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Abstract

Our main theorem is a characterization of C*-algebras that have a separating
family of finite-dimensional representations. This characterization makes pos-
sible a solution to a problem posed by Goodearl and Menaul. Specifically, we
prove that the free product of such C*-algebras again has this property.

1 Introduction

A C*-algebra is called residually finite-dimensional (RFD) if it has a separating fam-
ily of finite-dimensional representations. Clearly a C*-algebra is residually finite-
dimensional if it is commutative or finite-dimensional. Also, this property is inher-
ited by subalgebras. We show that a free product of residually finite-dimensional
C*-algebras, possibly amalgamated over units, is residually finite-dimensional. There-
fore, we have lots of new examples, such as Unc

n , the noncommutative unitary groups.
(This is a subalgebra of Mn ∗C C(S1).)

The first consideration of finite-dimensional representations of a free product was
by Choi [1]. He starts with a faithful representation

C(S1) ∗C C(S1) → B(H)
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determined by two unitaries U and V. (This free product is isomorphic to the group
C*-algebra for the free group on two generators.) Choi shows that there is a sequence
of finite-dimensional, unitaries Un and Vn on subspaces of H converging star-strongly
to U and V. This implies that Un and Vn determine a separating sequence of finite-
dimensional representations.

Goodearl and Menaul [4] extend Choi’s result. For example, they consider free
products of the form C(S1) ∗C C∗(G), where G is a finite group. Again, the starting
point is a faithful representation

C(S1) ∗C C∗(G) → B(H).

They show that given any representations of C(S1) or C∗(G) on B(H), there is always
a lift to a C*-algebra they call T (H). Therefore, the free product is seen to be a
subalgebra of T (H). As we shall see in a moment, T (H) is RFD, so the free product is
as well.

Although they do not define it this way, T (H) may be seen to be isomorphic to
the following C*-algebra. Suppose H is separable, with basis {en}. Let pn denote the
projection onto the first n basis vectors. Then T (H) consists of all bounded sequences
(Sn) of operators on H such that pnSnpn = Sn and the star-strong limit of (Sn) exists.
The surjection onto B(H) sends (Sn) to limn→∞ Sn.

Described this way, T (H) has a natural generalization. One replaces {pn} by any net
of projections, on any Hilbert space, such that pλ → I strongly. One then considers
bounded nets (Sλ) that converge star-strongly and satisfy pλSλpλ = Sλ. If all these
projections are finite-dimensional then the resulting C*-algebra is RFD. However, we
find it simpler to state our results, not as lifting problems to this algebra, but directly
in terms of (a modified version of) Fell’s topology [2, 3] on Rep(A,H).

2 RFD representations

We begin by describing a topology on representations that is similar to Fell’s topology
[2, 3].

Definition 2.1 Let A be a C*-algebra andH a Hilbert space. We denote by Rep(A,H)
the set of all (possibly degenerate) representations of A on H, equipped with the
coarsest topology for which the maps

π ∈ Rep(A,H) 7→ π(a)ξ ∈ H

are continuous for all a ∈ A and ξ ∈ H.
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The difference from Fell’s topology is that, for a net πα to converge to π, we require
that

πα(a)ξ → π(a)ξ

for all vectors ξ, whereas in Fell’s topology this is required only for vectors in the
essential space of π.

Definition 2.2 A representation π ∈ Rep(A,H) is called finite-dimensional if its es-
sential space is finite-dimensional. We shall call π residually finite-dimensional (RFD)
if π is in the closure, in Rep(A,H), of the set of finite-dimensional representations.

Definition 2.3 A state f of A is said to be finite-dimensional if the GNS representa-
tion determined by f is finite-dimensional.

We can now state our main theorem. Recall from the introduction that a C*-algebra
is called residually finite-dimensional if it has a separating family of finite-dimensional
representations.

Theorem 2.4 Let A be a C*-algebra. The following are equivalent:

(a) the finite-dimensional states form a dense subset of the state space S(A)

(b) every cyclic representation of A is residually finite-dimensional

(c) every representation of A is residually finite-dimensional

(d) A admits a faithful residually finite-dimensional representation

(e) A is residually finite-dimensional

Before we embark on the proof, we present two lemmas. The first is a reworking of
an idea from [2].

Lemma 2.5 Let H be a Hilbert space and (Hα)α∈Λ be a family of Hilbert spaces indexed
by a directed set Λ. Suppose we are given vectors ξ1, . . . , ξn in H and that for each α ∈ Λ
we choose vectors ξα

1 , . . . , ξα
n in Hα such that

lim
α→∞

〈ξα
i , ξα

j 〉 = 〈ξi, ξj〉

for i, j = 1, . . . , n. Then there is an α0 ∈ Λ and, for each α ≥ α0, there is an isometry
uα from the subspace H0 of H spanned by {ξ1, . . . , ξn} into Hα such that

lim
α→∞

‖uα(ξi)− ξα
i ‖ = 0

for i = 1, . . . , n.
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Proof. Let v : Cn → H0 be the linear map sending each ei, the ith vector of the
canonical basis of Cn, to ξi. Since v is surjective we can choose a right inverse w to v.
For each α ∈ Λ, let vα : Cn → Hα be given by vα(ei) = ξα

i , for i = 1, . . . , n. Observe
that v∗αvα, viewed as an element of Mn(C), converges to v∗v since, for all i and j,

lim
α→∞

〈v∗αvα(ei), ei〉 = lim
α→∞

〈ξα
i , ξα

j 〉 = 〈ξi, ξj〉 = 〈v∗v(ei), ej〉.

Thus, if we let u′α : H0 → Hα be defined by u′α = vαw, we have that

lim
α→∞

u′α
∗
u′α = lim

α→∞
w∗v∗αvαw = w∗v∗vw = idH0 .

Therefore, we can find α0 such that, for α ≥ α0, u′α
∗u′α is invertible. For all such α, set

uα = u′α(u′α
∗
u′α)−1/2.

We then have, for i = 1, . . . , n,

lim
α→∞

‖u′αξi − ξα
i ‖2 = lim

α→∞
〈u′α

∗
u′αξi, ξi〉 − 2Re〈v∗αvαwξi, ei〉+ 〈ξα

i , ξα
i 〉

= 2〈ξi, ξi〉 − 2〈v∗vwξi, ei〉
= 0.

¿From this, it follows easily that

lim
α→∞

‖uαξi − ξα
i ‖ = 0.

Lemma 2.6 Suppose that π is a cyclic representation of A on H, with cyclic vector ξ,
and (πγ)γ∈Γ is a net in Rep(A,H). If

lim
γ→∞

πγ(a)ξ = π(a)ξ

for all a ∈ A, then πγ converges to π in rep(A,H).

Proof. Notice that if b ∈ A and η = π(b)ξ we have

‖πγ(a)η − π(a)η‖ ≤ ‖πγ(a)π(b)ξ − πγ(a)πγ(b)ξ‖+ ‖πγ(ab)ξ − π(ab)ξ‖
≤ ‖a‖‖π(b)ξ − πγ(b)ξ‖+ ‖πγ(ab)ξ − π(ab)ξ‖

which shows that πγ(a) converges to π(a) pointwise over the dense set

{η ∈ H : η = π(b)ξ, b ∈ A}
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The uniform boundedness of {πγ(a) | a ∈ A} then tells us that πγ(a) converges strongly
to π(a) for all a.

We now give the proof of Theorem 2.4.

(a ⇒ b) First, we assume A to be unital. Let π be a cyclic representation of A on H
with cyclic vector ξ and state f. By assumption, there is a net (fα) of finite-dimensional
states converging to f and let (ρα,Hα, ξα) be the corresponding GNS representations.

Given a finite set {a0, a1, . . . , an} of elements of A, in which a0 = 1, observe that

lim
α→∞

〈ρα(ai)ξα, ρα(aj)ξα〉 = 〈π(ai)ξ, π(aj)ξ〉

for all i, j = 1, . . . , n. By Lemma 2.5, there exists a net (uα)α≥α0 of isometries from

H0 = span{π(ai)ξ | i = 0, . . . , n}

into Hα such that
lim

α→∞
‖uαπ(ai)ξ − ρα(ai)ξα‖ = 0. (1)

Assuming the non-trivial case of H infinite-dimensional, we may extend each uα to a
co-isometry onto the finite-dimensional space Hα.

Let πα be the (degenerate) representation of A on H given by

πα(a) = u∗αρα(a)uα.

We claim that for all i we have

lim
α→∞

πα(ai)ξ = π(ai)ξ. (2)

First, by taking i = 0 in (1) we obtain lim ‖uαξ − ξα‖ = 0. Therefore,

‖πα(ai)ξ − π(ai)ξ‖ = ‖u∗αρα(ai)uαξ − u∗αuαπ(ai)ξ‖
≤ ‖ρα(ai)uαξ − uαπ(ai)ξ‖
≤ ‖ρα(ai)uαξ − ρα(ai)ξα‖+ ‖ρα(ai)ξα − uαπ(ai)ξ‖
≤ ‖ai‖‖uαξ − ξα‖+ ‖ρα(ai)ξα − uαπ(ai)ξ‖,

from which (2) follows.
Denote the set {a0, a1, . . . , an} by β. For each such β and for each ε > 0, choose,

from among the πα, a πε,β such that

‖πε,β(ai)ξ − π(ai)ξ‖ < ε.

We thus obtain a net (πε,β) of finite-dimensional representations such that, for all a ∈ A,

lim πε,β(a)ξ = π(a)ξ.
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By Lemma 2.6, this converges to π as a net in Rep(A,H).
In the case that A lacks a unit, let Ã be the unitization of A. The natural inclusion

S(A) → S(Ã) preserves finite-dimensional states so that, if (a) holds for A, it will also
hold for Ã. Our previous work shows that (b) holds for Ã, and hence also for A.

(b ⇒ c) Given an arbitrary representation π of A on a Hilbert space H, write

π =
⊕
λ∈Λ

πλ

where each πλ is a cyclic subrepresentation of π. For each finite subset F ⊆ Λ, we let

πF =
⊕
λ∈F

πλ,

viewed as a degenerate representation on H. It is clear that the net so obtained con-
verges to π. A simple argument now shows that each πF is RFD, and hence so is
π.

(c ⇒ d) This is obvious.

(d ⇒ e) Let π be a faithful RFD representation of A, so that π = lim πα where each
πα is finite-dimensional. If a ∈ A is nonzero, then π(a) 6= 0. But since πα(a) converges
strongly to π(a), some πα(a) must be nonzero.

(e ⇒ a) We assume A has a unit, since the non-unital case follows easily from the
unital case.

Denote by F (A) the set of finite-dimensional states of A. It is a simple matter
to verify that F (A) is a convex subset of S(A). In fact, if f and g are in F (A) then
the GNS representation of a convex combination h = (1 − t)f + tg is equivalent to a
sub-representation of the direct sum of the GNS representations for f and g.

Arguing by contradiction, assume g is in S(A) but not in the weak*-closure of F (A).
Identify the dual of A′

h, the set of self-adjoint continuous linear functionals on A
with the weak* topology, and Ah, the set of self-adjoint elements of A. Now use the
Hahn-Banach theorem to obtain an element a in Ah and a real number r such that
g(a) > r and f(a) ≤ r for all f in F (A).

This implies that for any finite-dimensional representation π of A and any unit
vector ξ, in the space of π, one has 〈π(a)ξ, ξ〉 ≤ r. Therefore π(a) ≤ r and, since the
direct sum of all finite-dimensional representations of A is a faithful representation, by
hypothesis, we have a ≤ r. The fact that g(a) > r is then a contradiction.
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3 Free products

In this section, we give a complete solution to [4, Problem 2.4]. Specifically, we char-
acterize the free product C*-algebras that are residually finite-dimensional.

Our strategy begins with a faithful representation

A ∗B
π→ B(H).

If A and B are RFD, then π|A and π|B can be approximated by nets of finite-
dimensional representations. Unfortunately, these will live on different nets of sub-
spaces. To remedy this, we will use the following lemma to increase the essential
subspaces for the representations in both nets to accommodate each other.

Lemma 3.1 Let π be a non-degenerate representation of a C*-algebra A on the Hilbert
space H and suppose that πα is a net in Rep(A,H) that converges to π. If ρα is another
net (on the same directed set) in Rep(A,H) such that the restriction of each ρα(a) to
the essential space Hα of πα coincides with πα(a) then ρα also converges to π.

Proof. Let pα denote the orthogonal projection onto Hα. We claim that pα converges
strongly to the identity operator (c.f. [3, page 239]). In fact, for ξ ∈ H, a ∈ A and all
α we have

‖π(a)ξ − pα(π(a)ξ)‖ = dist(π(a)ξ,Hα)

≤ ‖π(a)ξ − pα(πα(a)ξ)‖
= ‖π(a)ξ − πα(a)ξ‖

showing that pα converges pointwise to the indentity over the dense set {π(a)ξ | a ∈
A, ξ ∈ H}. Since (pα)α is uniformly bounded the claim is proven.

Observing that ρα(a)pα = πα(a), for a in A and ξ in H, we have

‖ρα(a)ξ − π(a)ξ‖ ≤ ‖ρα(a)ξ − ρα(a)pαξ‖+ ‖πα(a)ξ − π(a)ξ‖
≤ ‖a‖‖ξ − pαξ‖+ ‖πα(a)ξ − π(a)ξ‖

from which we see that ρα(a)ξ converges to π(a)ξ and hence the conslusion.

Theorem 3.2 Let A1 and A2 be C*-algebras. Then A1 ∗A2 is RFD if and only if A1

and A2 are RFD. If both A1 and A2 are unital, then A1 ∗C A2 is RFD if and only if A1

and A2 are RFD.

Proof. The RFD property clearly passes to subalgebras, so both forward implications
are trivial.
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To prove the reverse implication in the unital case, let π be a faithful non-degenerate
representation of A1 ∗C A2 on a Hilbert space H.

For i = 1, 2 let πi be the restriction of π to Ai and take a net (πi
α)α in Rep(A,H) of

finite dimensional-representations converging to πi. (We are justified in using a common
directed set, as in general we may replace both directed sets by their product.) Let
Hi

α be the essential space of πi
α.

For each α, choose a finite-dimensional subspace Kα of H containing both H1
α

and H2
α with dimension a common multiple of dim(H1

α) and dim(H2
α). Let ρi

α be any
representation of Ai with Kα as its essential subspace which restricts to πi

α on Hi
α. For

example, one may take an appropriate multiple of πi
α.

Both π1 and π2 are unital, and so nondegenerate. Using Lemma 3.1 we thus obtain
limα ρi

α = πα.
For each α, let ρα = ρ1

α∗ρ2
α which is a well-defined, finite-dimensional representation

of A1 ∗C A2 since ρ1
α(1) and ρ2

α(1) are both equal to the orthogonal projection onto Kα.
It now follows that limα ρα = π which proves that π, and hence A1 ∗C A2, is RFD.

The proof of the non-unital case is similar, but simpler. As before, take a faithful
representation of A1 ∗ A2 on H. Let πi be the restriction of π to Ai and write πi =
limα πi

α. If one sets πα = πα
1 ∗πα

2 then (πα)α converges to π. This completes the proof.
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