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1 ·Definition. A *-subalgebra B of a von Neumann algebra A is called a
Cartan subalgebra if

(i) B is maximal abelian,

(ii) the normalizer of B in A, namely N(B) := {u ∈ U(A) : uBu∗ = B}
generates A,

(iii) there exists a faithful normal conditional expectation of A onto B. //

2 ·Theorem. [Feldman and Moore, 1977] The most general example of a
Cartan subalgebra of a von Neumann algebra with separable predual is

L∞(X, µ) ⊆ W ∗(R, σ),

where R is a countable standard measured equivalence relation on (X, µ), and
σ is a two-cocycle. //

In the paper:

A. Kumjian,
On C*-diagonals,
Canad. J. Math. 38 (1986), no. 4, 969–1008.

a different definition of normalizer, more suitable to study C*-algebras, was
introduced:
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3 ·Definition. [Kumjian] If B is a closed *-subalgebra of a C*-algebra A, the
normalizer of B in A is the set

N(B) := {a ∈ A : aBa∗ ⊆ B, a∗Ba ⊆ B}. //

This was in turn based on a previous definition by Renault in his thesis, where
partial isometries were considered.

In the paper mentioned above Kumjian gave a generalization of Feldman and
Moore’s Theorem to the context of C*-algebras. Kumjian’s hypotheses are
rather strong and they imply, in particular, that pure states extend uniquely
from the subalgebra.

Recently Renault found an extension of Kumjian’s ideas:

4 ·Definition. [Renault] A *-subalgebra B of a C*-algebra A is called a C*-
Cartan subalgebra if

(i) B contains an approximate unit of A,

(ii) B is maximal abelian,

(iii) N(B) (Kumjian’s definition) generates A,

(iv) there exists a faithful conditional expectation of A onto B. //

5 ·Theorem. [Renault] The most general example of a C*-Cartan subalgebra
of a separable C*-algebra is

C0

(
G(0)

)
⊆ C∗

red(G, σ),

where G is a Hausdorff, second countable, essentially principal, étale groupoid
and σ is a two-cocycle. //
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6 ·Corollary. [Renault] If B is a C*-Cartan subalgebra of a separable C*-
algebra A then the conditional expectation from A to B is unique. //

We wish to find generalizations of the last two results to situations in which B
is not abelian.

Observe that

(Max) B′ ∩A ⊆ B

(Ab) B is abelian

 ⇐⇒ B is maximal abelian

One could attempt to define a generalized Cartan (?) subalgebra by replacing
maximal abeliannes in the definition of a C*-Cartan subalgebra with (Max).

Recall:

7 ·Theorem. [Takesaki’s Book IX.4.3] Let B be a weakly closed *-subalgebra
of a von Neumann algebra A such that B′∩A ⊆ B. Then there exists at most
one normal conditional expectation from A to B. //

This indicates that perhaps the Corollary above may be generalized by elimi-
nating condition (Ab).

8 · Example. With K denoting the algebra of compact operators on an infinite
dimensional Hilbert space, let A = C([0, 1])⊗K, and B = 1⊗K.

Notice that f ∈ B′ ∩A if and only of

f(x)k = kf(x), ∀x ∈ [0, 1], ∀ k ∈ K,

which implies that f = 0, and hence f ∈ B. Thus B′ ∩A ⊆ B.

It is easy to prove that in fact the pair (A,B) is a generalized Cartan pair
according to the proposed (?) definition above.
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However, there are lots of conditional expectations from A to B. Just take any
measure µ on [0, 1] and put

E =
(∫ 1

0
dµ(x)

)
⊗ I : C([0, 1])⊗K −→ 1⊗K.

This is bad news! So we must reformulate everything if we are to obtain a
positive result.

Virtual commutants.

9 ·Definition. Let B be a closed *-subalgebra of a C*-algebra A. A virtual
commutant of B in A is a pair (J, φ), where J is an ideal in B, and

φ : J → A

is a B-bimodule map. //

10 · Example. Suppose B ⊆ A ⊆ C, and let x ∈ B′ ∩ C. Put

φ : b ∈ J 7→ bx ∈ A,

where

J = {b ∈ B : bx ∈ A}.

Then (J, φ) is a virtual commutant. Moreover any virtual commutant is of this
form! //
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11 ·Definition. A subalgebra B of a C*-algebra A is said to satisfy condition
(Max′) if for every virtual commutant (J, φ) of B in A, the range of φ is
contained in B. //

One has that

(Max′) ⇒ (Max),

and although (Max) and (Max′) are not equivalent, it is easy to prove that

(Max′+Ab) ⇔ (Max+Ab),

so (Max′) is a natural condition to consider.

We thus propose:

12 ·Definition. B ⊆ A is a generalized Cartan subalgebra if it satisfies all
of the above conditions of a C*-Cartan subalgebra, except that in place of
maximal abeliannes we require only (Max′). //

13 · First Main Theorem. If B is a generalized Cartan subalgebra of a sep-
arable C*-algebra A then the conditional expectation from A to B is unique.
//

We now wish to describe our generalization of Feldman–Moore–Kumjian–Renault
to the above context. As it stands it is obviously impossible since the unit space
of a groupoid leads to an abelian algebra!

So we need to use a generalization of the notion of groupoids in which the unit
space is noncommutative!

Fortunately this exists. It is Sieben’s notion of Fell bundles over inverse semi-
groups:
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14 ·Definition. [Sieben, talk at Groupoid Fest, 1998, unpublished] Let S be
an inverse semigroup. A Fell bundle over S is a quadruple

A =
(
{As}s∈S , {µs,t}s,t∈S , {stars}s∈S , {jt,s}s,t∈S, s≤t

)
where, for each s, t ∈ S,

(a) As is a complex Banach space,

(b) µs,t : As ×At → Ast is a bilinear map,

(c) stars : As → As∗ is a conjugate-linear isometric map, and

(d) jt,s : As ↪→ At is a linear isometric map for every s ≤ t.

It is moreover required that for every r, s, t ∈ S, and every a ∈ Ar, b ∈ As,
and c ∈ At,

(i) (ab)c = a(bc),

(ii) (ab)∗ = b∗a∗,

(iii) a∗∗ = a,

(iv) ‖ab‖ ≤ ‖a‖‖b‖,
(v) ‖aa∗‖ = ‖a‖2,
(vi) aa∗ ≥ 0, in Brr∗ .

(vii) if r ≤ s ≤ t, then jt,r = jt,s ◦ js,r,

(viii) if r ≤ r′, and s ≤ s′, then the diagrams

Ar ×As
µr,s−→ Ars

jr′,r×js′,s ↓ ↓ jr′s′,rs

Ar′ ×As′
µr′,s′−→ Ar′s′

and

As
stars−→ As∗

js′,s ↓ ↓ js′,s

As′
stars′−→ As′∗

commute. //

Given such a Fell bundle one may define both a full cross-sectional C*-algebra
C∗(A) and a reduced cross-sectional C*-algebra C∗

red(A).

In either case the algebra is generated by a representation of the As’s and, if
s ≤ t, one has that “As ⊆ At”.
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Why does this generalize groupoids?

If G is an étale groupoid then the collection of all open slices (also called
bisections or G-sets) is an inverse semigroup.

For every slice U ⊆ G, let AU be the set of elements in C∗(G) supported in U .
Then {AU}U is a Fell bundle and its cross-sectional C*-algebra is isomorphic
to C∗(G). If G is second countable then one may restrict to a countable
subsemigroup of all slices.

Reference:

R. Exel,
Inverse semigroups and combinatorial C*-algebras,
Bull. Braz. Math. Soc. (N.S.), 39 (2008), 191 - 313.

Most likely this also holds for twisted groupoids as well.

15 · Second Main Theorem. If “B ⊆ A” is a generalized Cartan pair, with A
separable, then there exists a Fell bundle A over a countable inverse semigroup
S and an isomorphism from A to C∗

red(A) which carries B onto C∗(E), where
E is the restriction of A to the idempotent semilattice of S. //

Highlights of the proof.

Fix a generalized Cartan pair “B ⊆ A”. Recall that

N(B) := {a ∈ A : aBa∗ ⊆ B, a∗Ba ⊆ B}.

Observe that N(B) is not a linear subspace.
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16 ·Definition. A slice is any closed linear subspace M ⊆ N(B), such that
BM, MB ⊆ M . //

If a ∈ N(B) then BaB is a slice containing a. Therefore every element of
N(B) is contained in some slice.

Since N(B) is supposed to generate A, one has that

A =
∑

M∈SA,B

M.

If M is a slice then M∗M ⊆ B, so M may be viewed as a right Hilbert
B-module with inner product

〈m,n〉 = m∗n, ∀m,n ∈ M.

By Kasparov’s stabilization Theorem there exists a basis, that is, a sequence
{ui}i∈N in M such that

m =
∑
i∈N

ui 〈ui,m〉 =
∑
i∈N

uiu
∗
i m, ∀m ∈ M.

Let P : A → B be the conditional expectation (required by definition of Cartan
subalgebra).

Here is the most important computation of this whole program: for m,n ∈ M

∞∑
i=1

P (ui)P (u∗i )mn∗ =

=
∞∑

i=1

P (ui)P (u∗i mn∗) =

=
∞∑

i=1

P (ui)u∗i mP (n∗) =
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=
∞∑

i=1

P (uiu
∗
i m)P (n∗) =

= P
( ∞∑

i=1

uiu
∗
i m

)
P (n∗) =

= P (m)P (n∗).

This proves:

17 · Lemma. The series ∑
i∈N

P (ui)P (u∗i )

converges in the strict topology of the multiplier algebra of R(M) = MM∗

(closed linear span) and if τ is the sum then

τmn∗ = P (m)P (n∗) = mn∗τ, ∀m,n ∈ M.

Therefore τ lies in the center of said multiplier algebra. //

With m = n we have

τ1/2mm∗τ1/2 = P (m)P (m∗),

from where we deduce that:

18 ·Corollary. If M is a slice then for every m ∈ M one has that ‖τ1/2m‖ =
‖P (m)‖, and hence the map

φ : P (m) 7→ τ1/2m

is well defined and extends to a map defined on P (M) which is a virtual
commutant. //

Since we are assuming (Max′) we conclude that τ1/2m ∈ B, for every m ∈ M ,
and hence also that τM ⊆ B.

We then need a technical fact:
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19 ·Proposition. P (M) ⊆ τMM∗ (closed linear span). //

This implies that

P (M) ⊆ τMM∗ = MM∗τ = M(τM)∗ ⊆ MB∗ ⊆ M.

Therefore M is invariant under P ! Hence

M = Im(P |M )⊕Ker(P |M )

=
(
B ∩M

)
⊕

(
Ker(P ) ∩M

)
=

(
B ∩M

)
⊕

(
B ∩M

)⊥
(as Hilbert Modules).

So P is detemined on M , and uniqueness follows because A =
∑

M∈SA,B
M .

Fell bundles from generalized Cartan pairs.

As we have already seen, a slice is any closed linear subspace M ⊆ N(B) that
is a B-bimodule.

If M and N are slices then MN (closed linear span) is also a slice and hence
the set SA,B formed by all slices becomes a semigroup.

It is elementary to check that M∗ is a slice for each slice M .

In addition, given a slice M we have that

MM∗M ⊆ MB ⊆ M.

Thus M is a right Hilbert module over M∗M so, by Cohen-Hewitt, MM∗M =
M . Therefore SA,B is actually an inverse semigroup.

The Fell bundle is then obvious: For each slice M put AM = M , and hence

{AM}M∈SA,B
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is a Fell bundle.

When dealing with inverse semigroups there is often information in excess, so
one may hope to reduce the size of SA,B .

20 ·Theorem. Let S be a *-subsemigroup of SA,B such that

(i) A =
∑

M∈S M ,

(ii) for every M,N ∈ S, and every a ∈ M ∩N , there exists K ∈ S such that
a ∈ K ⊆ M ∩N .

Consider the Fell bundle
A = {AM}M∈S

and the restriction of A to the idempotent semilattice of S

E = {AM}M∈E(S).

Then C∗
red(A) is isomorphic to A via an isomorphism which carries C∗(E) onto

B. //

Since A is separable, one may easily find a separable S satisfying the conditions
above!

Construction of the algebras.

Let us suppose we are given a Fell bundle A = {As}s∈S over the inverse
semigroup S.

21 ·Definition. The full cross-sectional C*-algebra of A, denoted C∗(A), is
defined to be the universal C*-algebra generated by the disjoint union⋃

s∈S

As,

subject to the relations given by the multiplication and adjoint operations above,
and also such that whenever s ≤ t, and as ∈ As, one has that

as = jt,s(as).
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Easy to show this exists. As always one should provide representations to show
it is nontrivial.

• Special Case: Every element in S is idempotent.

This is to say that S is a semilattice. Given e, f ∈ S, pick a ∈ Ae. Then
ef ≤ f , so may speak of the composition

b ∈ Af 7→ ab ∈ Aef
jf,ef7−→ Af .

This defines a map Ae →M(Af ) (multiplier algebra), hence a map

λe : Ae →
∏
f

M(Af ).

22 ·Proposition. C∗(A) is isomorphic to the closed *-subalgebra generated
by

⋃
e∈S λe(Ae).

• General Case.

Given A, consider the restriction E = {Ae}e∈E(S), where E(S) is the idempo-
tent semilattice of S.

By case above we have a nice picture of C∗(E), so may use it as a starting
point for analyzing C∗(A).

Fell bundles over groups suggest: construct a Hilbert module over C∗(E), and
a regular (?) representation of C∗(A) as operators on this Hilbert module.

Big trouble: regular representations require conditional expectations, but there
is none in sight (this is related to similar headaches in non-Hausdorff groupoids).

Somehow it is still possible to induce representations, which is basically the
same as extending states. Here is how to do it: pick a state φ on C∗(E).
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Suppose that s ∈ S is such that s ≥ e, for some idempotent e. Then se = e,
so

AsAe ⊆ Ae ⊆ C∗(E).

Using an approximate unit {ui} for Ae define

φs : As → C

by

φs(a) = lim
i

φ(aui).

Thus one gets functionals on each As, which put together gives

Φ :
⊕

s

As → C.

Assuming that the initial state φ is pure, and with a lot more work, it is possible
to prove that Φ is positive and vanishes on

asδs − jt,s(αs)δt,

so Φ factors through a state on C∗(A).

23 ·Definition. The reduced C*-algebra of A, denoted C∗
red(A), is the image

of C∗(A) under the direct sum of all GNS representations associated to the
Φ’s obtained above.

24 ·Corollary. The “inclusion” As → C∗(A) is one-to-one.
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25 ·Corollary. If s1, s2, . . . sn are pairwise disjoint elements in S, then

n⊕
i=1

Asi
→ C∗(A)

is one-to-one.

...

THE END
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