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The starting point for this talk is the theory of crossed products
by endomorphisms introduced in:

Exel, R., “A new look at the crossed-product of a C*-algebra
by an endomorphism”, Ergodic Theory Dynam. Systems, 23
(2003), 1733–1750, [arXiv:math.OA/0012084].

• Includes earlier definition of crossed product by an en-
domorphism when range is a hereditary subalgebra (es-
sentialy the only situation in which that earlier theory is
useful).

• Gives sensible algebras even if the endomorphism does not
have hereditary range.

• (E-. 2000) First crossed product construction to give Cuntz–
Krieger algebras from Markov subshifts!

• (E-. Vershik, 2002) Recovers Arzumanian–Vershik alge-
bras (1978).

• (E-. 2003) KMS states on it are closely related to Gibbs
states of Statistical Mechanics.

• (Kajiwara, Watatani, 2003) Gives very interesting re-
sults when applied to rational maps on the Julia set. For
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example the map

f(z) = z2 − 2,

gives the Cuntz algebra O∞ (needs classification Theo-
rem).

Let us briefly review it: Start with a C*-algebra A and a *-
endomorphism

α : A → A

Also need a transfer operator, namely a positive linear map

L : A → A

such that
L

(
α(a)b

)
= aL(b).

Basic example when α is injective:

L = α−1 ◦E,

where E is a conditional expectation onto the range of α.

Make a Hilbert A–A–bimodule (correspondence) X as follows:

(i) X = A, as a linear space,

(ii) Inner product: 〈x, y〉 = L(x∗y),

(iii) Left module structure: a · x = ax,

(iv) Right module structure: x · a = xα(a).
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Definition. The crossed-product of A by α, relative to L, is
the C*-algebra denoted by

Aoα,LN

obtained as the Cuntz–Pimsner algebra of X .

Remark. If α is not injective it is still possible to define the
crossed-product, but Pimsner’s original paper cannot be used.
I used universal C*-algebras and redundancies, but you may
use relative Cuntz–Pimsner algebras of Muhly/Solel. Katsura
also have nice ways to do this. See Brownlowe-Raeburn as well.

Alternate definition (universal C*-algebra approach):
Define the “Toeplitz” algebra T (A,α,L) to be the universal
C*-algebra generated by a copy of A and an isometry S subject
to the relations

Sa = α(a)S,

S∗aS = L(a),

for all a ∈ A.

Let X ⊆ T (A,α,L) be given by

X = AS

(closed linear span) and notice that for all a, b, c ∈ A

(aS)(bS)∗(cS) = aSS∗b∗cS = aS L(b∗c) = aα
(
L(b∗c)

)
S ∈ X ,

so
XX ∗X ⊆ X ,

so that X is a ternary ring of operators.
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A ternary ring of operators, or TRO, may be defined as any
closed linear subspace X of a C*-algebra such that XX ∗X ⊆
X . There is also an axiomatic definition in which the ternary
operation

(x, y, z) ∈ X × X × X 7→ xy∗z ∈ X

plays a central role. TRO’s as well as ternary C*-rings were
introduced in Zettl’s thesis (1983).

Note that XX ∗X ⊆ X implies:

• XX ∗ is a *-subalgebra of T (A,α,L),

• X is a left–XX ∗–Hilbert module,

Observe that X is also a left–A–module.

Definition. A pair (a, k), where a ∈ A, and k ∈ XX ∗, is called
a redundancy if

ax = kx, ∀x ∈ X .

Since X = AS, this is equivalent to

abS = kbS, ∀ b ∈ A.

Definition. The crossed-product Aoα,LN is the quotient of
T (A,α,L) by the closed two sided ideal generated by all ele-
ments a− k, where (a, k) is a redundancy.
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Recall relations that hold in the crossed product:

Sa = α(a)S,

S∗aS = L(a),

Notice how asymmetric these formulas are! We have no formula
like “SaS∗ = . . .” or “aS = . . .”

The cause for this asymmetry is the fact that time evolution is
often irreversible.

If we are speaking of a classical irreversible system, say a con-
tinuous surjective (possibly non-injective) map

T : X → X,

where X is a compact space, think of T as time evolution: if x
represents the state of a physical system then T (x) represents
the state of the same system on unit of time into the future.

What about the past? The trouble is that a point x in X may
have more than one pre-image under T .

Given x ∈ X consider the set T−1({x}) of all possible past
configurations of our system.

Suppose we are given a probability distribution µx on T−1({x})
to tell us the likelihood of each of these possible past configu-
ration.
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Given a continuous scalar valued function f on X (a.k.a. an
observable), one may define

L(f)
x

=
∫

T−1({x})
f(y) dµx(y), ∀x ∈ X.

L(f) represents the expected value of the observable f one
unit of time into the past. Supposing that L(f) is continuous
for every f , one checks without difficulty that L is a transfer
operator for the endomorphism α of C(X) defined by

α : f ∈ C(X) 7→ f ◦α ∈ C(X).

Thus one may apply the above definition to form C(X)oα,LN.
Arguably, this turns out to be the “right” C*-algebra to be
studied in connection to our dynamical system!

In this talk we wish to take a step toward the study of systems
whose future behavior presents the same degree of uncer-
tainty as its past.

Inspired by the previous crossed-product construction we pos-
tulate that our given algebra of observables A should be em-
bedded in a larger algebra B containing a partial isometry S
which governs time evolution.
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Time evolution itself will be thought of as the interaction be-
tween A and S, meaning the commutation relations between
S and the elements of A. These commutation relations will be
required to have the form

SaS∗ = V(a)SS∗, and S∗aS = H(a)S∗S,

for all a ∈ A, where V and H are positive linear operators on
A. One should think of these maps as corresponding to the
past and future evolution. Which is which is not an issue since
the situation will be absolutely symmetric.

In particular, since we are assuming that V and H are positive,
this will imply that

V(a) � SS∗, and H(a) � S∗S. (� = commutes)

For the time being fix A ⊆ B 3 S as above. Given a in A
observe that

V(a)S = V(a)SS∗S = SS∗V(a)S = SH(V(a))S∗S =

= V(H(V(a)))SS∗S = V(H(V(a)))S,

thus it is sensible to assume that

V = VHV

and by symmetry
H = HVH.



8

Given a and b in A, let us compute SaS∗bS in the following
two ways:

SaS∗bS = SaH(b)S∗S = V
(
aH(b)

)
SS∗S = V

(
aH(b)

)
S,

while

SaS∗bS = V(a)SS∗bS = V(a)SH(b)S∗S = V(a)V
(
H(b)

)
S.

Thus we also assume

V(aH(b)) = V(a)V(H(b)).

Since both V and H are positive, and hence preserve the invo-
lution, this implies that

V(H(a)b) = V(H(a))V(b).

This amounts to
V(xy) = V(x)V(y),

if either x or y belong to H(A).

By symmetry we also assume that

H(xy) = H(x)H(y),

if either x or y belong to V(A).

Under these assumptions we have:
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Proposition.

(i) V(A) and H(A) are closed *-subalgebras of A,

(ii) EV := V ◦H is a conditional expectation onto V(A),

(iii) EH := H ◦V is a conditional expectation onto H(A).

(iv) V restricts to an isomorphism from H(A) onto V(A).

(v) H restricts to an isomorphism from V(A) onto H(A).

(vi) These are inverses of each other.

Definition. If A is a C*-algebra then a pair (V,H) of positive
linear maps

V,H : A → A

will be called an interaction if

(i) VHV = V,

(ii) HVH = H,

(iii) V(xy) = V(x)V(y), if either x or y belong to H(A),

(iv) H(xy) = H(x)H(y), if either x or y belong to V(A).

Main goal: to start with an interaction and to reconstruct
B and S as above.
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Still assuming A ⊆ B 3 S, let Y be the linear subspace of B
given by

Y = ASA =
{ n∑

i=1

aiSbi : n ∈ N, ai, bi ∈ A
}

.

Proposition. Given a1, a2, b1, b2, c1, c2 ∈ A we have that

(a1Sa2)(b1Sb2)∗(c1Sc2) = a1V(a2b
∗
2) S H(b∗1c1)c2.

Proof. Apply formulas. ut

This shows that Y is closed under the ternary operation

[x, y, z] := xy∗z.

In other words Y is a TRO.

Also Y is an A–A–bimodule and we have

[ξ, aη, ζ] = [ξ, η, a∗ζ], and [ξ, ηa, ζ] = [ξa∗, η, ζ], (†)

for all ξ, η, ζ ∈ Y and all a ∈ A.

Definition. A generalized correspondence over A is a
TRO which is also an A–A–bimodule satisfying (†).
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In particular, both

K` := YY∗, and Kr := Y∗Y

are closed *-subalgebras of B, and Y is a K`–Kr–Hilbert-bimo-
dule with the left and right inner-products given by

〈m,n〉` = mn∗

and
〈m,n〉r = m∗n,

for any m,n ∈ Y.

Even though Y is an A–A–bimodule it is not necessarily a
right or left Hilbert module as there is no reason for
〈m,n〉r or 〈m,n〉` to lie in A !!

We now wish to obtain a formula for the norm of an element
of Y in terms of the maps V and H.

Proposition. If a1, . . . , an and b1, . . . , bn are in A then∥∥∥ n∑
i=1

a∗i Sbi

∥∥∥ =
∥∥Vn

(
Hn(aa∗)

)1/2Vn(bb∗)1/2
∥∥,

where

a =


a1

a2
...

an

 , and b =


b1

b2
...

bn


so that aa∗ and bb∗ are n × n matrices over A, while Vn and
Hn are the corresponding operators on Mn(A).
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RECONSTRUCTION

Now let us abandon B and S definitively and stay just with A
and an abstract interaction (V,H).

The first step will be to reconstruct the generalized correspon-
dence Y. Let

X = A⊗C A,

and equip X with the ternary operation

[ · , · , · ] : X × X × X → X

defined by

[a1 ⊗ a2, b1 ⊗ b2, c1 ⊗ c2] = a1V(a2b
∗
2) ⊗ H(b∗1c1)c2. Recall that a while ago we had

(a1Sa2)(b1Sb2)∗(c1Sc2) = a1V(a2b
∗
2) S H(b∗1c1)c2.


Given x ∈ X of the form

x =
n∑

i=1

a∗i ⊗ bi,

define
‖x‖ =

∥∥Vn

(
Hn(aa∗)

)1/2Vn(bb∗)1/2
∥∥.

Theorem. ‖ · ‖ is a well defined seminorm on X and its com-
pletion is a generalized correspondence over A.
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Proof. A mighty headache! ut

Once this is granted it is easy to imitate the linking algebra
construction to find a C*-algebra B and a partial isometry S
satisfying our relations: embed X in B(H) i.e, such that

[x, y, z] = xy∗z.

One may prove that this will automatically give representations
λ and ρ on A on H such that

λ(a)x = ax

xρ(a) = xa,

for all x in X and a in A. Set

π(a) =
[

λ(a) 0
0 ρ(a)

]
∈ B(H ⊕H)

and let

S =
[

0 1⊗ 1
0 0

]
.

Then π is a representation of A, S is a partial isometry, and

S∗π(a)S = π(H(a))S∗S, and Sπ(a)S∗ = π(V(a))SS∗,

for all a in A.

Thus we have reconstructed the concrete situation from an ab-
stract interaction !!!
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Should we live with this happily ever after? Only if we had
never seen Pimsner’s paper!

The question is: what is the “covariance algebra” for (V,H)?

Definition. Given a generalized correspondence X over A, let
T = T (A,X ) be the universal C*-algebra generated by A ∪X
subject to all algebraic relations in either X and A, including
the ternary operation in X , plus the bimodule relations.

Let us imitate the passage from the Toeplitz–Cuntz–Pimsner
algebra to the Cuntz–Pimsner algebra using redundancies:

Definition. Let X be a generalized correspondence over the
C*-algebra A. By a right redundancy we shall mean a pair
(a, k) ∈ T × T , such that a ∈ A, k ∈ X ∗X , and

xa = xk, ∀x ∈ X .

Likewise, by a left redundancy we shall mean a pair (a, k) ∈
T × T , such that a ∈ A, k ∈ XX ∗, and

ax = kx, ∀x ∈ X .

Definition. The redundancy ideal is the closed two-sided
ideal of T generated by the elements a−k, for all left and right
redundancies (a, k).
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In fact, unless we assume some nondegeneracy properties, we
should not take all redundancies (a, k) but only those such that
a lie in certain ideals. This is an idea of Katsura and it has the
purpose of avoiding an otherwise nonzero intersection between
A and the redundancy ideal which is undesirable.

Definition. Let X be a generalized correspondence over a C*-
algebra A. The covariance algebra for the pair (A,X ), denoted
C∗(A,X ), is the quotient of T by the redundancy ideal.

This is a very tentative definition which we nevertheless believe
to be of interest given its similarities with the enormously pop-
ular Cuntz-Pimsner construction. It is the right construction
to deal with interactions.

The main questions brought about by the above definition are:

(1) Are the canonical embeddings of A and X into C∗(A,X )
injective? Equivalently, is the intersection between the redun-
dancy ideal and A, or X , the zero ideal?

(2) Can one say anything useful about C∗(A,X ), compute its
K-theory, or find a concrete faithful representation of it?

(3) Is there a Fock space representation of T (A,X ) similar
to the one given by Pimsner?
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At least we can show this generalizes Cuntz-Pimsner algebras:
given a correspondence X over A let us forget the A–valued
inner-product but keep the ternary operation

[ξ, η, ζ] = ξ 〈η, ζ〉 .

Theorem. X is a generalized correspondence and C∗(A,X ) is
isomorphic to the Cuntz-Pimsner algebra OX .

This means that the A–valued inner-product is unnecessary
for the Cuntz-Pimsner construction!

But, if you need it, you can recover it as a redundancy: if
a = 〈η, ζ〉, then the pair (a, η∗ζ) in T ×T is a right-redundancy
since

ξa = ξ 〈η, ζ〉 = [ξ, η, ζ] = ξη∗ζ

so
η∗ζ = 〈η, ζ〉

in the covariance algebra!


