NONCOMMUTATIVE CARTAN SUB-ALGEBRAS
OF C*-ALGEBRAS

Ruy Exel
Floriandpolis

1 - Definition. A *-subalgebra B of a von Neumann algebra A is called a
Cartan subalgebra if

(i) B is maximal abelian,

(ii) the normalizer of B in A, namely N(B) := {u € U(A) : uBu* = B}
generates A,

(iii) there exists a faithful normal conditional expectation of A onto B. //

2 - Theorem. [Feldman and Moore, 1977] The most general example of a
Cartan subalgebra of a von Neumann algebra with separable predual is

L (X, u) CW*(R,0),

where R is a countable standard measured equivalence relation on (X, 1), and
o is a two-cocycle. //

In the paper:
A. Kumjian,
On C*-diagonals,
Canad. J. Math. 38 (1986), no. 4, 969-1008.

a different definition of normalizer, more suitable to study C*-algebras, was
introduced:



3 - Definition. [Kumjian] If B is a closed *-subalgebra of a C*-algebra A, the
normalizer of B in A is the set

N(B):={a€ A:aBa* C B, a"Ba C B}. J/

This was in turn based on a previous definition by Renault in his thesis, where
partial isometries were considered.

In the paper mentioned above Kumjian gave a generalization of Feldman and
Moore's Theorem to the context of C*-algebras. Kumjian's hypotheses are
rather strong and they imply, in particular, that pure states extend uniquely
from the subalgebra.

Recently Renault found an extension of Kumjian's ideas:

4 . Definition. [Renault] A *-subalgebra B of a C*-algebra A is called a C*-
Cartan subalgebra if

(i) B contains an approximate unit of A,
(ii) B is maximal abelian,
(iii) N(B) (Kumjian's definition) generates A,
)

(iv) there exists a faithful conditional expectation of A onto B. //

5 - Theorem. [Renault] The most general example of a C*-Cartan subalgebra
of a separable C*-algebra is

Co(G'Y) € Cra(G,0),

where GG is a Hausdorff, second countable, essentially principal, étale groupoid
and o is a two-cocycle. //



6 - Corollary. [Renault] If B is a C*-Cartan subalgebra of a separable C*-
algebra A then the conditional expectation from A to B is unique. //

We wish to find generalizations of the last two results to situations in which B
is not abelian.

Observe that

(Max) BBNACB
<= B is maximal abelian
(AB) B is abelian

One could attempt to define a generalized Cartan (?) subalgebra by replacing
maximal abeliannes in the definition of a C*-Cartan subalgebra with (Max).

Recall:

7 - Theorem. [Takesaki's Book 1X.4.3] Let B be a weakly closed *-subalgebra
of a von Neumann algebra A such that B'N A C B. Then there exists at most
one normal conditional expectation from A to B. //

This indicates that perhaps the Corollary above may be generalized by elimi-
nating condition (AB).

8 - Example. With C denoting the algebra of compact operators on an infinite
dimensional Hilbert space, let A = C([0,1]) ® K, and B=1® K.

Notice that f € B’ N A if and only of
f(@)k=kf(x), Vxel0,1], Vkelk,
which implies that f = 0, and hence f € B. Thus B N A C B.

It is easy to prove that in fact the pair (A, B) is a generalized Cartan pair
according to the proposed (?) definition above.

3



However, there are lots of conditional expectations from A to B. Just take any
measure 4 on [0, 1] and put

E = (fol du(m)) @I : C(0,1]) 9Kk — 18 K.

This is bad news! So we must reformulate everything if we are to obtain a
positive result.

Virtual commutants.

9 - Definition. Let B be a closed *-subalgebra of a C*-algebra A. A virtual
commutant of B in A is a pair (J, ¢), where J is an ideal in B, and

¢p:J— A
is a B-bimodule map. //

10 - Example. Suppose BC AC (C,and let z € B'NC. Put

p:be J—bx e A,

where
J={be B:bx e A}.

Then (J, ¢) is a virtual commutant. Moreover any virtual commutant is of this
form! //



11 - Definition. A subalgebra B of a C*-algebra A is said to satisfy condition
(Max’) if for every virtual commutant (J,¢) of B in A, the range of ¢ is
contained in B. //

One has that
(Max’) = (Max),

and although (Max) and (Max’) are not equivalent, it is easy to prove that
(Max’+AB) < (Max+AB),

so (Max’) is a natural condition to consider.

We thus propose:

12 . Definition. B C A is a generalized Cartan subalgebra if it satisfies all
of the above conditions of a C*-Cartan subalgebra, except that in place of
maximal abeliannes we require only (Max’). //

13 - First Main Theorem. If B is a generalized Cartan subalgebra of a sep-
arable C*-algebra A then the conditional expectation from A to B is unique.

/

We now wish to describe our generalization of Feldman—Moore—Kumjian—Renault}j
to the above context. As it stands it is obviously impossible since the unit space
of a groupoid leads to an abelian algebra!

So we need to use a generalization of the notion of groupoids in which the unit
space is honcommutative!

Fortunately this exists. It is Sieben’s notion of Fell bundles over inverse semi-
groups:



14 - Definition. [Sieben, talk at Groupoid Fest, 1998, unpublished] Let S be
an inverse semigroup. A Fell bundle over S is a quadruple

A= <{As}s€S, {Ns,t}s,teSa {Stars}5657 {jt,s}s,tGS,s§t>

where, for each s,t € S,

(a) A is a complex Banach space,

(b) pse: As x Ay — Ag is a bilinear map,

(c) starg : A; — Ay« is a conjugate-linear isometric map, and
(d)

Jt.s 1+ As = A is a linear isometric map for every s < t.

It is moreover required that for every r,s,t € S, and every a € A,, b € Aq,
and c € Ay,

(i) (ab)c = a(be),
(ii) ( ) = b*a”,
(iii) a
(iv) Hab\
(v) |
)
1)
)

(vi) aa* >0, mBW.

(vii

(viii) if » <7/, and s < &, then the diagrams

if r <s <t then j;, = jt s 0 Jsr,

Hr,s star
A x A, o4, A, SR g
jr/,rxjs/,s J/ l -77’ s!,rs and js/,s \l/ \L js’,s
Kot st star
AT’/ X ASI — A ’g! AS/ _f/ o/*

commute. //

Given such a Fell bundle one may define both a full cross-sectional C*-algebra
C*(A) and a reduced cross-sectional C*-algebra C ;(A).

In either case the algebra is generated by a representation of the Aj's and, if
s <'t, one has that “A, C A;”.



Why does this generalize groupoids?

If G is an étale groupoid then the collection of all open slices (also called
bisections or G-sets) is an inverse semigroup.

For every slice U C G, let Ay be the set of elements in C*(G) supported in U.
Then {Ay}y is a Fell bundle and its cross-sectional C*-algebra is isomorphic
to C*(G). If G is second countable then one may restrict to a countable
subsemigroup of all slices.

Reference:
R. Exel,
Inverse semigroups and combinatorial C*-algebras,
Bull. Braz. Math. Soc. (N.S.), 39 (2008), 191 - 313.

Most likely this also holds for twisted groupoids as well.

15 - Second Main Theorem. If “B C A" is a generalized Cartan pair, with A
separable, then there exists a Fell bundle A over a countable inverse semigroup
S and an isomorphism from A to C* ,(A) which carries B onto C*(£), where
& is the restriction of A to the idempotent semilattice of S. //

Highlights of the proof.

Fix a generalized Cartan pair “B C A". Recall that

N(B):={a€ A:aBa™ C B, a"Ba C B}.

Observe that N(B) is not a linear subspace.



16 - Definition. A slice is any closed linear subspace M C N(B), such that
BM,MBC M. J

If a € N(B) then BaB is a slice containing a. Therefore every element of
N (B) is contained in some slice.

Since N(B) is supposed to generate A, one has that

A= > M.

MeGa4 B

If M is a slice then M*M C B, so M may be viewed as a right Hilbert
B-module with inner product

(m,n) =m*n, Vm,n¢€ M.

By Kasparov's stabilization Theorem there exists a basis, that is, a sequence
{u;}ien in M such that

m = Zu@ (uj, m) = Zuzufm, Vm e M.

i€eIN teN

Let P : A — B be the conditional expectation (required by definition of Cartan
subalgebra).

Here is the most important computation of this whole program: for m,n € M



= P(iuzufm)P(n*) =
= P(m)P(n")

This proves:

17 - Lemma. The series

> Plui)P(u;)

converges in the strict topology of the multiplier algebra of R(M) = MM*
(closed linear span) and if 7 is the sum then

rmn® = P(m)P(n*) =mn*rt, VYm,n € M.
Therefore 7 lies in the center of said multiplier algebra. //
With m = n we have
! 2mn 12 = P(m) P(m”),
from where we deduce that:

18 - Corollary. If M is a slice then for every m € M one has that ||7!/2

|P(m)||, and hence the map

m|| =

¢: P(m)— /2m

is well defined and extends to a map defined on P(M) which is a virtual
commutant. //

Since we are assuming (Max’) we conclude that 7'/2m € B, for every m € M,
and hence also that 7M C B.

We then need a technical fact:



19 - Proposition. P(M) C tMM* (closed linear span). //

This implies that
PM)CTMM*=MM*t=M(TM)* C MB* C M.
Therefore M is invariant under P! Hence
M = Im(P|y) @ Ker(P|n)
= (BNM) & (Ker(P)N M)

= (BnM)a (Bn ]\4)L (as Hilbert Modules).

So P is detemined on M, and uniqueness follows because A=), s, , M.

Fell bundles from generalized Cartan pairs.

As we have already seen, a slice is any closed linear subspace M C N(B) that
is a B-bimodule.

If M and N are slices then M N (closed linear span) is also a slice and hence
the set G 4 g formed by all slices becomes a semigroup.

It is elementary to check that M™ is a slice for each slice M.
In addition, given a slice M we have that
MM*M C MB C M.

Thus M is a right Hilbert module over M* M so, by Cohen-Hewitt, M M*M =
M. Therefore G 4 g is actually an inverse semigroup.

The Fell bundle is then obvious: For each slice M put Ay; = M, and hence
{AM}MEGA’B
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is a Fell bundle.

When dealing with inverse semigroups there is often information in excess, so
one may hope to reduce the size of G4 p.

20 - Theorem. Let G be a *-subsemigroup of & 4 g such that

(i) A= ZMEG M,
(ii) for every M, N € G, and every a € M N N, there exists K € G such that
ae KCMNON.

Consider the Fell bundle
A= {AM}MGG

and the restriction of A to the idempotent semilattice of S
E={Am}mer®)

Then C* ,(A) is isomorphic to A via an isomorphism which carries C*(&) onto

B. /

Since A is separable, one may easily find a separable G satisfying the conditions
above!

Construction of the algebras.

Let us suppose we are given a Fell bundle A = {A;};cs over the inverse
semigroup S.

21 - Definition. The full cross-sectional C*-algebra of A, denoted C*(.A), is
defined to be the universal C*-algebra generated by the disjoint union

U 4.,

subject to the relations given by the multiplication and adjoint operations above,
and also such that whenever s < ¢, and a, € A, one has that

as = jt,s (CLS).
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Easy to show this exists. As always one should provide representations to show
it is nontrivial.

e Special Case: Every element in S is idempotent.

This is to say that S is a semilattice. Given e, f € S, pick a € A.. Then
ef < f, so may speak of the composition

bEAfHabEAef‘MAf.

This defines a map A, — M(Ay) (multiplier algebra), hence a map

Ae t A — [ [ M(4y).
f

22 - Proposition. C*(A) is isomorphic to the closed *-subalgebra generated
by U.cg Ae(Ae).

e General Case.

Given A, consider the restriction £ = {Ac}ccp(s), Where E(S) is the idempo-
tent semilattice of S.

By case above we have a nice picture of C*(£), so may use it as a starting
point for analyzing C*(A).

Fell bundles over groups suggest: construct a Hilbert module over C*(£), and
a regular (7) representation of C'*(.A) as operators on this Hilbert module.

Big trouble: regular representations require conditional expectations, but there
is none in sight (this is related to similar headaches in non-Hausdorff groupoids).

Somehow it is still possible to induce representations, which is basically the
same as extending states. Here is how to do it: pick a state ¢ on C*(&).
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Suppose that s € S is such that s > e, for some idempotent e. Then se = ¢,
SO

A A, C A, C CH(E).

Using an approximate unit {u;} for A, define
¢°: As — C

by
¢°(a) = lim ¢(au;).

Thus one gets functionals on each Ag, which put together gives

@:@AS—ND.

Assuming that the initial state ¢ is pure, and with a lot more work, it is possible
to prove that ® is positive and vanishes on
as(ss - jt,s(as)(sta

so ¢ factors through a state on C*(A).

23 - Definition. The reduced C*-algebra of A, denoted C* ,(.A), is the image
of C*(A) under the direct sum of all GNS representations associated to the
®’s obtained above.

24 - Corollary. The “inclusion” A, — C*(A) is one-to-one.
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25 - Corollary. If s1,s9,...5s, are pairwise disjoint elements in .S, then
n
@Asi — C7(A)
i=1

IS one-to-one.

THE END
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