so it suffices to show that the universal
property of cokernels holds. Let g : F (A2)→ B be a morphism in B such that g ◦ F (f) = 0. Let
h = θA2,B(g). Then

h ◦ f = θA2,B(g) ◦ f (4.15)
= θA1,B(g ◦ F (f)) = 0,

so there exists a unique morphism h′ : E → G(B) in A making the diagram

A1
f // A2

u //

h ''OOOOOOOOOOOOO E

∃!h′
��

G(B)

commutative. Then
g = θ−1

A2,B
(h)

(4.15)
= θ−1

E,B(h′) ◦ F (u),

hence the diagram

F (A1)
F (f) // F (A2)

F (u) //

g

((QQQQQQQQQQQQQQ
F (E)

θ−1
E,B(h′)

��
B

commutes. We still have to prove the unicity. Suppose that v′ : F (E)→ B is such that v′◦F (u) =
g. Then

h = θA2,B(g)
(4.15)
= θE,B(v′) ◦ u,

and it follows from the unicity of h′ that h′ = θE,B(v′) and v′ = θ−1
E,B(h′). �

Proposition 4.5.13 Let (F,G) and (F ′, G′) be two adjoint pairs of functors between the categories
A and B, and γ : F → F ′ a natural transformation such that γAi is an isomorphism (i = 1, 2).
Let f : A1 → A2 be a morphism in A with cokernel u : A2 → f . Then γE : F (E) → F (E ′) is
also an isomorphism.
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Proof. Consider the commutative diagram

F (A1)
F (f) //

γA1

��

F (A2)
F (f ′) //

γA2

��

F (E)

γE
��

F ′(A1)
F ′(f) // F ′(A2)

F ′(u) // F ′(E)

Then
F (u) ◦ γ−1

A2
◦ F (f ′) = F (u) ◦ F (f) ◦ γA1 = 0,

hence there exists ψ : F ′(E)→ F (E) such that

F (u) ◦ γ−1
A2

= ψ ◦ F (u′),

hence
F (u) = ψ ◦ F (u′) ◦ γ)A2 = ψ ◦ γE ◦ F (u),

and it follows from the uniqueness in the universal property of the cokernel that

ψ ◦ γE = F (E).

We also have

γE ◦ ψ ◦ F (u′) = γE ◦ F (u) ◦ γ−1
A2

= F (u′) ◦ γA2 ◦ γ−1
A2

= F (u′),

and it follows, again using the uniqueness in the universal property of the cokernel, that

γE ◦ ψ = F ′(E).

�

Theorem 4.5.14 (Eilenberg-Watts) Suppose that A and B are rings, and that F : MA →MB

is a functor with a right adjoint G. Then F (A) = M ∈ AMB and there is a natural isomorphism
between the functors F and −⊗AM .

Proof. F (A) = M ∈MB. We have an isomorphism

l : A→ HomA(A,A), l(a)(b) = ab.

It is clear that l(a) ◦ l(a′) = l(aa′). Now since F is a functor, we also have a map

F : HomA(A,A)→ HomB(F (A), F (A)) = EndB(M).

We define am = F (l(a))(m), for all a ∈ A, m ∈M . This makes M an (A,B)-bimodule since

a(mb) = F (l(a))(mb) = (F (l(a))(m))b = (am)b;

(aa′)m = F (l(aa′))(m) = F (l(a) ◦ l(a′))(m) = (F (l(a)) ◦ F (l(a′)))(m) = a(a′m).

80



Now take X ∈MA. We have an isomorphism

ξ : X → HomA(A,X), ξ(x)(a) = xa,

and ξ(axa′) = l(a) ◦ ξ(x) ◦ l(a′). We also have

F : HomA(A,X)→ HomB(M,F (X)).

We define
βX : X → HomB(M,F (X)), βX(x) = F (ξ(x)).

βX is right A-linear:

βX(xa) = F (ξ(xa)) = F (ξ(x) ◦ l(a)) = F (ξ(x)) ◦ F (l(a)) = βX(x) ◦ F (l(a)),

hence
βX(xa)(m) = βX(x)(am)

and
βX(xa) = β(x)a.

Now we claim that β is an natural transformation from the identity functor onMA to the functor
HomB(M,F (−)). Let f : X → X ′ in MA. It is easy to see that, for all x ∈ X , we have
f ◦ ξ(x) = ξ(f(x)). Now we show that the diagram

X
f //

βX
��

X ′

βX′
��

HomB(M,F (X))
F (f)◦− // HomB(M,F (X ′))

commutes: for all x ∈ X , we have

F (f) ◦ βX(x) = F (f) ◦ F (ξ(x)) = F (f ◦ ξ(x)) = F (ξ(f(x))) = βX′(f(x)).

Now HomB(M,−) : MB →MA is a right adjoint of −⊗AM , so we have a isomorphism

HomA(X,HomB(M,F (X))) ∼= HomB(X ⊗AM,F (X))

that is natural in X . The image of βX is a map

γX : X ⊗AM → F (X)

inMB, and γ is natural in X . γX is given by the formula

γX(x⊗A m) = βX(x)(m) = F (ξ(x))(m).

So we have a natural transformation

γ : −⊗AM → F.
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We find that
γA(a⊗A m) = F (l(a))(m) = am,

so γA : A⊗AM →M is the natural isomorphism. It follows from Proposition 4.5.11 that γA(I) is
an isomorphism, for every index set I . Now for X ∈MA arbitrary, we can find a exact sequence

A(J) → A(I) → X → 0.

It then follows from Proposition 4.5.13 that γX is an isomorphism, hence γ : − ⊗A M → F is a
natural isomorphism. �

Theorem 4.5.15 Suppose thatA andB are rings, and that (F,G) is a pair of inverse equivalences
betweenMA andMB. Then (F,G) is induced by a strict Morita context connecting A and B.

Proof. It follows from Theorem 4.5.14 that F = − ⊗A M , and G = ⊗BN , with M = F (A),
N = G(B). Consider the unit η and counit ε of the adjunction (F,G):

ηX : X → X ⊗AM ⊗B N, εY : Y ⊗B N ⊗AM → Y.

For x ∈ X , consider the A-linear map ξ(x) as in the proof of Theorem 4.5.14. From the naturality
of η, we have a commutative diagram

A
ηA //

ξ(x)

��

A⊗AM ⊗B N
ξ(x)⊗AM⊗BN
��

X
ηX // X ⊗AM ⊗B N

Taking X = A, and x = a in this diagram, we see that ηA is left A-linear. It follows that ηX(x) =
x ⊗A ηA(1), hence ηX = X ⊗A ηA. In a similar way, we prove that εB is right B-linear, and
εY = Y ⊗B εB. Because (F,G) is an adjoint pair, we have two commutative diagrams, for every
X ∈MA and Y ∈MB:

F (X)
F (ηX) //

=
((QQQQQQQQQQQQQQ FGF (X)

εF (X)

��
F (X)

G(Y )
ηG(Y ) //

=
((QQQQQQQQQQQQQQ GFG(Y )

G(εY )
��

G(Y )

Take X = A and Y = B:

M
ηA⊗AM //

=

))SSSSSSSSSSSSSSSSSSS M ⊗B N ⊗AM
M⊗BεB
��
M

N
N⊗AηA //

=

))SSSSSSSSSSSSSSSSSSS N ⊗AM ⊗B N
εB⊗BN
��
N

It follows that (A,B,M,N, η−1
A , εB) is a strict Morita context. �
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4.6 Galois corings and Morita theory
Let (C, x) be an A-coring with a fixed grouplike element. We let B = AcoC . We consider the left
dual ∗C = AHom(C, A). Recall (4.5-4.6) that ∗C is an A-ring. As before, D = A ⊗B A is the
Sweedler canonical coring. Now consider the left dual of the canonical map

can : D → C, can(a⊗B a′) = axa′.

∗can : ∗C → ∗D = AHom(A⊗B A,A), ∗can(f)(a⊗B a′) = (f ◦ can)(a⊗B a′) = f(axa′).

Let us give an easy description of ∗D.

Lemma 4.6.1 We have an isomorphism of A-rings

λ : ∗D → BEnd(A)op, λ(φ)(a) = φ(1⊗B a).

Proof. It is straightforward to see that λ is an isomorphism of abelian groups: the inverse of λ is
defined by

λ−1(ϕ)(a⊗B a′) = aϕ(a′).

Let us next show that λ transforms multiplication into opposite composition. For φ,Ψ ∈ ∗D, we
have

(φ#Ψ)(a⊗B a′) = Ψ(a⊗B φ(1⊗B a′)),

hence

λ(φ#Ψ)(a) = (φ#Ψ)(1⊗B a) = Ψ(1⊗B φ(1⊗B a)) = (λ(Ψ) ◦ λ(φ))(a),

and λ(φ#Ψ) = λ(Ψ) ◦ λ(φ).
Finally, we show that λ is an isomorphism of A-rings.

r : A→ BEnd(A)op, r(a)(a′) = a′a

is a ring morphism, making BEnd(A)op into an A-ring. Also recall that

i : A→ ∗D, i(a)(a′ ⊗B a′′) = εD(a′ ⊗B a′′)a = a′a′′a

is a ring morphism. Now

λ(i(a))(a′′) = i(a)(1⊗B a′) = a′a = r(a)(a′),

so λ ◦ i = r, as needed. �

The composition λ ◦ ∗can will also be denoted by ∗can. So we obtain a morphism of A-rings

∗can : ∗C → BEnd(A)op, ∗can(f)(a) = f(xa).

The following result is now obvious.
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Proposition 4.6.2 If (C, x) is a Galois coring, then ∗can is an isomorphism. Conversely, if C,D ∈
AM are finitely generated projective, and ∗can is an isomorphism, then can is an isomorphism,
and (C, x) is a Galois coring.
If A ∈ BM is finitely generated projective, then D = A ⊗B A ∈ AM is finitely generated
projective.

Our next aim will be to associate a Morita context to a coring with a fixed grouplike element. This
Morita context will connect B and ∗C.

Lemma 4.6.3 The abelian group

Q = {q ∈ ∗C | c(1)q(c(2)) = q(c)x, ∀ c ∈ C}

is a (∗C, B)-bimodule.

Proof. For all f ∈ ∗C, q ∈ Q and c ∈ C, we have

c(1)(f#q)(c(2)) = c(1)q(c(2)f(c(3)))

= (c(1)f(c(2)))(1)q((c(1)f(c(2)))(2))

= q(c(1)f(c(2)))x = (f#q)(c)x,

so f#q ∈ Q, and Q is a left ideal in ∗C. For b ∈ B, we have

c(1)(q#i(b))(c(2)) = c(1)q(c(2))b = q(c)xb = q(c)bx = (q#i(b))(c)x,

so q#i(b) ∈ Q, and Q is a right B-module. The fact that Q is a bimodule follows immediately
from the associativity of #. �

Lemma 4.6.4 A is a (B, ∗C)-bimodule.

Proof. A ∈MC via ρ(a) = 1⊗A xa. Hence A ∈M∗C via

a · f = f(xa).

Clearly is a left B-module, via left multiplication. Finally

b(a · f) = bf(xa) = f(bxa) = f(xba) = (ba) · f.

�

Lemma 4.6.5 The map

τ : A⊗∗C Q→ B, τ(a⊗∗C q) = a · q = q(xa)

is a well-defined morphism of (B,B)-bimodules.
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Proof. τ is well-defined: for all a ∈ A, q ∈ Q and f ∈ ∗C, we have

τ(a · f ⊗ q) = τ(f(xa)⊗ q) = q(xf(xa)) = (f#q)(a) = τ(a⊗ (f#q)).

τ is left and right B-linear: for all a ∈ A, q ∈ Q and b ∈ B, we have

τ(ba⊗∗C q) = q(xba) = q(bxa) = bq(xa) = bτ(a⊗∗C q);

τ(a⊗∗C q#i(b)) = (q#i(b))(xa) = q(xa)b = τ(a⊗∗C q)b.

�

Lemma 4.6.6 The map

µ : Q⊗B A→ ∗C, µ(q ⊗B a) = q#i(a)

is a well-defined morphism of (A,A)-bimodules.

Proof. µ is well-defined: for all q ∈ Q, a ∈ A and b ∈ B, we have

µ((q#i(b))⊗ a) = q#i(b)#i(a) = q#i(ba) = µ(q ⊗ ba).

µ is left ∗C-linear: for all q ∈ Q, a ∈ A and f ∈ ∗C, we have

µ((f#q)⊗ a) = f#q#i(a) = f#µ(q ⊗B a).

Finally we show that µ is right ∗C-linear. We have to show that

µ(q ⊗B (a · f)) = µ(q ⊗B f(xa)) = q#i(f(xa))

is equal to
µ(q ⊗B a)#f = q#i(a)#f.

or
q#i(a)#f = q#i(f(xa)). (4.16)

Indeed, for all c ∈ C, we have

(q#i(a)#f)(c) = f(c(1)(q#i(a))(c(2))) = f(c(1)q(c(2))a)

= f(q(c)xa) = q(c)f(xa) = (q#i(f(xa)))(c).

�

Proposition 4.6.7 With notation as above, (B, ∗C, A,Q, τ, µ) is a Morita context.

Proof. Let us first show that

µ(q ⊗B a)#q′ = q#i(τ(a⊗∗C q′.

We easily compute that
µ(q ⊗B a)#q′ = q#i(a)#q′
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and
q#i(τ(a⊗∗C q′. = q#i(a · q′) = q#i(q′(xa)),

and we have already computed that these are equal, see (4.16). Finally we compute that

a · µ(q ⊗N a′) = a · (q#i(a′)) = (q#i(a′))(xa)

= q(xa)a′ = τ(a⊗∗C q)a′.

�

Proposition 4.6.8 Let (C, x) be an A-coring with a fixed grouplike element, and consider the
Morita context (B, ∗C, A,Q, τ, µ) from Proposition 4.6.7. Then the following assertions are equiv-
alent.

1. τ is surjective;

2. ∃Λ ∈ Q: Λ(x) = 1;

3. the map
ωM : M ⊗∗C Q→M

∗C, ωM(m⊗ q) = m · q

is bijective, for every M ∈M∗C .

Proof. 1) =⇒ 2). Since τ is surjective, there exist aj ∈ A, qj ∈ Q such that

1 = τ(
∑
j

aj ⊗ qj) =
∑
j

qj(xaj) = (
∑
j

i(aj)#qj)(x).

Now let Λ =
∑

j i(aj)#qj ∈ Q.

2) =⇒ 3). M ∗C is defined as follows:

M
∗C = {m ∈M |m · f = mf(x), for all f ∈ ∗C}.

The map
θM : M

∗C →M ⊗∗C Q, θM(m) = m⊗∗C Λ

is the inverse of ωM . Indeed, for all m ∈M ∗C , we have

ωM ◦ θM)(m) = m · Λ = mΛ(x) = m.

For all m ∈M and q ∈ Q, we have

(ηM ◦ ωM)(m⊗∗C q) = θM(m · q) = m · q ⊗∗C Λ = m⊗∗C q#Λ = m⊗∗C q,

where we used the fact that q#Λ = q. Indeed, for all c ∈ C:

(q#Λ)(c) = Λ(c(1)q(c(2))) = Λ(q(c)x) = q(c)Λ(x) = q(c).

3) =⇒ 1). It suffices to observe that τ = ωA. �
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Proposition 4.6.9 For all M ∈ MC , we have that M coC ⊂ M
∗C . If τ is surjective, then M

∗C =
M coC .

Proof. Take m ∈M coC . Then ρ(m) = m⊗A x, hence m · f = mf(x), for all f ∈ ∗C.
Conversely, assume that τ is surjective. Then there exists Λ ∈ Q such that Λ(x) = 1. Take
m ∈M ∗C . Then

m = mΛ(x) = m · Λ = m[0]Λ(m[1]),

hence

ρ(m) = ρ(m[0]Λ(m[1]))

= m[0] ⊗A m[1]Λ(m[2])

= m[0] ⊗A Λ(m[1])x (since Λ ∈ Q)

= m[0]Λ(m[1])⊗A x = m⊗A x

hence m ∈M coC . �

Proposition 4.6.10 We have that

Q ⊂ Q′ = {q ∈ ∗C | q#f = q#i(f(x)), for all f ∈ ∗C}.

If C ∈ AM is finitely generated projective, then Q = Q′.

Proof. Take q ∈ Q. Then c(1)q(c(2)) = q(c)x, for all c ∈ C, hence

(q#f)(c) = f(c(1)q(c(2))) = f(q(c)x) = q(c)f(x) = (q#i(f(x)))(c),

and it follows that q ∈ Q′.
Conversely, assume that C ∈ AM, and take a dual basis {(cj, fj) | j = 1, · · · , n} of C. If q ∈ Q′,
then

c(1)q(c(2)) =
∑
j

fj(c(1)q(c(2)))cj

=
∑
j

(q#fj)(c)cj

=
∑
j

(q#i(fj(x)))(c)cj

=
∑
j

fj(q(c)x)cj = q(c)x.

�

We have a pair of adjoint functors (F = −⊗B A,G = (−)coC) betweenMB andMC (see the end
of Section 4.2).
We also have a pair of functors (F̃ = − ⊗B A, G̃ = −⊗∗C) betweenMB andM∗C . (F̃ , G̃) is an
adjoint pair if τ is surjective (see Theorem 4.5.26)).
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If C ∈ AM is finitely generated projective, then the categoriesMC andM∗C are isomorphic. If,
moreover, τ is surjective, then G(M) = G̃(M), for all M ∈MC ∼=M∗C .

MB

F //

=

��

MC
G

oo

∼=
��

MB

F̃ //M∗C
G̃

oo

(4.17)

This proves the following.

Proposition 4.6.11 If C ∈ AM is finitely generated projective and τ is surjective, then (F̃ , G̃) is
a pair of inverse equivalences (i.e. the Morita context associated to (C, x) is strict) if and only if
(F,G) is a pair of inverse equivalences.

We now consider the Sweedler canonical coring D = A ⊗B A. We assume that A ∈ BM is
faithfully flat, and compute the Morita context associated to (D, 1⊗B 1).

It follows from Proposition 4.3.2 that ηB : B → AcoD = {b ∈ A | b⊗B 1 = 1⊗B b} is bijective.

Recall from Lemma 4.6.1 that we have an isomorphism of A-rings

λ : ∗D = AHom(A⊗B A,A)→ S = BEnd(A)op, λ(φ)(a) = φ(1⊗B a).

We will write λ(φ) = ϕ.

We first show that
λ(Q) = Q̃ = BHom(A,B).

Indeed, take q ∈ Q, and let q̃ = λ(q). Then for all a, a′ ∈ A, we have

a′ ⊗B q(1⊗B a) = (a′ ⊗B 1)q(1⊗B a) = q(a′ ⊗B a)(1⊗B 1) = q(a′ ⊗B a)⊗B 1.

Take a = 1. Then we find
1⊗B q̃(a) = q̃(a)⊗B 1,

hence q̃(a) ∈ B, and q̃ : A→ B.

A is a (B, ∗D)-bimodule (Lemma 4.6.4), hence A is also a (B, S)-bimodule, with right S-action

a · ϕ = a · φ = φ(1⊗B a) = ϕ(a).

Q is a (∗D, B)-bimodule (Lemma 4.6.3), hence Q̃ = BHom(B,A) is an (S = BEnd(A)op, B)-
bimodule. We compute the left S-action and the right B-action:

ϕ · q̃ = λ(φ#q) = q̃ ◦ ϕ

q̃ · b = λ(q#i(b))
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Now
(q#i(b))(a′ ⊗B a)

(4.6)
= q(a′ ⊗B a)b,

hence
(q̃ · b)(a) = q(a)b.

We have a (B,B)-bimodule map

τ̃ = τ ◦ (A⊗ λ−1) : A⊗S Q̃→ A⊗∗D Q→ B.

We compute that
τ̃(a⊗ q̃) = τ(a⊗ q) = q(1⊗ a) = q̃(a).

We have an (S, S)-bimodule map

µ̃ = λ ◦ µ ◦ (λ−1 ⊗ A) : Q̃⊗B A→ Q⊗B A→ ∗D → S.

We compute that

µ̃(q̃ ⊗B a)(a′) = λ(µ(q ⊗ a))(a′) = µ(q ⊗ a)(1⊗ a′)
= (q#i(a))(1⊗ a′)(4.6)

= q(1⊗ a′)a = q̃a′

We then obtain a Morita context (B, BEnd(A)op, A, BHom(A,B), τ̃ , µ̃), that is isomorphic to the
Morita context (B, ∗D, A,Q, τ, µ) associated to (D, 1 ⊗B 1). This Morita context is precisely the
Morita context associated to the left B-module A. From Proposition 4.5.3, it follows that this
Morita context is strict if and only if A is a left B-progenerator.

Proposition 4.6.12 Let i : B → A be a ring morphism, and assume that A ∈ BM is faithfully
flat. Then the Morita context associated to the coring (A⊗BA, 1⊗B 1) is isomorphic to the Morita
context associated to A considered as a left B-module. This Morita context is strict if and only if
A is a left B-progenerator.

Proposition 4.6.13 Let i : B → A be a ring morphism. If A ∈ BM is faithfully flat, and
D = A⊗B A ∈ AM is a progenerator, then A ∈ BM is a progenerator.

Proof. Consider the diagram

MB
K //

=

��

MD

��
MB

K̃ //M∗D ∼=MBEnd(A)op

The functor MD → M∗D is an isomorphism of categories, since D is a left A-progenerator.
K = − ⊗B A is an equivalence of categories (by Proposition 4.3.2 and because A ∈ BM is
faithfully flat. Then K̃ = − ⊗B A is also an equivalence of categories, and then A ∈ BM is a
progenerator. �

Theorem 4.6.14 Let (C, x) be an A-coring with a fixed grouplike element. We assume that C is a
left A-progenerator. Let B = AcoC and i : B′ → B a ring morphism. Let D′ = A ⊗B′ A, and
can′ : D′ → C, can′(a⊗B′ a′) = axa′. Then the following assertions are equivalent.
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1. • can′ is an isomorphism (of A-corings);

• A is faithfully flat as a left B′-module;

2. • ∗can′ is an isomorphism (of A-rings);

• A is a left B′-progenerator;

3. • i : B → B′ is an isomorphism (hence we can take B = B′);

• the Morita context associated to (C, x) is strict;

4. • i : B → B′ is an isomorphism;

• the adjunction (F,G) betweenMB andMC is a pair of inverse equivalences.

Proof. 1) =⇒ 2). If can′ is an isomorphism, then its dual map ∗can′ is also an isomorphism.
Since can′ D′ → C is an isomorphism of corings, and hence of left A-modules, D′ is a left A-
progenerator, and it follows from Proposition 4.6.13 that A is a left B′-progenerator.

1) =⇒ 3). We have that
B = AcoC = AcoD′ = B′.

The second equality follows from the fact that C and D′ are isomorphic A-corings, and the third
equality from the fact that A ∈ B′M is faithfully flat.
Since A is a left B-progenerator, the Morita context associated to (D, 1⊗B 1) is strict (see Propo-
sition 4.6.12). Since C and D are isomorphic corings, the Morita contexts associated to (C, x) and
(D, 1⊗B 1) are isomorphic, hence The Morita context associated to (C, x) is strict.

3) =⇒ 4). The Morita context (B, ∗C, A,Q, τ, µ) associated to (C, x) is strict, and it follows from
Theorem 4.5.2 that A is a left B-progenerator, and then from Corollary 4.5.6 that A is faithfully
flat as a left B-module.
It follows from Proposition 4.6.11 that (F,G) is a pair of inverse equivalences.

4) =⇒ 1). It follows from Proposition 4.4.1 that can = can′ is an isomorphism. Since C ∈ AM is
finitely generated projective,MC ∼=M∗C . Since −⊗B A : BM→MC is an equivalence, A is a
leftB-progenerator, and it follows from Corollary 4.5.6 thatA is faithfully flat as a leftB′-module.
�

4.7 Hopf-Galois extensions
Let H be a Hopf algebra with a bijective antipode, and A a right H-comodule algebra. Recall (see
Example 4.2.4) that C = A⊗H is anH-coring. x = 1A⊗1H is a grouplike element ofA⊗H . This
makes A into a right A⊗H-comodule, and the A⊗H-coaction coincides with the right H-action
in the following sense: ρ : A → A →A A⊗H ∼= A⊗H , ρ(a) = a[0] ⊗A (1⊗ a[1]

∼= a[0] ⊗ a[1].
Then

AcoA⊗H = {a ∈ A | ρ(a) = a⊗ 1H}.
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Definition 4.7.1 A is called a Hopf-Galois extension of B if (A⊗H, 1A⊗ 1H) is a Galois coring,
or, equivalently,

can : A⊗B A→ A⊗H, can(a⊗B a′) = a(1A ⊗ 1H)a′ = aa′[0] ⊗ a′[1]

is an isomorphism of corings.

Proposition 4.4.5 then specifies to the following result.

Proposition 4.7.2 Let A be right H-comodule algebra, and B = AcoH . Assume that A is flat as a
left B-module. Then the following statements are equivalent.

1. A is a Hopf-Galois extension of B and A is faithfully flat as a left B-module;

2. (F = −⊗B A,G = (−)coH is a pair of inverse equivalences betweenMB and the category
of relative Hopf modulesMH

A .

LetA be a rightH-module algebra. The smash productH#A is defined as follows: as a k-module,
it is equal to H ⊗ A, with multiplication given by the formula

(h#a)(k#b) = hk(1)#(a · k(2))b.

A straightforward computation shows that this is an associative multiplication. 1H#1A is a unit
for this multiplication, so H#A is a k-algebra. The maps

A→ H#A, a 7→ 1H#a ; H → H#A, h 7→ h#1A

are algebra morphisms.

Now we assume that H is a k-progenerator, and let A be a right H-comodule algebra. Then A⊗H
is a left A-progenerator. Let {(hi, h∗i ) | i = 1, · · · , n} be a finite dual basis for H . A is a right
H-comodule algebra, hence it is a left H∗-module algebra, and a right (H∗)op-module algebra,
and we can consider the smash product (H∗)op#A. We have isomorphisms of k-modules

H∗ ⊗ A→ Hom(H,A)→ AHom(A⊗H,A).

The composition of these two compositions will be called α. Then we have

α(h∗ ⊗ a)(a′ ⊗ b) = 〈h∗, h〉a′a.

Proposition 4.7.3 α : (H∗)op#A→ AHom(A⊗H,A) is an isomorphism of A-rings.

Proof. Take h∗, k∗ ∈ H∗, a, b ∈ A. Let ϕ = α(h∗#a), ψ = ϕ(k∗#b). Then

(h∗#a)(k∗#b) = k∗(1) ∗ h∗#(a · k∗(2)))b = k∗(1) ∗ h∗#〈k∗(2), a[1]〉a[0]b,

hence

α((h∗#a)(k∗#b))(a′ ⊗ h) = 〈k∗(1) ∗ h∗, h〉〈k∗(2), a[1]〉a′a[0]b

= 〈k∗(1), h(1)〉〈h∗, h(2)〉〈k∗(2), a[1]〉a′a[0]b

= 〈k∗, h(1)a[1]〉〈h∗, h(2)〉a′a[0]b.
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(ϕ#ψ)(a′ ⊗ h) = ψ((a′ ⊗ h(1))ϕ(1⊗ h(2)))

= ψ((a′ ⊗ h(1))〈h∗, h(2)〉a)

= ψ(〈h∗, h(2)〉a′a[0] ⊗ h(1)a[1])

= 〈h∗, h(2)〉〈k∗, h(1)a[1]〉a′a[0]b,

and it follows that α preserves the multiplication. Now let us also show that α respects the algebra
morphisms

i : A→ AHom(A⊗H,A), i(a)(a′oth) = εC(a
′ ⊗ h)a = ε(h)a′a;

i′ : A→ (H∗)op#A, i′(a) = ε#a.

indeed,
α′(i(a))(a′ ⊗ h) = α(ε#a)(a′#h) = ε(h)a′a = i(a)(a′ ⊗ h).

so α ◦ i′ = i, as needed. �

Recall that the dual of the map can : A⊗B A→ C = A⊗H is

∗can : ∗C = AHom(A⊗H,A)→ AHom(A⊗B A,A) = BEnd(A)op,

given by
∗can(f)(a′) = f(xa′) = f(a′[0] ⊗ a′[1]).

Let us compute
∗c̃an = ∗can ◦ α : (H∗)op#A→ BEnd(A)op.

∗c̃an(h∗#a)(a′) = α(h∗#a)(a′[0] ⊗ a′[1]) = 〈h∗, a′[1]〉a′[0]a = (a′ · h∗)a.

Recall from Proposition 4.6.10 that

Q = Q′ = {q ∈ ∗C | q#f = q#i(f(x)), for all f ∈ ∗C}.

We compute Q̂ = α−1(Q) ⊂ (H∗)op#A.

y =
∑
i

h∗i#ai ∈ Q̂ ⇐⇒ q = α(y) ∈ Q′ = Q

⇐⇒ q#f = q#i(f(x)), ∀f ∈ ∗C
⇐⇒ y(h∗#a) = yi′(〈h∗, 1〉a), ∀h∗ ∈ H∗, a ∈ A
⇐⇒ (

∑
i

h∗i#ai)(h
∗#a) = (

∑
i

h∗i#ai)(ε#〈h∗, 1〉a)

⇐⇒
∑
i

h∗(1) ∗ h∗i#〈h∗(2), ai[1]〉ai[0]a =
∑
i

h∗i#〈h∗, 1〉aia, ∀h∗ ∈ H∗, a ∈ A

⇐⇒
∑
i

h∗(1) ∗ h∗i#〈h∗(2), ai[1]〉ai[0] =
∑
i

h∗i#〈h∗, 1〉ai, ∀h∗ ∈ H∗

⇐⇒ y(h∗#1) = 〈h∗, 1〉y, ∀h∗ ∈ H∗.
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We conclude that

Q̂ = {y ∈ (H∗)op#A | y(h∗#1) = 〈h∗, 1〉y, ∀h∗ ∈ H∗}.

Consider the maps

τ̂ = τ ◦ (A⊗ α) : A#(H∗)op#AQ̂→ A⊗∗C Q→ B, τ(a⊗ y) = ∗c̃an(y)(a);

µ̂ = µ ◦ (α⊗ A) : Q̂⊗B A→ Q⊗B A→ B, µ(y ⊗ a) = y(ε#a).

Then (B, (H∗)op#A,A, Q̂, τ̂ , µ̂) is a Morita context.

Applying Theorem 4.6.14, we now obtain the following result.

Theorem 4.7.4 LetH be a Hopf algebra, and assume thatH is a progenerator as a k-module. Let
A be a right H-comodule algebra, B = AcoH , i : B′ → B a ring morphism. Then the following
assertions are equivalent.

1. • can′ : A⊗B′ A→ A⊗H, can′(a′ ⊗B a) = a′a[0] ⊗ a[1] is bijective;

• A is faithfully flat as a left B′-module.

2. • ∗c̃an′ : (H∗)op#A→ B′End(A)op, ∗c̃an′(h∗#a)(b) = (h∗⇀b)a is an isomorphism;

• A is a left B′-progenerator.

3. • B = B′;

• the Morita context (B, (H∗)op#A,A, Q̂, τ̂ , µ̂) is strict.

4. • B = B′;

• the adjoint pair of functors (F = • ⊗ A,G = (•)coH) is an equivalence between the
categoriesMB andMH

A .

In Theorem 4.7.4, we can take B′ = k. If the equivalent conditions of Theorem 4.7.4 are satisfied,
then AcoH = k; then we say that A is an H-Galois object.

4.8 Strongly graded rings
As in Example 4.2.3, let G be a group, and A a G-graded ring, and C = ⊕σ∈GAuσ. Fix λ ∈ G,
and take the grouplike element uλ ∈ G(C). Then M coC = Mλ, for any right G-graded A-module,
and B = AcoC = Ae. Also

can : A⊗B A→ ⊕σ∈GAuσ, can(a′ ⊗ a) =
∑
σ∈G

a′aσuλσ.

Proposition 4.8.1 With notation as above, the following assertions are equivalent.

1. A is strongly G-graded, that is, AσAτ = Aστ , for all σ, τ ∈ G;
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2. the pair of adjoint functors (F = • ⊗B A,G = (•)λ) is an equivalence betweenMB and
MG

A, the category of G-graded right A-modules;

3. (C, uλ) is a Galois coring.

In this case A is faithfully flat as a left (or right) B-module.

Proof. 1)⇒ 2) is a well-known fact from graded ring theory. We sketch a proof for completeness
sake. The unit of the adjunction betweenMB andMG

A is given by

ηN : N → (N ⊗B A)λ, ηN(n) = n⊗B 1A.

ηN is always bijective, even if A is not strongly graded. Let us show that the counit maps ζM :
Mλ ⊗B A → M , ζM(m ⊗B a) = ma are surjective. For each σ ∈ G, we can find ai ∈ Aσ−1 and
a′i ∈ Aσ such that

∑
i aia

′
i = 1. Take m ∈ Mτ and put σ = λ−1τ . Then m = ζM(

∑
imai ⊗B a′i),

and ζM is surjective.
If mj ∈Mλ and cj ∈ A are such that

∑
jmjcj = 0, then for each σ ∈ G, we have∑

j

mj ⊗ cjσ =
∑
i,j

mj ⊗ cjσaia′i =
∑
i,j

mjcjσai ⊗ a′i = 0.

hence
∑

jmj ⊗ cj =
∑

σ∈G =
∑

jmj ⊗ cjσ = 0, so ζM is also injective.
2)⇒ 3) follows from Proposition 4.4.1.
3)⇒ 1). Take a ∈ Aστ Since can is a bijection, there exist a′i, ai ∈ A such that

auλτ = can(
∑
i

a′i ⊗ ai) =
∑
ρ∈G

∑
i

a′i(ai)τuλρ.

This implies that ∑
i

a′i(ai)τ = a.

Since the right hand side is homogeneous of degree στ , the left hand side is also homogeneous of
degree στ , and therefore equal to its homogeneous part of degree στ :

a =
∑
i

(a′i)σ(ai)τ ∈ AσAτ .

We prove the final statement as follows. We knwo from 2) that the counit map

ζA : Aλ ⊗B A→ A

is an isomorphism. For every σ ∈ G, it restricts to an isomorphismAλ⊗BAσ → Aλσ. We consider
the isomorphisms

f : Aλ ⊗B Aλ−1 → Ae = B and g : Aλ−1 ⊗B Aλ → Ae = B.

These are part of a strict Morita context (B,B,Aλ, Aλ−1 , f, g). It follows from Theorem 4.5.2 that
every Aλ is a progenerator as a (left and right) B-module, and hence, by Corollary 4.5.6, that Aλ
is faithfully flat as a (left and right) B-module. Then A =

⊕
λ∈GAλ is also faithfully flat. �

Notice that, in this situation, the fact that (C, uλ) is Galois is independent of the choice of λ.

94



4.9 Classical Galois theory
Let G be a finite group, and A a left G-module algebra. We consider the A-coring C =

⊕
σ∈GAvσ

from Example 4.2.2. Recall the formulas

vσa = σ(a)vσ ; ∆(vσ) =
∑
λ

vλ ⊗ vλ−1ρ.

We also have that x =
∑

σ∈G vσ ∈ G(C) is a grouplike element. Recall that the categoryMC is
isomorphic to the category of right A-modules on which G acts as a group of right A-semilinear
automorphisms. For m ∈MC , we have

m ∈M coC ⇐⇒ ρ(m)
∑
σ∈G

σ(m)⊗ vσ = m⊗
∑
σ

∈ Gvσ

⇐⇒ σ(m) = m, ∀σ ∈ G ⇐⇒ m ∈MG.

We conclude that M coC = MG, the submodule of G-invariants. In particular, we have that B =
AG. We will apply Theorem 4.6.14 in this situation, in the particular case where B′ = k. First we
compute the canonical map

can′ : A⊗ A→
⊕
σ∈G

Avσ.

can′(a⊗ a′) =
∑
σ∈G

avσa
′ =
∑
σ∈G

aσ(a′)vσ.

Our next aim is to compute ∗C.

Proposition 4.9.1 ∗C ∼=
⊕

σ∈G uσA is the free right A-module with basis {uσ | σ ∈ G} and
multiplication rule

(uσa)(uτa
′) = uτστ(a)b. (4.18)

Proof. For every τ ∈ G, we consider the projection

pτ :
⊕
σ∈G

Avσ → A, pτ (
∑
σ∈G

aσvσ = aτ .

It is clear that pτ ∈ ∗C = AHom(
⊕

σ∈GAvσ, A). Using (4.5), we find that

(pσ#pτ )(avρ) =
∑
λ

pτ (avλpσ(vλ−1ρ)) = pτ (avρσ−1) = δτσ,ρa = pτσ(avρ),

hence
pσ#pτ = pτσ. (4.19)

For a ∈ A, i(a) : C → A is given by

i(a)(
∑
σ∈G

aσvσ) = ε(
∑
σ∈G

aσvσ)a = aea.
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Using (4.6), we compute

(i(a)#pσ)(a′vρ) = pσ(a′vρa) = pσ(a′ρ(a)vρ) = a′σ(a)δρσ = pσ(a′vρ)σ(a) = (pσ#i(σ(a)))(a′vρ),

hence
i(a)#pσ = pσ#i(σ(a)). (4.20)

This shows that
α :

⊕
σ∈G

uσA→ ∗C, α(uσa) = pσ#i(a)

is an algebra homomorphism. For f ∈ ∗C, we have

f(avτ ) = af(vτ ) =
∑
σ∈G

pσ(avτ )f(vσ)
(4.6)
=
∑
σ∈G

(pσ#i(f(vσ)))(avτ ),

hence
f =

∑
σ∈G

(pσ#i(f(vσ))) = α(
∑
σ∈G

uσf(vσ)),

and it follows that f is surjective. f is also injective: suppose that

α(
∑
σ∈G

uσaσ) =
∑
σ∈G

pσ#i(aσ) = 0,

then
0 = (

∑
σ∈G

pσ#i(aσ))(vρ) =
∑
σ∈G

pσ(vσ)aρ,

for all ρ ∈ G, hence
∑

σ∈G uσaσ = 0. �

We can now easily compute the composition γ = ∗can′ ◦ α :
⊕

σ∈G uσA→ End(A)op:

γ(uσa)(a′) = (pσ#i(a))(
∑
τ∈G

vτa
′) = (pσ#i(a))(

∑
τ∈G

τ(a′)vτ ) = σ(a′)a.

Proposition 4.9.2 α−1(Q) = {
∑

σ∈G uσσ(a) | a ∈ A}.

Proof. Take q ∈ Q. We know from the proof of Proposition 4.9.1 that q =
∑

τ∈G pτ#i(aτ ), with
aτ = q(vτ ), and α−1(q) =

∑
τ∈G uτaτ . Fix σ ∈ G. Since q ∈ Q, we know that

q(vσ)x =
∑
ρ∈G

aσvρ

equals
(vσ)(1)q((vσ)(2)) =

∑
ρ,τ∈G

vρ(pτ (vρ−1σ)aτ =
∑
ρ

vρaρ−1σ =
∑
ρ

ρ(aρ−1σ)vρ.

This implies that aσ = ρ(aρ−1σ), for all ρ ∈ G. In particular, if we take ρ = σ, we obtain that
aσ = σ(ae). Then α−1(q) =

∑
τ∈G uττ(ae), as needed.
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Conversely, let q =
∑

σ∈G pσ#i(σ(a)) = α(
∑

σ∈G uσσ(a). Then we prove that q ∈ Q: for all
c =

∑
ρ∈G a

′
ρvρ ∈ C, we have

c(1)q(c(2)) =
∑

ρ,τ,σ∈G

a′ρvτpσ(vτ−1ρ)σ(a) =
∑
ρ,τ∈G

a′ρvτ (τ
−1ρ)(a) =

∑
ρ,τ∈G

a′ρρ(a)vτ ;

q(c)x = (
∑
σ,ρ∈G

a′ρpσ(vρ)σ(a))x = (
∑
ρ∈G

a′ρρ(x))(
∑
τ∈G

vτ ) =
∑
ρ,τ∈G

a′ρρ(a)vτ .

�

It follows from Propositions 4.9.1 and 4.9.2 that we have a k-linear isomorphism

λ : A→ Q, λ(a) =
∑
σ∈G

pσ#i(σ(a)).

The (∗C, B)-bimodule structure onQ can be transported into a (
⊕

σ∈G uσA,B)-bimodule structure
on A. The right B-action is given by multiplication. The left action by

⊕
σ∈G uσA is given by the

formula
(uτa) · a′ = τ−1(aa′).

Indeed,
(pτ#i(a))λ(a′) =

∑
σ

(pτ#i(a))(pσ#i(σ(a′))) =
∑
σ∈G

uστ#i(σ(aa′))

equals
λ(τ−1(aa′)) =

∑
ρ∈G

(ρτ−1)(aa′).

On the other hand, we know that A is also a (B, ∗C)-module. Hence it is also a (B,
⊕

σ∈G uσA)-
bimodule. The left B-action is given by multiplication. Let us compute the right action by⊕

σ∈G uσA:

a′ · (uσa) = (pσ#i(a))(xa′) =
∑
τ∈G

(pσ#i(a))(vτa
′) =

∑
τ∈G

pσ(τ(a′)vτ )a = σ(a′)a.

Now we compute the (B,B)-bimodule map

τ = τ ◦ (A⊗ λ) : A⊗L
σ∈G uσA

A→ A⊗∗C Q→ B.

τ(a′ ⊗ a) = τ
(
a′ ⊗

∑
σ∈G

pσ#i(σ(a))
)

=
∑
σ∈G

σ(a′)σ(a) = σ(a′a).

Finally, we have the (
⊕

σ∈G uσA,
⊕

σ∈G uσA)-bimodule map

µ = α−1 ◦ µ ◦ (λ⊗ A) : A⊗B A→ Q⊗B A→ ∗C →
⊕
σ∈G

uσA,

µ(a⊗ a′) =
∑
σ∈G

uσσ(a)a′.

We conclude that we have a Morita context (B = AG,
⊕

σ∈G uσA,A,A, τ , µ). From Theo-
rem 4.6.14 we obtain the following result.
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Theorem 4.9.3 Let G be a finite group, k a commutative ring and A a G-module algebra. Then
the following statements are equivalent:

1. • can′ : A⊗ A→
⊕

σ∈GAvσ, can′(a⊗ a′) =
∑

σ∈G aσ(a′)vσ, is an isomorphism;

• A is faithfully flat as a k-module.

2. • γ :
⊕

σ∈G uσA→ End(A)op, γ(uσa)(a′) = σ(a′)a is an isomorphism;

• A is a k-progenerator.

3. • AG = k;

• the Morita context (B = AG,
⊕

σ∈G uσA,A,A, τ , µ) is strict.

4. • AG = k;

• the adjoint pair of functors (F = • ⊗ A,G = (•)G) is a pair of inverse equivalences
between the categories of k-modules and right A-modules on which G acts as a group
of right A-semilinear automorphisms.

Theorem 4.9.4 Let G be a finite group, k a commutative ring and A a commutative faithful G-
module algebra. Then the statements of Theorem 4.9.3 are equivalent to

5. • AG = k;

• for each non-zero idempotent e ∈ A and σ 6= τ ∈ G, there exists a ∈ A such that
σ(a)e 6= τ(a)e;

• A is a separable k-algebra.

6. • AG = k;

• ve ∈ Im (can′); this means that there exist x1, · · · , xn, y1, · · · yn ∈ A such that

n∑
j=1

xjσ(yj) = δσ,e (4.21)

for all σ ∈ G.

7. • AG = k;

• can′ is an isomorphism;

8. • AG = k;

• for each maximal ideal m of A, and for each σ 6= e ∈ G, there exists x ∈ A such that
σ(x)− x 6∈ m.

Proof. 5. =⇒ 6. Let e =
∑n

i=1 xi ⊗ yi ∈ A⊗ A be a separability idempotent. Then for all σ ∈ G∑n
i=1 xσ(yi) ∈ A is an idempotent. For all a ∈ A, we have

a
n∑
i=1

xσ(yi) =
n∑
i=1

xσ(yia) =
n∑
i=1

xσ(yi)σ(a) = σ(a)
n∑
i=1

xσ(yi),
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and it follows from the second condition in 5. that
∑n

i=1 xσ(yi) = 0 if σ 6= e. We also have that∑n
i=1 xiyi = 1, and (4.21) follows.

6. =⇒ 1. (can′)−1 is given by the formula

(can′)−1(avτ ) =
n∑
i=1

aτ(xi)⊗ yi.

Indeed,

(can′ ◦ (can′)−1)(avτ ) = can(
n∑
i=1

aτ(xi)⊗ yi)

=
∑
σ∈G

n∑
i=1

aτ(xi)σ(yi)vσ = a
∑
σ∈G

τ
( n∑
i=1

xi(τ
−1σ)(yi)

)
vσ

(4.21)
= a

∑
σ∈G

τ(δτ−1σ,e)vσ = avτ ;

((can′)−1 ◦ can)(a⊗ a′) = (can′)−1(
∑
σ∈G

aσ(a′)vσ)

=
n∑
i=1

∑
σ∈G

aσ(a′)σ(xi)⊗ yi =
n∑
i=1

a
∑
σ∈G

σ(a′xi)⊗ yi

=
n∑
i=1

a
∑
σ∈G

σ(xi)⊗ yia′i =
n∑
i=1

a⊗
∑
σ∈G

σ(xi)yia
′
i

(4.21)
= a⊗

∑
σ∈G

δσ,ea
′
i = a⊗ a′.

We used the fact that
∑

σ∈G σ(a) ∈ AG = k.
Now define x∗i ∈ A∗ by the formula

〈x∗i , a〉 =
∑
σ∈G

σ(ayi) ∈ AG = k.

For all a ∈ A, we have
n∑
i=1

〈x∗i , a〉xi =
n∑
i=1

∑
σ∈G

σ(ayi)xi =
∑
σ∈G

σ(a)
n∑
i=1

σ(ayi)xi =
∑
σ∈G

σ(a)δσ,e = a,

so {(xi, x∗i ) | i = 1, · · · , n} is a finite dual basis for A, and A is finitely generated and projective.
By assumption, A is faithful, hence A is a k-progenerator, and faithfully flat as a k-module.

1. =⇒ 7. =⇒ 6. is obvious.

6. =⇒ 5. In the proof of 6. =⇒ 1., we have seen that
n∑
j=1

τ(xj)σ(yj) = δσ,τ (4.22)
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∑n
i=1 xi ⊗ yi is a separability idempotent: first, we have

∑n
i=1 xiyi = 1.

Since
∑

σ∈G σ(axiyj) ∈ AG = k, we have that

n∑
i=1

n∑
j=1

∑
σ∈G

σ(axiyj)xj ⊗ yi =
n∑
i=1

n∑
j=1

xj ⊗
∑
σ∈G

σ(axiyj)yi

Now
n∑
i=1

n∑
j=1

∑
σ∈G

σ(axiyj)xj ⊗ yi =
n∑
i=1

∑
σ∈G

σ(axi)
n∑
j=1

σ(yj)xj ⊗ yi

(4.21)
=

n∑
i=1

∑
σ∈G

σ(axi)δσ,e ⊗ yi =
n∑
i=1

axi ⊗ yi;

n∑
i=1

n∑
j=1

xj ⊗
∑
σ∈G

σ(axiyj)yi =
n∑
j=1

xj ⊗
∑
σ∈G

σ(ayj)
n∑
i=1

σ(xi)yi

(4.22)
=

n∑
j=1

xj ⊗
∑
σ∈G

σ(ayj)δσ,e =
n∑
j=1

xj ⊗ yja;

we find that
∑n

i=1 axi ⊗ yi =
∑n

j=1 xj ⊗ yja, as needed. Now let σ, τ ∈ G, and assume that e 6= 0
is an idempotent in A such that σ(a)e = τ(a)e, for all a ∈ A. Then

δσ,τe
(4.22)
=

n∑
i=1

τ(xi)σ(yi)e =
n∑
i=1

τ(xi)τ(yi)e
(4.22)
= e,

hence e = 0 or σ = τ .

6. =⇒ 8. If σ 6= e is such that (e− σ)(S) ⊂ m, then m contains

n∑
i=1

xi(yi − σ(yi)) =
n∑
i=1

xiyi −
n∑
i=1

xiσ(yi) = 1,

which contradicts the fact that m is a proper ideal of A.

8. =⇒ 6. Let G be the set of subsets V ⊂ G satisfying the following properties

1. e ∈ V ;

2. there exist n ∈ N, x1, · · · , xn, y1, · · · , yn ∈ A such that

n∑
i=1

xiσ(yi) = δσ,e.

for all σ ∈ V .
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1) For all σ 6= e ∈ G, {e, σ} ∈ G. The ideal of A generated by

{a(e− σ)(b) | a, b ∈ A}

is the whole of A. This implies that there exist x1, · · · , xn, y1, · · · , yn ∈ A such that

n∑
i=1

xiyi −
n∑
i=1

xiσ(yi) = 1.

Now let xn+1 =
∑n

i=1 xiσ(yi) and yn+1 = 1. Then we see easily that

n+1∑
i=1

xiσ(yi) = δσ,e.

2) If V,W ∈ G, then V ∪W ∈ G. Obviously e ∈ V ∪W . There exist n,m ∈ N,
x1, · · · , xn, y1, · · · , yn, x′1, · · · , x′m, y′1, · · · , y′m ∈ A such that

n∑
i=1

xiσ(yi) = δσ,e, ∀σ ∈ V

m∑
j=1

x′jσ(y′j) = δτ,e, ∀σ ∈ W

Then we have for all σ ∈ V ∪W that

n∑
i=1

m∑
j=1

xix
′
jσ(yiy

′
j) =

( n∑
i=1

xiσ(yi)
)( m∑

j=1

x′jσ(y′j)
)

= δσ,e.

�
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Chapter 5

Examples from (non-commutative)
geometry

5.1 The general philosophy
In 1872 Felix Klein published a research program, entitled Vergleichende Betrachtungen ber neuere
geometrische Forschungen, that had a major influence on the research in geometry ever since. This
Erlangen Program (Erlanger Programm) – Klein was then at Erlangen – proposed a new solution
to the problem how to classify and characterize geometries on the basis of projective geometry and
group theory. Let us focus on this second part of the program.
Klein proposed that group theory was the most useful way of organizing geometrical knowledge:
it provides algebraic methods to abstract the idea of (geometric) symmetries. With every geom-
etry, Klein associated an underlying group of symmetries. The hierarchy of geometries is thus
mathematically represented as a hierarchy of these groups, and hierarchy of their invariants. For
example, lengths, angles and areas are preserved with respect to the Euclidean group of symme-
tries, while only the incidence structure and the cross-ratio are preserved under the more general
projective transformations. A concept of parallelism, which is preserved in affine geometry, is not
meaningful in projective geometry. Then, by abstracting the underlying groups of symmetries from
the geometries, the relationships between them can be re-established at the group level. Since the
group of affine geometry is a subgroup of the group of projective geometry, any notion invariant in
projective geometry is a priori meaningful in affine geometry; but not the other way round. If you
add required symmetries, you have a more powerful theory but fewer concepts and theorems.
In the modern and more abstract approach to the Erlangen program, geometry or geometrical
spaces, are studied as spaces (i.e. sets, sometimes endowed with additional structure, such as a
vector space, a Banach space, a topological space, etc.) together with a (predescribed) group that
acts on this space (this action has to respect the additional structure of the set, i.e. it is, respectively,
a linear map, a bounded linear map or a linear contraction, a continuous map, etc). Explicitly, let
X be a set and G a group, we say that G acts on X if there is a map

m : X ×G→ X, m(x, g) = x · g

such that (x ·g) ·h = x · (gh) and x ·e = x, for all x ∈ X and g, h ∈ G and the unit element e ∈ G.
We call then X a G-space. The group G is considered as the symmetry group of the space X .
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In the language of monoidal categories and Hopf algebras, developed above, remark that the group
G is exactly a Hopf algebra in Set and X is a G-module, and even a G-module coalgebra (as any
set has a trivial coalgebra structure in Set).
As natural examples, one can consider any known “geometric” space X , take G it’s usual group of
symmetries and m as the usual action. In the next few sections we study which algebraic properties
correspond to some (interesting) properties that those (classical) geometric examples share.

Homogeneous spaces
A G-space X is called homogeneous if the action of G on X is transitive, i.e. for all pairs (x, y) ∈
X ×X , there exists an element g ∈ G such that x = y · g.
All “classical spaces” are homogeneous spaces. E.g. if you consider an affine n-dimensional (real
or complex) space An, then the affine group (which is exactly a direct sum GL(n) with the group
of translations) acts transitively on An.

Principal homogeneous spaces

A G-space X is called a principal homogeneous space, if X is a homogeneous space for G such
that the stabilizer subgroup Gx of any point x ∈ X is trivial. Recall that the stabilizer subgroup is
defined as follows

Gx = {g ∈ G | gx = x} ⊂ G

Recall that an action of G on X is called free if for any two distinct g, h in G and all x in X we
have g · x 6= h · x; or equivalently, if g · x = x for some x then g = e.
The following proposition provides a characterization for principal homogeneous spaces.

Proposition 5.1.1 Let G be a group and X a G-space. The following assertions are equivalent.

(i) X is a principal homogeneous space;

(ii) the action ofG onX is free and transitive (i.e. the action ofG is regular or simply transitive);

(iii) the canonical map χ : X ×G→ X ×X,χ(x, g) = (x · g, x) is bijective.

Proof. (i)⇔ (ii). Trivial.
(ii)⇔ (iii). It is easily verified that the surjectivity of χ is equivalent with the action of G on X
being transitive, and that the injectivity of χ is equivalent with the action of G on X being free. �

Algebraic groups as Hopf algebras in Aff

Similarly to Set, (Aff,×, {P∗}) is a symmetric monoidal category, where {P∗} is a (fixed) affine
space with 1 point P∗. Hence it makes sense to define algebras, coalgebras, bialgebras and Hopf
algebras in Aff. Again similarly to Set, the coalgebras in Aff are trivial: every affine space X
can be endowed with a unique structure of a coalgebra, by means of the diagonal map ∆ : X →
X×X,∆(P ) = (P, P ) for all points P ∈ X . The next interesting structures are the Hopf algebras
in Aff. These are exactly the algebraic groups. I.e. an affine space G ∈ Aff is a Hopf algebra in
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Aff if it has moreover a group structure, and the multiplication and morphism of taking inverses
are regular (i.e. polynomial) functions.
Furthermore if X is another affine space, and the algebraic group G acts on X by means of a
regular function, i.e. the action morphism mX : X × G → G is a morphism in Aff, then X
becomes a G-module coalgebra in Aff.
As we have now translated the algebro-geometric notions (of algebraic group, action of a group
on an affine set) into general notions inside monoidal categories (a Hopf algebra, a comodules
algebra), we can apply the machinery of monoidal functors, to show that the coordinate algebras
on the objects that we have will carry over these structures, and therefore fit in the theory (of
Hopf-Galois extensions) we have developed during this course.

5.2 Hopf algebras in algebraic geometry

5.2.1 Coordinates as monoidal functor
Troughout this section, let k be an infinite field. Recall from the course on algebraic geometry that
there is a contravariant functor

Γ : Aff → Algk

taking an n-dimensional affine variety V ⊂ An to its coordinate algebra Γ(X) = k[X1, . . . , Xn]/I ,
where I is the ideal consisting of all polynomials f ∈ k[X1, . . . , Xn] for which f(P ) = 0 for all
P ∈ X . The aim of this section is to provide the categorical machinery that turns the ‘coordinate
algebra’ really into an ‘algebra’, and to proof that it allows to construct Hopf algebras out of
algebraic groups. The main idea is that the functor Γ is strict monoidal. However, since Γ is
contravariant, it will be more suitable to consider Γ as a covariant functor, i.e. we will consider

Γ : Affop → Algk.

(So, as mentioned in Section 1.1.2, we consider in fact the functor Γop, but we will omit to write
the “op”.)

Lemma 5.2.1 For any n,m ∈ N, there is a natural isomorphism

φ : k[X1, . . . , Xn]⊗ k[Y1, . . . , Ym]→ k[X1, . . . , Xn, Y1, . . . , Ym].

Proof. Consider any two elements

f(X1, . . . , Xn) =
∑

ai1...inX
i1
1 · · ·X in

n ∈ k[X1, . . . , Xn];

g(Y1, . . . , Ym) =
∑

bj1...jmY
j1

1 · · ·Y jm
m ∈ k[Y1, . . . , Ym].

We can define a new polynomial F ∈ k[X1, . . . , Xn, Y1, . . . , Ym], by

F (X1, . . . , Xn, Y1, . . . , Ym) =
∑

ai1...inbj1...jmX
i1
1 · · ·X in

n Y
j1

1 · · ·Y jm
m .
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This defines a well-defined map φ as in the statement of the theorem. Conversely, take any F =∑
ai1...in+mX

i1
1 · · ·X i1

n Y
in+1

1 · · ·Y in+m
m , then we can construct the following element in k[X1, . . . , Xn]⊗

k[Y1, . . . , Ym]:
φ̄(F ) =

∑
ai1...in+mX

i1
1 · · ·X i1

n ⊗ Y
in+1

1 · · ·Y in+m
m .

A straightforward calculation shows that φ and φ̄ are mutual inverses. �

Remark that φ is defined in such a way, that for any two points P ∈ An and P ′ ∈ Am (i.e.
(P.P ′) ∈ An × Am), and any f ∈ Γ(An) = k[X1, . . . , Xn] and g ∈ Γ(Am) = k[Y1, . . . , Ym],

ϕ(f ⊗ g)(P, P ′) = f(P )g(P ) (5.1)

Lemma 5.2.2 Consider vectorspaces V,W,U, Z ∈ Mk and linear maps f : V → W and g :
U → Z. Then ker(f ⊗ g) = (ker f ⊗ V ) + (U ⊗ ker g).

Proof. Let (vα)α∈A1 be a basis of ker f , which we complete with (vα)α∈A2 to form a basis of
V . Then f(vα)α∈A2 is a linearly independent subset of W . Analogously, let (uβ)β∈B1 be a basis
of ker g, which we complete with (uβ)β∈B2 to a basis of U . Again, (g(uβ))β∈B2 is a linearly
independent family in Z. Consider

q =
∑

α∈A1∪A2
β∈B1∪B2

cαβvα ⊗ uβ ∈ ker(f ⊗ g).

Then ∑
α∈A1∪A2
β∈B1∪B2

cαβf(vα)⊗ g(uβ) = 0.

By the linearly independence of the family (f(vα) ⊗ g(uβ))α∈A2,β∈B2 , it follows that cαβ = 0 for
any α ∈ A2 and β ∈ B2. Then q ∈ ker f ⊗ U + V ⊗ ker g, and we obtain that

ker(f ⊗ g) ⊆ (ker f ⊗ V ) + (U ⊗ ker g).

The reverse inclusion is clear. �

Theorem 5.2.3 The functor Γ : Affop → Mk defined above is a strong, symmetric monoidal
functor.

Proof. Consider two affine varietiesX ⊂ An and Y ⊂ Am. Then we have Γ(X) = k[X1, . . . , Xn]/I ,
and Γ(Y ) = k[Y1, . . . , Ym]/J where I and J is the ideal of all polynomials vanishing respec-
tively on X and Y . We can construct the variety X × Y ⊂ An × Am ∼= Am+n. Hence
Γ(X × Y ) = k[X1, . . . , Xn, Y1, . . . , Ym]/L, where L is the ideal consisting of all polynomials
vanishing on X × Y . It is our aim to construct an isomorphism

ΦX,Y : k[X1, . . . , Xn]/I ⊗ k[Y1, . . . , Ym]/J ∼= k[X1, . . . , Xn, Y1, . . . , Ym]/L.

Take any generator f ⊗ g ∈ k[X1, . . . , Xn]/I ⊗ k[Y1, . . . , Ym]/J . We will define ΦX,Y (f ⊗ g) =
φ(f ⊗ g), where φ is the morphism from Lemma 5.2.1. Let us check that ΦX,Y is well defined.
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Consider the projection πI : k[X1, . . . , Xn] → k[X1, . . . , Xn]/I . Then I = kerπI . Similarly,
J = kerπJ , where πJ : k[Y1, . . . , Ym]→ k[Y1, . . . , Ym]/J . Now consider the exact row

k[X1, . . . , Xn]⊗ k[Y1, . . . , Ym]
πI⊗πJ // k[X1, . . . , Xn]/I ⊗ k[Y1, . . . , Ym]/J // 0

Since this row is exact,

k[X1, . . . , Xn]/I ⊗ k[Y1, . . . , Ym]/J = (k[X1, . . . , Xn]⊗ k[Y1, . . . , Ym])/ ker(πI ⊗ πJ)
∼= (k[X1, . . . , Xn]⊗ k[Y1, . . . , Ym])/(I ⊗ k[Y1, . . . , Ym] + k[X1, . . . , Xn]⊗ J),

where the last isomorphism follows by Lemma 5.2.2.
Consequently, to verify wether ΦX,Y is well defined, it suffices to check wether for any

∑
fi⊗gi ∈

(I ⊗ k[Y1, . . . , Ym] + k[X1, . . . , Xn]⊗ J), we have that φ(
∑
fi⊗ gi) ∈ L. By definition, the latter

is true if and only if φ(
∑
fi ⊗ gi)(P, P ′) = 0 for all (P, P ′) ∈ X × Y . By (5.1), this is equivalent

with
∑
fi(P )gi(P

′) = 0 for all P ∈ X and P ′ ∈ Y . Since for all choices of i, we have that either
fi ∈ I or gi ∈ J , each term in this sum equals zero, and ΦX,Y is well defined.
Conversely, we define

Φ̄X,Y : k[X1, . . . , Xn, Y1, . . . , Ym]/L→ k[X1, . . . , Xn]/I ⊗ k[Y1, . . . , Ym]/J
∼= (k[X1, . . . , Xn]⊗ k[Y1, . . . , Ym])/(I ⊗ k[Y1, . . . , Ym] + k[X1, . . . , Xn]⊗ J)

by Φ̄X,Y (F ) = φ−1(F ). Again, we have to check wether Φ̄X,Y is well-defined. So take an element
F ∈ L, we will verify if φ−1(F ) =

∑
fi⊗gi ∈ (I⊗k[Y1, . . . , Ym]+k[X1, . . . , Xn]⊗J). Consider

all indices i such that gi(P ′) = 0 for all points P ′ ∈ Y , and denote these indices from now on by
`. Then this means exactly that g` ∈ J and so f` ⊗ g` ∈ k[X1, . . . , Xn]⊗ J . Denote the remaining
indices by q, then

φ−1(F ) =
∑

fi ⊗ gi =
∑

f` ⊗ g` +
∑

fq ⊗ gq,

where
∑
f` ⊗ g` ∈ k[X1, . . . , Xn] ⊗ J we will be done if we show that

∑
fq ⊗ gq ∈ I ⊗

k[Y1, . . . , Ym].
By definition of F and φ, and our construction above, we find for all P ∈ X and P ′ ∈ Y that

0 = F (P, P ′) =
∑
i

fi(P )gi(P
′) =

∑
q

fq(P )gq(P
′).

Hence, for any fixed P ′ ∈ Y , we have that
∑

q gq(P
′)fq ∈ I . Since all gq /∈ J , and there are only

a finite number of indices q, there exists a P ′ ∈ Y such that gq(P ′) 6= 0 for all q, fix such a P ′. We
can write

gq =
∑

bqj1...jmY
j1

1 · · ·Y jm
m =

∑
gq(P

′)b̃qj1...jmY
j1

1 · · ·Y jm
m .

where b̃qj1...jm = bqj1...jm/gq(P
′). Then we find∑

q

fq ⊗ gq =
∑
q

fq ⊗
∑

j1,...,jm

gq(P
′)b̃qj1...jmY

j1
1 · · ·Y jm

m

=
∑

j1,...,jm

(
∑
q

gq(P
′)fq)⊗ b̃qj1...jmY

j1
1 · · ·Y jm

m ∈ I ⊗ k[Y1, . . . , Ym].
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Finally, Φ0 : Γ({P∗}) = k by definition, so Γ is a strict monoidal functor. It is easily verified that
Γ is also symmetric. �

As announced, we have now an explanation for the following known result.

Corollary 5.2.4 For any affine space X , Γ(X) is a (commutative) k-algebra. Hence the functor Γ
can be corestricted to a functor Γ : Aff → Algk.

Proof. Consider any affine space X . As mentioned at the end of Section 5.1, X is a coalgebra in
Aff, with comultiplication ∆ : X → X ×X, ∆(P ) = (P, P ) and counit π : X → {P∗}, π(P ) =
P∗. Hence X is an algebra in Affop and therefore, as we know by Theorem 5.2.3 that Γ is a
monoidal functor, (Γ(X),Γ(∆),Γ(π)) is an algebra inMk, since by Theorem ??, monoidal func-
tors preserve algebras. This is exactly the classical, commutative coordinate algebra of X , with
multiplication

f · g(P ) = f(P )g(P ).

and unit 1(P ) = 1 for all P ∈ X . �

Remark 5.2.5 Remark that the commutativity of Γ(X) is a consequence of the cocommutativity
of X as coalgebra in Aff.

Algebro-geometric Hopf algebras and their coactions

Subsuming the results developed in previous sections, we arrive at the following important theo-
rem, that translates the geometric concepts of Section 5.1 in Hopf-algebraic terms.

Theorem 5.2.6 [(i)]
If G is an algebraic group, then Γ(G) is a k-Hopf algebra.

1.2. If an algebraic group G has a regular action mX on an affine space X , then Γ(X) is a
comodule algebra over the Hopf algebra Γ(G).

Proof. (i) Suppose that G is an algebraic group, hence a Hopf algebra in Aff, then G is also a
Hopf algebra in Affop and, by Theorem 5.2.3 and Theorem ??, Γ(G) is a Hopf algebra in Mk.
The comultiplication is given by Γ(mG) (where mG denotes the multiplication map of G) and the
antipode is given by Γ(inv) (where inv : G→ G, inv(g) = g−1).
(ii) As explained at the end of Section 5.1, the action of the group G on X , can be seen as a
G-module coalgebra structure on X on Aff, hence as a G-comodule algebra structure on X in
Affop. Similar to Theorem ??, one proves that this structure is preserved by the strong, symmetric
monoidal functor Γ. Therefore, A = Γ(X) is an H = Γ(G)-comodule algebra in Mk, with
ρA = Γ(mX). �

Theorem 5.2.7 If X is a principal homogeneous G-space then A = Γ(X) is a Galois object for
H = Γ(G), i.e. AcoH ∼= k and k → A is a (faithfully flat) H-Galois extension.
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Proof. Consider the map πX : G×X → X, πX(g, x) = x, the projection on X . Then consider the
coequalizer in Aff of the pair (mX , πX), where we denote by mX the action of G on X , i.e.

X ×G
mX //
πX

// X // X/G.

An easy computation shows that this coequalizer is the quotient ofX by the action ofG, consisting
of all orbits. Hence by transitivity, the coequalizer is the singleton {P∗}. Applying the monoidal
functor Γ on this coequalizer, we obtain the following equalizer inMk.

Γ({P∗}) ∼= k // Γ(X) = A
Γ(mX)'ρA //

Γ(πX)'A⊗ηH
// Γ(X ×G) ∼= A⊗H

Which shows, by uniqueness of the equalizer, that the coinvariants of A = Γ(X) are isomorphic
to k.
By Proposition 5.1.1, we know that the map χ : X ⊗G→ X ×X is bijective. Hence Γ(χ) will be
an isomorphism inMk, we claim that Γ(χ) = can : Γ(X ×X) ∼= A⊗A→ Γ(X ×G) ∼= A⊗H .
Indeed, we can write χ = (X ×mX) ◦ (∆X ×G). So, using the contravariancy of Γ we find

Γ(χ) = Γ(∆X ×G) ◦ Γ(X ×mX) = (Γ(∆X)⊗ Γ(G)) ◦ (Γ(X)⊗ Γ(mX))

= (µA ⊗H) ◦ (A⊗ ρA) = can

where we used the monoidality of Γ in the second equality, and the definition of can in the last
equality.
Since we work over a field k, and the coinvariants of A are exactly k, the faithful flatness condition
is trivial. �

An elaborated example: The unit circle and the orthogonal group

In this section we illustrate Theorem 5.2.7 with one of the most immediate examples: the orthog-
onal group G of 2-by-2 matrices acting on the unit circle C. The orthogonal group acts on C by
counter-clockwise rotation of the points. This action is obviously transitive and free, hence C is
a principal homogeneous G-space. Consequently, Γ(C) will be a Γ(G) Galois object. We will
explicitly compute these structures. It is not our aim to provide the shortest possible proofs for the
statements (as everything follows immediately from the theorems in the previous section), but to
provide a guiding frame to compute more (complicated) examples.
Consider

G = SO2(R) = {A ∈ Mat2(R) | AtA = I2 = AAt, det(A) = 1}
This can be considered as a subspace of A4, and we find

H = Γ(G) = R[a, b, c, d]/(a2 + b2 − 1, c2 + d2 − 1, ac+ bd, ad− bc− 1).

Let us calculate the coalgebra structure on H . Recall that Γ(G) can be interpreted as the algebra of
regular functions on the affine space G. With this interpretation, a set of generators for the algebra
H is given by a, b, c, d, defined by

a(A) = a11, b(A) = a12, c(A) = a21, d(A) = a22,
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whereA =

(
a11 a12

a21 a22

)
∈ Mat2(R). Because monoidality of the functor Γ, we have Γ(G×G) ∼=

Γ(G)⊗ Γ(G), so we can define ∆(a) be evaluating it in a pair (A,B). Since the comultiplication
on H is constructed by dualizing the multiplication on G, we have

∆(a)(A,B) = a(A.B) = a11b11 + a12b21 = a(A)a(B) + b(A)c(B) = (a⊗ a+ b⊗ c)(A,B),

hence ∆(a) = a⊗a+b⊗c. Similar computations show that ∆(b) = a⊗b+b⊗d, ∆(c) = c⊗a+d⊗c
and ∆(d) = c⊗ b+ d⊗ d. Then can be compressed in the following formal expression

∆

(
a b
c d

)
=

(
a b
c d

)
⊗
(
a b
c d

)
(5.2)

Using the fact that ∆ needs to be an algebra morphism, these expressions define ∆(f) for any f ∈
Γ(G). We should check wether ∆ is well-defined, i.e. if ∆(f) ∈ I ⊗R[a, b, c, d] + R[a, b, c, d]⊗ I
(or zero in H ⊗H) for any f ∈ I = (a2 + b2 − 1, c2 + d2 − 1, ac+ bd, ad− bc− 1). Let us verify
this explicitly for f = a2 − b2 − 1. We can compute in H ⊗H ,

∆(a2 + b2 − 1) = ∆(a)∆(c) + ∆(b)∆(d)

= (a⊗ a+ b⊗ c)(a⊗ a+ b⊗ c) + (a⊗ b+ b⊗ d)(a⊗ b+ b⊗ d)− 1⊗ 1

= (a2 ⊗ a2 + 2ab⊗ ac+ b2 ⊗ c2) + (a2 ⊗ b2 + 2ab⊗ bd+ b2 ⊗ d2)− 1⊗ 1

= (a2 ⊗ a2 + 2ab⊗ ac+ b2 ⊗ c2) + (a2 ⊗ b2 + 2ab⊗ bd+ b2 ⊗ d2)− 1⊗ 1

= a2 ⊗ (a2 + b2) + b2 ⊗ (c2 + d2) + 2ab⊗ (ac+ bd)− 1⊗ 1

= a2 ⊗ 1 + b2 ⊗ 1− 1⊗ 1 = 0

Let us now construct the counit. Recall that k ∼= Γ{P∗}, and ε = Γ(π), where π : G → {P∗} is
the canonical projection. Take again the generator a ∈ H , then we have

ε(a)(P∗) = a(I2) = 1.

Similarly, ε(b) = b(I2) = 0, ε(c) = c(I2) = 0 and ε(d) = d(I2) = 1. This can be subsumed in the
formal expression

ε

(
a b
c d

)
=

(
1 0
0 1

)
. (5.3)

Next, we compute the antipode.

S(a)(A) = a(A−1) = a(At) = a11 = a(A)

So S(a) = a. Similarly, S(b) = c, S(c) = b and S(d) = d. In short,

S

(
a b
c d

)
=

(
a c
b d

)
. (5.4)

109



Let us check that the antipode is well-defined. The only problem is to verify that S(ac + bd) =
S(c)S(a) + S(d)S(b) = ba+ dc = 0 (the antipode must be an anti-algebra morphism, however as
our algebra is commutative, S is just an algebra morphism). This can be seen as follows,

0 = ac+ bd, multiply by bc,
= abc2 + b2cd, c2 = 1− d2, b2 = 1− a2

= ab− abd2 + cd− a2cd

= ab+ cd− ad(bd+ ac), bd+ ac = 0

= ab+ cd

Now consider the circle C ⊂ A2. Algebraic geometry tells us that A = Γ(C) = R[x, y]/(x2 +
y2− 1). We know by Theorem 5.2.6 Γ(C) is an H-comodule algebra. The explicit formula for the
coaction can be computed by similar method as above. First, consider coorinates on points of the
cirle, P = P (X, Y ), and define the generators x, y in A as follows,

x(P ) = X, y(P ) = Y.

Since the coaction ρ is the dual of the action m of G on C, we find that

ρ(x)(P,A) = x(P · A) = x(Xa11 + Y a21, Xa21 + Y a22) = Xa11 + Y a21

= x(P )a(A) + y(P )c(A) = (x⊗ a+ y ⊗ c)(P,A),

so ρ(x) = x⊗ a+ y ⊗ c. Similarly, ρ(y) = x⊗ b+ y ⊗ d, and therefore we write

ρ
(
x y

)
=
(
x y

)
⊗
(
a b
c d

)
(5.5)

There is a deeper reason why it is possible to define the comultiplication, counit, antipode and
coaction in this example by means of the compact formula (5.2), (5.3), (5.4) and (5.5). Although
we will not go into the details of this mechanism, let us just mention that it is a consequence
of a universal property of polynomial rings and this mechanism makes it possible to construct in
an easy way more examples of Hopf algebras and bialgebras, and comodule algebras over these,
starting from subgroups of matrix groups acting on affine spaces.
Finally, let us check that A is a H-Galois object. To this end, let us recall the form of the map
χ : C × G → C × C, χ(P, g) = (P, P · g) in this situation. Similar computations as above then
gives the explicit form of can : A ⊗ A → A ⊗ H , as the dualization of χ, on the generators
1⊗ x, 1⊗ y, x⊗ 1 and y ⊗ 1 of A⊗ A,

can(1⊗ x) = x⊗ a+ y ⊗ c (5.6)
can(1⊗ y) = x⊗ b+ y ⊗ d (5.7)
can(x⊗ 1) = x⊗ 1 (5.8)
can(y ⊗ 1) = y ⊗ 1 (5.9)

To see that can is bijective and to compute its inverse, let us first compute the inverse of χ. The
coordinates (X, Y ) of a point P of C can be written as X = cosα, Y = sinα. For a second point
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P ′ = P ′(X ′, Y ′), we can write X ′ = cos β and Y ′ = sin β. Hence, χ−1(P, P ′) = (P, g), where g
is a rotation over β − α (via right multiplication), i.e.

g =

(
cos(β − α) sin(β − α)
− sin(β − α) cos(β − α)

)
=

(
sinα sin β + cosα cos β cosα sin β − sinα cos β
sinα cos β − sin β cosα sinα sin β + cosα cos β

)
=

(
Y Y ′ +XX ′ XY ′ − Y X ′
Y X ′ − Y ′X Y Y ′ +XX ′

)
Similar computations as above then lead to the following form for the inverse of can

can−1(x⊗ 1) = x⊗ 1

can−1(y ⊗ 1) = y ⊗ 1

can−1(1⊗ a) = y ⊗ y + x⊗ x
can−1(1⊗ b) = x⊗ y − y ⊗ x
can−1(1⊗ c) = y ⊗ x− x⊗ y
can−1(1⊗ d) = y ⊗ y + x⊗ x

We leave it to the reader to check that can and can−1 are indeed mutual inverses. Remark that the
relations in H imply that d = a and b = −c.

5.3 A glimpse on non-commutative geometry

5.3.1 Non-commutative geometry by Hopf (Galois) theory
All initial examples of Hopf algebras (e.g. group algebras, tensor algebras, universal enveloping
algebras of a Lie algebra, regular functions on an algebraic group,...) are either commutative or
cocommutative. For some time, it was therefore thought that all Hopf algebras needed to be com-
mutative or cocommutative. This turned out to be false, with as a first counterexample Sweedler’s
four-dimensional Hopf algebra. Some of most intensively studied Hopf algebras today, are classes
of non-commutative, non-cocommutative Hopf algebras, called quantum groups. These originate
in the study of (non-commutative) geometry, as the symmetries of a non-commutative space.
As we have explained in Section 5.1, we understand a group G exactly as the symmetries of a
certain space X upon which this group acts. Next, we have translated the group structure of G into
the structure of a (commutative) Hopf algebra H and encoded the space X by its (commutative)
coordinate algebra A. If G acts on X , then A is a comodule algebra over H . Still, we can under-
stand H to describe the “symmetries” of the “space” A. At this point the occuring algebras are all
commutative. This was explained by the fact that the functor Γ is a strong monoidal functor, and
the underlying sets of G and X posses a trivial, hence cocommutative, coalgebra structure. The
idea is now to extend the functor Γ : Aff → Mk, in such a way, that its image will reach also
non-commutative algebras. The functor Γ will then origin in the category of ‘non-commutative
spaces’. However, to describe the category of non-commutative spaces in an appropriate way, that
allows a nice geometric interpretation and such that the functor Γ satisfies all desired properties
seems a very difficult (and doubtful) job. Therefore, we will mainly concentrate on the image
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of Γ and we will understand a non-commutative space, as being completely described by its non-
commutative “coordinate algebra”A. The symmetries of the non-commutative space are described
by a non-commutative, non-cocommutative Hopf algebra H , over which A is a comodule algebra.
Following this philosophy, we say that A is a quantum principle homegeneous space, exactly when
A is an H-Galois object.
More generally an H-Galois extension B → A, corresponds to a quantum principle bundle.

5.3.2 Deformations of algebraic groups: algebraic quantum groups
A general manner to construct examples of quantum groups and the non-commutative space upon
which they act, is to deform classical spaces, as we have studied in Section 5.2. By deforming,
we refer to a procedure that changes the multiplication of the algebra, in order to make it non-
commutative, but does not change the algebra as a vector space, nor the unit element.
One of the most well known examples is the so-called quantum plane. We will give an explicit
form of the quantum plane, and of a Hopf algebra of quantum symmetries. Let q ∈ k∗ be an
invertible element of the field k. We denote by Iq the two-sided ideal of the free algebra k 〈x, y〉
generated by the element yx− qxy. The quantum plane is the quotient algebra

A = kq[x, y] = k 〈x, y〉 /Iq.
If q = 1, then A = k[x, y] the polynomial algebra (i.e. the coordinate algebra of the affine plane
A2), otherwise, A is non-commutative.
Next, we construct the algebra Mq(2) = k 〈a, b, c, d〉 /Jq, of (dual) quantum matrices. Here Jq is
the ideal of the free algebra k 〈a, b, c, d〉 generated by the relations

ba = qab, db = qbd

ca = qac, dc = qcd,

bc = cb, ad− da = (q−1 − q)bc
This algebra is a in fact a bialgebra. Comultiplication ∆ and counit ε are given by the following
formula on the generators

∆

(
a b
c d

)
=

(
a b
c d

)
⊗
(
a b
c d

)
ε

(
a b
c d

)
=

(
1 0
0 1

)
.

Moreover, the quantum plane A is an Mq(2)-comodule algebra, with coaction given by

ρ
(
x y

)
=
(
x y

)
⊗
(
a b
c d

)
Next, we will construct a Hopf algebra, coacting on the quantum plane. Consider the algebra
SLq(2) = Mq(2)/(da−qbc−1). One can check that the comultiplication ∆, counit ε and coaction
ρ, as defined above, behave well with respect to the ideal (da − qbc − 1). Moreover, by defining
an antipode

S

(
a b
c d

)
=

(
d −q−1c
−qb a

)
.

we find that SLq(2) becomes a Hopf algebra, and the quantum plane is a SLq(2)-comodule algebra.
In an appropriate way, one can define quantum circles, higher dimensional variants and their sym-
metries.
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5.3.3 More quantum groups
The procedure described above, provides an approach towards non-commutative geometry starting
from the point of view of algebraic geometry. There is another approach possible, based rather on
differential geometry. In this approach, one considers smooth manifolds, whose symmetries are
described by Lie groups. As generally known, associated to a Lie group G, there is a Lie algebra
g (and visa versa). The universal enveloping algebra U(g) of the Lie algebra g is a cocommutative
Hopf algebra. Furthermore, if the Lie group G is compact, one can consider the algebra Rep(G)
of representable complex-valued functions on G, this is again a Hopf algebra (very similar to the
Hopf algebra of regular functions on an algebraic group). Moreover, the Hopf algebras Rep(G)
and U(g) are in a dual pairing (The concept of a dual pairing for Hopf algebras generalises the fact
that the dual of a finite dimensional Hopf algebra is again a Hopf algebra. If two finite dimensional
Hopf algebras A and B are in a dual pairing, then A ∼= B∗). If X is a smooth space, then it is
possible to construct an algebra of functions on X , that becomes a comodule algebra over Rep(G),
and a module algebra over U(g). Many of the considered algebras in this setting have an additional
structure of ∗-algebra or C∗-algebra.
The approach to non-commutative algebra is now to consider non-commutative (C∗-)algebras, and
non-commutative, non-cocommutative Hopf algebras that (co-)act on these and that are deforma-
tions of the above. In particular, it is possible to construc quantized enveloping algebras Uq(g).
Many quantum groups and non-commutative spaces can be studied both in algebraic and differen-
tial geometric framework. For example, the Hopf algebra Uq(sl2) acts on the quantum plane.
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