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GOALS:

(1) To study the crossed-product of a C*-algebra by a semigroup of endomorphisms.

(2) To justify the need to reformulate the notion of semigroups of endomorphisms in
order to accomplish (1).

HISTORY

(1978) Arzumanian and Vershik introduce a concrete crossed-product construction using
the Koopmann operator.

(1978) Cuntz states that O2 is the crossed product of UHF2∞ by the “shift” endomor-
phism

a1 ⊗ a2 ⊗ . . . 7→ e⊗ a1 ⊗ a2 ⊗ . . . ,

where e is a minimal projection in M2(C).

(1980) Paschke develops some of Cuntz’s ideas without actually introducing a formal
notion of crossed product by endomorphisms.

(1993) Stacey introduces a general theory of crossed products by endomorphism as uni-
versal C*-algebras for the “covariance condition”

α(x) = S1xS∗1 + . . . SnxS∗n,

where the Si’s are isometries, but gives no recipe to determine the number n of
summands.

(1993) Boyd, Keswani, and Raeburn study faithful representations of crossed products by
endomorphisms.

(1994) Adji, Laca, May, and Raeburn study Toeplitz algebras of ordered groups using
semigroup crossed product.

(1996) (Took a while to be published) Murphy studied abstract notion of endomorphism
crossed products already observing that the case in which the range of α is hered-
itary works better.

Other names: Doplicher and Roberts, Deaconu, Fowler, Hirshberg, Khoshkam and Skan-
dalis, Larsen, Muhly and Solel, ...
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Main idea of these constructions is to start with a C*-algebra A, a semigroup Γ, and an
action

α : Γ → End(A).

One wants to form a bigger C*-algebra containing A and a semigroup of isometries
{Sg}g∈Γ, such that

αg(a) = SgaS∗g , ∀ g ∈ Γ, ∀ a ∈ A.

This works well when the range of each αg is a hereditary subalgebra, but does not give
good results in other cases.

IRREVERSIBLE SYSTEMS

Consider a classical irreversible system, that is, X is a compact space and

T : X → X

is a surjective (perhaps non-injective) continuous map.

We imagine that the points of X describe the possible states of a physical system and
that T represents time evolution:

x → state of the system today,
T (x) → state of the system tomorrow.

Let f be a continuous function (observable)

f : X → C.

We imagine that f describes some measurement made on the system, so that f(x) is
the number measured when the system is in state x. Thus

f(x) → measurement today,
f(T (x)) → measurement tomorrow.

Irreversibility means that if the system is now in state x, one does not know in which
state the system was yesterday (T is not injective). Any element in

T−1(x) =
{
y ∈ X : T (y) = x

}
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is a possibility.

Since there is no certainty about yesterday’s state one could introduce a probability
measure µx on T−1(x) describing the likelihood of each alternative.

Lef f be an observable. The average measurement yesterday, given that the system is
in state x today, is then given by

L(f)
x

:=
∫

T−1(x)

f(y) dµx(y).

We then have two operators defined on the algebra of all observables

f 7→ α(f) = f ◦T (deterministic future evolution),
f 7→ L(f) (probabilistic past evolution).

Observe that α is an endomorphism of the algebra A = C(X), and L is a transfer
operator for α, in the sense that

(1) L is a positive operator on A,

(2) L(aα(b)) = L(a)b, ∀ a, b ∈ A.

In the paper “A New Look at The Crossed-Product of a C*-algebra by an Endomor-
phism” I argued that, in order to define the crossed-product of A by an endomorphism
α, one needs to provide a transfer operator beforehand. That is, the endomorphism
itself is not enough information. The probabilistic past evolution L is as important as
the deterministic future evolution α!

Given a C*-algebra, an endomorphism α, and a transfer operator L, the crossed-product

Aoα,LZ

is the universal C*-algebra generated by A and an isometry S subject to

Sa = α(a)S, and S∗aS = L(a), ∀ a ∈ A,

plus some other relations called “redundancies”.

How do we generalize this to groups other than Z?

Back to the above situation let us consider, for every n ∈ Z, the map

Vn : C(X) → C(X)
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given by

Vn(f) =

 αn(f), if n ≥ 0,

L−n(f), if n < 0.

So Vn(f) describes both the past and future evolution of f , depending on whether n is
positive or negative. The whole story is thus told by the collection {Vn}n∈Z.

Before attempting to generalize, let us list the crucial properties of V :

Proposition. For all g, h ∈ Z one has that

(a) V0 = idC(X),

(b) VgVh Vh−1 = Vg+h Vh−1 ,

(c) Vg−1 VgVh = Vg−1 Vg+h.

(d) Vg(1) = 1,

(e) Vg(A+) ⊆ A+,

(f) Vg(ab) = Vg(a)Vg(b), for every a in the range of Vg−1 , and for every b in A.

Observe that (a), (b), and (c) say that V is a partial representation of G in the algebra
B(A) of all bounded operators on A.

Definition. Let G be a group and let A be a C*-algebra. An interaction group is
a collection of bounded linear operators Vg : A → A, for all g in G, satisfying (a)-(f)
above.

In case the group operation is denoted multiplicatively, with 1 denoting the unit group
element, we must replace (a) by “V1 = idC(X)”, and in (b) and (c) we must replace
“g + h” by “gh”.

For those of you who were at my talk on “Interactions” last year, notice that the above
axioms imply that (Vg, Vg−1) is an interaction for every g.

Remark. Given an interaction V , as above, let P be a subsemigroup of G. Suppose
that for every p ∈ P one has that Vp is injective, then

(a) {Vp}p∈P is a semigroup of endomorphisms of A,

(b) Vp−1 is a transfer operator for Vp, for every p ∈ P .

It is in this sense that the notion of interaction groups relate to the usual notion of
semigroups of endomorphisms.
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Our main point is that a semigroup of endomorphisms is not enough information to
describe the whole system. One needs to know how do the other group elements relate
to A, and this is given by all of the Vg.

Extension Problem. Given a semigroup {αg}g∈P of endomorphisms, find an inter-
action group V such that Vp = αp, for all p ∈ P .

In order to solve this one must pick Vp−1 to be a transfer operator for Vp, thus extending
things to P ∪P−1. But notice that this is not the end of the story in case G 6= P ∪P−1.

We’ll say more about this later.

COVARIANT REPRESENTATIONS

From now on we fix an interaction group V .

Definition. A covariant representation of (A,G, V ) in a C*-algebra B is a pair (π, s),
where

π : A → B

is a *-homomorphism and
s : G → B

is a *-partial representation such that

sgπ(a)sg−1 = π(Vg(a))sgsg−1 ,

for all g ∈ G, and a ∈ A.

Recall that s is a *-partial representation if

(i) s1 = 1B ,

(ii) s∗g = sg−1 ,

(iii) sgsh sh−1 = sgh sh−1 ,

(iv) sg−1 sgsh = sg−1 sgh,

This implies, in particular, that each sg is a partial isometry.

Example. Suppose that ϕ is a state on A which is V -invariant, meaning that

ϕ(Vg(a)) = ϕ(a).
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Let (πϕ,Hϕ, ξϕ) be the GNS representation of A. It is easy to show that, for every
g ∈ G, there exists a bounded linear operator sϕ(g) on H such that

sϕ(g) : πϕ(a)ξϕ 7→ πϕ(Vg(a))ξϕ.

Then (πϕ, sϕ) is a covariant representation!

AMPLIFICATION

Denote the left regular representation of G by

λ : G → U(`2(G)).

Given any covariant representation (π, s) of (A,G, V ) in the C*-algebra B, we can create
another one by putting

π ⊗ 1 : A → B ⊗B(`2(G)),

s⊗ λ : G → B ⊗B(`2(G)).

We say that (π ⊗ 1, s⊗ λ) is the amplification of (π, s).

In particular, given an invariant state ϕ, we can consider the amplification (πϕ⊗1, sϕ⊗λ).

Theorem / Ad Hoc Definition. Assuming that G is amenable, let ϕ be a faithfull
invariant state. The closed *-subalgebra of operators on Hϕ ⊗ `2(G) generated by{

πϕ(a)⊗ 1 : a ∈ A
}
∪

{
sϕ(g)⊗ λ(g) : g ∈ G

}
does not depend on the choice of ϕ and will be called the crossed-product of A by G
under V . Notation: AoV G.

We now wish to give an alternate definition of the crossed-product which does not depend
on invariant states.

THE TOEPLITZ ALGEBRA

Let T (A,G, V ) denote the universal C*-algebra generated by

A ∪̇ {sg : g ∈ G}

(here the sg are just symbols) subject to the relations which make the pair (i, s) a
covariant representation, where i is the natural inclusion of A.
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Notice that among these relations we have included

sgasg−1 = Vg(a)sgsg−1 .

One can use a well known paper by Blackadar on Shape Theory to prove that such an
algebra exists.

Since partial representations do not perfectly obey the group law we often need to work
with products of the form

sg1sg2 . . . sgn

for each “word”
α = (g1, g2, . . . , gn)

of group elements.

Definition. Given α as above let

(i) Mα = Asg1sg2 . . . sgn
A, and

(ii) Zα = Asg1Asg2A . . . Asgn
A (closed linear span).

Observe that the covariance relation

sgasg−1 = Vg(a)sgsg−1

provides no help to deal with Zα! But at least we have:

Theorem. If α = (g1, . . . , gn) and β = (h1, . . . , hm) are words in G then

ZαMβ ⊆Mαβ ,

provided that µ(α−1) ⊆ µ(β).

Explanation:

αβ means concatenation of words,

α−1 := (g−1
n , . . . , g−1

1 ), and

µ(β) := {1, h1, h1h2, h1h2h3, . . . , h1h2h3 . . . hn}.

Corollary. Let α be a word in G and set

Kα =
∑

Zβ
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where β = (h1, . . . , hm) range in the set of all words such that µ(β−1) ⊆ µ(α), and
h1 . . . hm = 1. Then Kα is a closed *-subalgebra of T (A,G, V ) and

KαMα ⊆Mα.

Definition.

(i) A redundancy is an element x ∈ Kα such that

xMα = 0.

(ii) The redundancy ideal is the closed two sided ideal of T (A,G, V ) generated by
the set of all redundancies.

(iii) The crossed-product of A by G under V is the C*-algebra AoV G obtained as the
quotient of T (A,G, V ) by the redundancy ideal.

Theorem. If there exists a faithfull invariant state then the two definitions of the
crossed-product coincide.

SEMIGROUPS OF ENDOMORPHISMS

In this section we will let A be a unital C*-algebra, P be a subsemigroup of a group G
and

α : P → End(A)

be a semigroup action by means of unital endomorphisms. We will also let ϕ be a faithfull
α-invariant state on A.

Let (πϕ,Hϕ, ξϕ) be the GNS representation of A. Again it is easy to show that, for
every p ∈ P , there exists an isometry sp on H such that

sp : πϕ(a)ξϕ 7→ πϕ(αp(a))ξϕ.

In fact {sp}p∈P is a semigroup of isometries.

Another Ad Hoc Definition. The (reduced) crossed-product AoαP will be defined
as the closed *-subalgebra of operators on Hϕ ⊗ `2(G) generated by{

πϕ(a)⊗ 1 : a ∈ A
}
∪

{
sp ⊗ λp : p ∈ P

}
,
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where λ is the left-regular representation of G.

This definition is modeled on Arzumanian and Vershik’s original 1978 definition. Observe
that it depends on ϕ!

How do all of this relate to interaction groups?

Theorem. If G is amenable and if G = P−1P then there exists at most one interaction
group V extending α and leaving ϕ invariant, in which case we have

AoαP ' AoV G.

In particular this says that, if such an interaction group exists, it may somehow be
constructed from the semigroup action and the invariant state!

Also notice that the left-hand side cannot be defined without using ϕ, while the right-
hand side depends only on V !

LARSEN’S CONSTRUCTION

Larsen has proposed to consider essentially the following situation. Let, as before,

α : P → End(A)

be a semigroup action by unital endomorphisms. Also for each p ∈ P , let Lp be a
transfer operator relative to αp such that Lp(1) = 1, and

LpLq = Lqp, ∀ p, q ∈ P.

The extension question may be modified as follows:

Question. Is there an interaction group V such that αg = Vg, and Lg = Vg−1 , for all
g in P?

The following is a partial answer:

Theorem. Suppose that G = P−1P . Then the above question has an afirmative
answer if and only if αgLg commutes with αhLh, for every g, h ∈ P . In this case the
extension V is unique and if g ∈ G is written as

g = p−1q,
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with p, q ∈ P , one has that
Vg = Lpαq.

The reader acquainted with Larsen’s paper is perhaps curious as to what is the precise
relationship between the crossed-products.

However, while there may be some relationship between T (A,G, V ) and the Toeplitz
algebra defined by Larsen it seems that our notion of redundancy is significantly different
from hers so it is unlikely that the crossed-products will coincide.

AN EXAMPLE

Let Q∗
+ be the multiplicative group of positive non-zero rationals and let N∗ = N \ {0}

be the (multiplicative) subsemigroup of integers.

Let T be the complex unit circle and for every integer n ∈ N∗ let

θn : z ∈ T 7→ zn ∈ T.

Since θnθm = θnm we get an action of N∗ on T, and hence also an action α by
endomorphisms of C(X):

αn : f 7→ f ◦ θn.

Given n ∈ N∗, let Ln be the operator on C(X) given by

Ln(f)
z

=
1
n

∑
wn=z

f(w), ∀ f ∈ C(T), ∀ z ∈ T.

It is easy to show that Ln is a transfer operator for αn and moreover that αnLn and
αmLm commute for every n and m. Thus, by the Theorem above, if

q =
n

m

is any rational number the map
Vq = Lmαn

does not depend on the representation of q as a fraction and moreover one has that
{Vq}q∈Q∗+ is an interaction group on C(T).

Here is a formula for Vq:

Vq(f)
z

=
1
m

∑
wm=z

f(wn)
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Notice that f is computed at the nth power of all mth roots of z, that is on all branching
values of zn/m.

Leaving this aside for a while let

G =
{
(x, q, y) ∈ T×Q∗

+ ×T : ∃n, m ∈ N∗, q =
n

m
, xn = ym

}
.

(this is to suggest that y = x
n
m ). This becomes a groupoid with the operations

(x, q, y)(y, p, z) := (x, pq, z)

and
(x, q, y)−1 := (y, q−1, x).

Theorem. The groupoid C*-algebra C∗(G) is isomorphic to the crossed-product
C(T)oVQ

∗
+.

More topics:

(i) Embedding A into AoV G

(ii) Counter-example for extension problem (expectations do not commute)

(iii) Examples out of action and conditional expectation.

(iv) Examples out of lattice ordered groups.
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