KMS STATES FOR GENERALIZED GAUGE ACTIONS ON CUNTZ-KRIEGER ALGEBRAS

(An application of the Ruelle-Perron-Frobenius Theorem)

by Ruy Exel

BASED ON:

R. Exel, "A New Look at The Crossed-Product of a C*-algebra by an Endomorphism", preprint, 2000, math.OA/0012084.

R. Exel, "Crossed-Products by Finite Index Endomorphisms and KMS states", preprint, 2001, math.OA/0105195.

R. Exel, "KMS states for generalized gauge actions on Cuntz-Krieger algebras (An application of the Ruelle-Perron-Frobenius Theorem)", preprint, 2001, math.OA/0110183.

Let A be a unital C*-algebra and

$$\sigma: A \to A$$

be a monomorphism (injective endomorphism) with $\sigma(1) = 1$. We want to define a new notion of *crossed-product* of A by σ .

Starting points:

- 1) $A \rtimes_{\sigma} \mathbb{N}$ should be generated by a copy of A and an isometry S.
- 2) For $a \in A$ we want $S^*aS \in A$.
- 3) For $a \in A$ we want $Sa = \sigma(a)S$.

In view of (3) it should be noticed that the following relations have been considered:

$S a S^*$	=	$\sigma(a)$
Sa	=	$\sigma(a) S$
a	=	$S^* \sigma(a) S$

each being weaker than the previous one. We will therefore \underline{not} require the top one.

In view of (2) observe that we must choose <u>beforehand</u> the map

$$\mathcal{L}: a \in A \mapsto S^* a S \in A.$$

Definition. A transfer operator for the pair (A, σ) is a positive linear map

$$\mathcal{L}: A \to A$$

such that $\mathcal{L}(1) = 1$ and $\mathcal{L}(a)b = \mathcal{L}(a\sigma(b))$.

Definition. Given A, σ , and \mathcal{L} as above we define $\mathcal{T}(A, \sigma, \mathcal{L})$ to be the universal C*-algebra generated by a copy of A and an isometry S subject to the relations

- i) $Sa = \sigma(a)S$, and
- ii) $S^*aS = \mathcal{L}(a).$

For example, when σ is an automorphism and $\mathcal{L} = \sigma^{-1}$ then $\mathcal{T}(A, \sigma, \mathcal{L})$ turns out to be the Toeplitz extension of the crossed-product considered by Pimsner and Voiculescu for the computation of $K_*(A \rtimes_{\sigma} \mathbb{Z})$.

It is therefore not reasonable to define the crossed-product to be $\mathcal{T}(A, \sigma, \mathcal{L})$. It will be a quotient of $\mathcal{T}(A, \sigma, \mathcal{L})$.

THE CROSSED-PRODUCT AS A QUOTIENT OF $\mathcal{T}(A, \sigma, \mathcal{L})$

Working within $\mathcal{T}(A, \sigma, \mathcal{L})$, observe that $M := \overline{AS}$ is a right Hilbert-A-module under the inner-product $\langle x, y \rangle = x^* y$. If x = aS and y = bS then

$$\langle x, y \rangle = (aS)^* bS = S^* a^* bS = \mathcal{L}(a^* b).$$

The algebra of generalized compact operators in the sense of Rieffel is given by

$$K(M) = \overline{MM^*} = \overline{ASS^*A}.$$

Obviously M is a left K(M)-module. It is also a left A-module. So it could be that there exists $k \in K(M)$ and $a \in A$ which act in the same way as left multiplication operators on M.

Definition. A redundancy is a pair (a, k) such that $a \in A$, $k \in \overline{ASS^*A}$, and

$$abS = kbS, \quad \forall b \in A.$$

Definition. The crossed-product $A \rtimes_{\sigma,\mathcal{L}} \mathbb{N}$ is defined to be the quotient of $\mathcal{T}(A, \sigma, \mathcal{L})$ by the closed two-sided ideal generated by the differences a - k, for all redundancies (a, k).

CUNTZ-KRIEGER ALGEBRAS AS CROSSED-PRODUCT

Let A be an $n \times n$ matrix with $A_{ij} \in \{0, 1\}$, having no zero rows or columns.

Consider the "Markov space"

$$\Sigma_A = \Big\{ x \in \prod_{i \in \mathbb{N}} \{1, 2, \dots, n\} : A_{x_i, x_{i+1}} = 1 \text{ for all } i \ge 0 \Big\},\$$

and the "Markov sub-shift"

$$\sigma: (x_0, x_1, x_2, \dots) \in \Sigma_A \longmapsto (x_1, x_2, x_3, \dots) \in \Sigma_A.$$

This induces the unital monomorphism

$$\sigma: f \in C(\Sigma_A) \longmapsto f \circ \sigma \in C(\Sigma_A).$$

Now we need a transfer operator: for $f \in C(\Sigma_A)$ put

$$\mathcal{L}(f)|_{x} = \frac{1}{\#\sigma^{-1}(x)} \sum_{y \in \sigma^{-1}(x)} f(y).$$

Theorem. $C(\Sigma_A) \rtimes_{\sigma, \mathcal{L}} \mathbb{N}$ is isomorphic to \mathcal{O}_A .

The isomorphism we found maps $C(\Sigma_A)$ to the subalgebra generated by the elements of the form $S_{i_1} \dots S_{i_k} S_{i_k}^* \dots S_{i_1}^*$, where the S_i are the standard generating partial isometries.

The isometry S in $C(\Sigma_A) \rtimes_{\sigma, \mathcal{L}} \mathbb{N}$ is mapped to the isometry part in the polar decomposition of $T := \sum_{i=1}^{n} S_i$, that is

$$S \longmapsto T(T^*T)^{-1/2}.$$

6

GENERALIZED GAUGE ACTIONS

Back to the general case let (A, σ, \mathcal{L}) be as above. Given a unitary element u in the center of A it is easy to show that the correspondence

$$\begin{array}{cccc} a & \mapsto & a \\ S & \mapsto & uS \end{array}$$

extends to give an automorphism of $A \rtimes_{\sigma, \mathcal{L}} \mathbb{N}$.

Given a positive element H in the center of A we have that H^{it} is unitary and hence we get an automorphism γ_t of $A \rtimes_{\sigma, \mathcal{L}} \mathbb{N}$ determined by

$$\gamma_t: \begin{array}{ccc} a & \mapsto & a \\ S & \mapsto & H^{it}S \end{array}$$

It is easy to see that $\{\gamma_t\}_{t\in\mathbb{R}}$ is a one-parameter automorphism group of $A\rtimes_{\sigma,\mathcal{L}}\mathbb{N}$.

In the case of \mathcal{O}_A one takes a positive continuous function H on Σ_A and γ_t is determined by

$$\gamma_t(S_j) = H^{it}S_j.$$

When H = e (Neper's number) we get the usual gauge action on \mathcal{O}_A .

We want to compute the KMS states for the gauge action in the general case. For this it will be necessary to introduce conditional expectations

$$A \rtimes_{\sigma, \mathcal{L}} \mathbb{N} \to A.$$

This turns out to be a major difficulty!

CONDITIONAL EXPECTATIONS

Let (A, σ) be as above.

How do we obtain a transfer operator? One canonical way is to choose a conditional expectation

$$E: A \to \sigma(A)$$

and set \mathcal{L} to be the composition

$$A \xrightarrow{E} \sigma(A) \xrightarrow{\sigma^{-1}} A$$

In fact the transfer operator leading up to the Cuntz-Krieger algebra above is of this form.

Definition. (Jones, Kosaki, Watatani) A conditional expectation E is said to be of *index-finite type* if one can find elements $u_1, \ldots, u_m \in A$ such that

$$a = \sum_{i=1}^{m} u_i E(u_i^* a), \quad \forall a \in A.$$

In this case one defines the *index* of E by

$$\operatorname{ind}(E) = \sum_{i=1}^{m} u_i u_i^*.$$

Theorem. Assume that E is of index-finite type. Then there exists a conditional expectation $G: A \rtimes_{\sigma, \mathcal{L}} \mathbb{N} \to A$ such that

$$G(aS^nS^{*m}b) = \begin{cases} aI_n^{-1}b & \text{, if } n = m, \\ 0 & \text{, if } n \neq m. \end{cases}$$

where

$$I_n = \operatorname{ind}(E)\sigma(\operatorname{ind}(E))\dots\sigma^{n-1}(\operatorname{ind}(E)).$$

If A is commutative this is the unique conditional expectation which is invariant under the scalar gauge action (i.e. the gauge action with H = e).

KMS STATES

Main Theorem. Suppose that E is of index-finite type and E(ab) = E(ba) for all $a, b \in A$ (e.g. when A is commutative). Let H be a central self-adjoint element with H > 1 and consider the associated gauge action. Then for all $\beta > 0$ the correspondence

$$\psi \mapsto \nu = \psi|_A$$

is a bijection from the set of KMS_{β} states ψ on $A \rtimes_{\sigma, \mathcal{L}} \mathbb{N}$ and the set of states ν on A such that

$$\nu(f) = \nu\Big(\mathcal{L}\big(\mathrm{ind}(E)H^{-\beta}f\big)\Big), \quad \forall f \in A.$$
 (†)

The inverse of the above correspondence is given by

$$\nu \mapsto \psi = \nu \circ G,$$

where G is the conditional expectation given above.

In the case of \mathcal{O}_A the the right hand side of (†) becomes

$$\sum_{y \in \sigma^{-1}(x)} H(t)^{-\beta} f(t),$$

which coincides with the Ruelle operator $\mathcal{L}_{H^{-\beta}}(f)$, or $\mathcal{L}_{\beta}(f)$ for short, so that equation (†) becomes

$$\nu = \mathcal{L}_{\beta}^*(\nu).$$

Theorem. Suppose that the zero-one $n \times n$ matrix A is irreducible and aperiodic (i.e. there exists a positive integer m such that all entries of A^m are positive). Suppose that H is a Hölder continuous function on Σ_A with H > 1 and let γ be the associated gauge action on \mathcal{O}_A . Then there exists a unique KMS state for γ .

Let us describe how to get this state. By the Ruelle-Perron-Frobenius Theorem, for each $\beta \geq 0$ there exists a unique pair (λ, ν) where $\lambda > 0$, ν is a probability measure on Σ_A , and

$$\mathcal{L}^*_{\beta}(\nu) = \lambda \nu.$$

One may then show that the map

$$\beta \mapsto \lambda = \lambda(\beta)$$

is continuous, strictly decreasing, and satisfies

$$\lambda(0) > 1$$
 and $\lim_{\beta \to \infty} \lambda(\beta) = 0.$

Thus there exists a unique β_c such that $\lambda(\beta_c) = 1$. Let ν be such that

$$\mathcal{L}^*_{\beta_c}(\nu) = \lambda(\beta_c)\nu = \nu.$$

Then by the *Main Theorem* above $\nu \circ G$ is a KMS_{β_c} state on \mathcal{O}_A and it is easy to show this is unique.