Amenability for non-locally compact topological groups

Vladimir Pestov

Department of Mathematics and Statistics University of Ottawa Ottawa, Ontario, Canada

BOAS'2011, Jurerê, SC-Brasil, 5 do Fevereiro, 2011

The focus of the talk

open question (A. Carey, H. Grundling, since at least 2000): Let *X* be a smooth closed manifold, $n \ge 2$. Is the current group $C^{\infty}(X, SU(n))$ amenable ?

More generally: same can be asked for groups of gauge transformations (= automorphisms of principal *G*-bundles with compact simple Lie groups as structure groups).

"Yes" \Rightarrow exists a "gauge-invariant vacuum state".

Conjecture (Ping Wong Ng, motivated by the above): Let *A* be a unital *C**-algebra. Then $U(A)_{norm}$ is amenable $\iff A$ is nuclear and has a tracial state.

* * *

A D A D A D A D A D A D A D A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

thm. $C(\mathbb{I}, SU(n))$ is amenable.

(Here I = [0, 1].)

Why one needs amenability

thm. (André Weil) If a Polish (= separable completely metrizable) topological group admits an invariant sigma-additive measure, then it is locally compact.

Amenability = poor man's version of invariant integration with finite total volume.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Definitions of amenability of a top. group G

- if *G* acts continuously on a compact space *X*, there is an invariant probability measure μ on *X*:

 $\mu(A) = \mu(gA)$ for all Borel $A \subseteq X$, all $g \in G$;

- if *G* acts continuously by affine transformations on a convex compact subspace *C* of a locally convex space, it has a fixed point $x \in C$;

 $-\exists$ left-invariant mean *m* on the space RUCB (*G*) of all right uniformly continuous bounded functions on *G*:

 $\begin{array}{l} f\colon G\to \mathbb{C} \text{ is RUC if} \\ \forall \varepsilon>0, \ \exists V \ni e, \ xy^{-1}\in V \Rightarrow |f(x)-f(y)|<\varepsilon. \end{array}$

An invariant mean:

 ϕ : RUCB (*G*) $\rightarrow \mathbb{C}$, linear, positive, $\phi(1) = 1$, $\phi(f) = \phi(any \text{ left translate of } f)$.

Why this is the correct definition: examples

- $U(\ell^2)_{sot};$
- Aut $(X, \mu)_{coarse}$;
- $S_\infty,$ topology of simple convergence on $\mathbb N$ discrete;
- $\operatorname{Aut}\left(\mathbb{Q},\leq\right)$ with the simple convergence topology on \mathbb{Q} discrete;

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

— Homeo \mathbb{R} , compact-open topology ...

Non-definitions of amenability

- − ∃ left-invariant mean on $L^{\infty}(G)$. \leftarrow makes no sense.
- \exists left-invariant mean on CB(*G*) \Leftarrow fails for $U(\ell^2)_{sot}$, Aut $(X, \mu)_{coarse}$, ... (though holds for I+ compact operators);
- $-\exists$ bi-invariant mean on RUCB(G) (same observation)...

– every unitary representation of *G* is amenable in the sense of Bekka. \Leftarrow there are amenable groups which fail this $(U(\ell^2)_{sot})$ and non-amenable groups which have the property (Homeo (\mathbb{S}^1)).

(日) (日) (日) (日) (日) (日) (日)

Some observations

If G is locally compact, the list is much longer.

Abelian top. groups, compact groups are amenable ...

If *H* is dense in *G*, then *G* is amenable \iff *H* is amenable.

example (J. Baez): C(X, SU(n)) with the simple convergence topology on X is amenable [dense in the compact group $SU(n)^X$]

Amenability is closed under extensions: H, G/H are amenable \Rightarrow *G* is amenable.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Some infinite dimensional tools

Unions of chains of amenable groups are amenable. If $\operatorname{cl} H = G$, then *G* is amenable $\iff H$ is amenable.

ex. $U(\ell^2)_{sot} = cl \cup_{n=1}^{\infty} U(n)$, or of SU(n), \Rightarrow amenable.

ex. $S_{\infty} = cl \cup_{n=1}^{\infty} S_n$, \Rightarrow amenable.

ex. Aut $(X, \mu) = \bigcup_{n=1}^{\infty} S_n$ ("interval exchange transformations"), by Rokhlin Lemma, \Rightarrow amenable.

ex. $L^0(X, \mu; SU(n))$, with the topology of convergence in measure, is the union of groups of simple functions of the form \mathbb{T}^k , \Rightarrow amenable.

ex. C(Cantor set, SU(n)) is amenable.

Further applications of the approximation technique

- for a vN algebra M, $U(M)_{ultraweak}$ is amenable $\iff M$ is AFD (Pierre de la Harpe);
- for a C*-algebra A, $U(A)_{weak}$ is amenable \iff A is nuclear (Petersen).

example: C(X, SU(n)) with relative weak topology (induced from $C(X) \otimes M_n(\mathbb{C})$) is amenable

[in fact, it is strongly amenable in the sense of Glasner (Giordano–VP): ∀ proximal action on a compact space has f.p.]

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Proving non-amenability

A closed subgroup of an amenable group need not be amenable:

 $F_2 < U(\ell^2)_{sot}$ as a closed discrete subgroup.

Example (Greg Hjorth): $C(\mathbb{I}, SU(2))$ contains a closed discrete copy of F_{2} ... tells nothing about (non)amenability of the group.

Example: $U(\ell^2)_{uniform}$ is non-amenable (de la Harpe). **Example:** Aut (X, μ) with *uniform* topology

$$d_{\textit{unif}}(\sigma,\tau) = \mu\{\mathbf{x} \in \mathbf{X} \colon \sigma(\mathbf{x}) \neq \tau(\mathbf{x})\}$$

is non-amenable (Giordano-VP). \Leftarrow will outline a proof.

SIN groups and amenable representations

A topological group *G* is SIN if left and right uniform structures coincide; \cong conjugation-invariant *V* form a basis at identity.

SIN groups: compact, abelian, discrete, $U(\ell^2)_{unif}$, $Aut(X, \mu)_{unif}$. Non-SIN: $SL_2(\mathbb{R})$, $\mathbb{U}(\ell^2)_{sot}$, $Aut(X, \mu)_{coarse}$, S_{∞} .

 $SIN \Rightarrow RUCB(G) = LUCB(G)$. (The converse is open.)

Lemma: If *G* is amenable SIN group, then every strongly continuous unitary rep. π of *G* is Bekka-amenable: there is an invariant mean on UCB (\mathbb{S}_{π}).

⊲ Suppose Aut $(X, \mu)_{unif}$ is amenable. ⇒ the standard rep. in $L_0^2(X, \mu)$ is amenable. Identify $X \cong SL_3(\mathbb{R})/SL_3(\mathbb{Z})$. Then $SL_3(\mathbb{R}) < \operatorname{Aut}(X, \mu)$. ⇒ the rep. of $SL_3(\mathbb{R})$ in $L_0^2(X, \mu)$ is amenable ⇒ \exists f.-d. subrep ⇒ \exists fixed vector. \oint

Extreme amenability and Ramsey theory

G is *extremely amenable* if every continuous action of G on a compact space X has a global fixed point.

Example. $U(\ell^2)_{sot}$ is e.a. (Gromov–Milman, 1983), concentration of measure arguments.

No LC group is such (Granirer–Lau), in fact every LG *G* acts freely on a compact space (Veech).

Extreme amenability of a group of automorphisms of a structure $S \sim$ a Ramsey-type property of S.

Ex.: Aut (\mathbb{Q}, \leq) is extremely amenable, and this is equivalent to the classical finite Ramsey theorem (VP, 1998).

Amenability of current group

thm. $W^{1,2}(i, SU(n))$ is amenable.

[Differentiable a.e., equal a.e. to the integral of the derivative] **Corollary.** $C(\mathbb{I}, SU(n))$ is amenable.

Enough to prove thm. for $G = W_e^{1,2}(\mathbb{I}, SU(n))$ of paths p(0) = e.

G is a Banach-Lie group, contractible.

Left logarithmic derivative and product integral

The left logarithmic derivative: $u(t) \mapsto u'(t)u(t)^{-1}$, curve in $SU(n) \mapsto$ curve in su(n). It has an inverse, the product integral: $u(t) \mapsto \prod_{0}^{t} \exp u(\tau) d\tau$, curve in $su(n) \mapsto$ curve in SU(n). For constant functions *c* it is simply

$$\prod_{0}^{t} \exp c \, d\tau = \exp(tc),$$

then extends to piecewise constant functions, etc.

• *G* is isomorphic to $L^2(\mathbb{I}, su(n))$ with the group operation $u * v(t) = u(t) + Ad\left(\prod_{0}^{t} \exp u(\tau) d\tau\right) v(t).$

Translations + rotations.

Approach to prove amenability

A sequence (or a net) of probability measures μ_{α} on *G* which converge to invariance *weakly on the universal compact G-space*: for each $f \in \text{RUCB}(G)$, $\int |f^{-g} f| d\mu_{\alpha} \xrightarrow{\alpha} 0$.

Note: the product integral is a uniform isomorphism. Given translations t_1, \ldots, t_n , rotations by r_1, \ldots, r_k , an $\varepsilon > 0$ and RUCB -functions f_1, \ldots, f_n , find μ so that

$$\int \left|f_i(\mathbf{x}) - f_i(r_j \mathbf{x} + t_k)\right| d\mu < \varepsilon, \text{ for all } i, j, k.$$

W.I.o.g. $||t_i|| \le 1$,

- f_i 1-Lipschitz w.r.t. the L^2 -distance,
- t_i are locally constant on small intervals,
- rk are Lipschitz.

The measure

Divide I = [0, 1] into *N* intervals, so that r_k are constant on each to within $\Theta(1/N)$.

Identify $su(n)^N$ with functions constant on intervals, let μ be the uniform measure on the euclidean ball in $su(n)^N$ of radius R = R(N).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Only need to chose R(N).

◆□▶◆□▶◆□▶◆□▶ □ のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 「臣」 のへで

1000 random points are sampled from \mathbb{S}^d , projected to \mathbb{R}^2 . d = 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆ロ▶ ◆母▶ ◆ヨ▶ ◆母▼ 釣々で

1/2 of the mass of the euclidean *n*-ball is concentrated in an equatorial strip of width $\Theta(1/\sqrt{N})$.

If translation is by unit length, ball of $R = \omega(\sqrt{N})$ is a "Følner set":

$$\forall f \in L^{\infty}, \quad \int |f - g f| \, d\mu = o(1).$$

If r_j were locally constant, they would leave μ invariant. They are only locally constant up to 1/N. Need to bound the L^2 -mass transportation $d_{MK}(\mu, r_j \cdot \mu)$. For most points of the ball, all N coordinates are $\Theta(R/\sqrt{N})$.

$$d_{MK}(\mu, r_i \cdot \mu) \leq \sqrt{N \cdot (R/N\sqrt{N})^2} = \frac{R}{N} = o(1) ext{ if } R(N) = o(N).$$

Conclusion

Setting $R(N) = \omega(\sqrt{N}) \cap o(N)$ does it.

- C[∞] case
- loop groups
- Wiener measure
- dim X > 0
- C(X, SU(n)), X a compact space

O nosso MUITO OBRIGADO aos Alcides, Daniel, Danilo e Ruy pela conferência memorável!

MAIS UMA, POR FAVOR !

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●